Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Phytochemistry ; 219: 113994, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244959

ABSTRACT

Five undescribed compounds, including two cholestane glycosides parispolyosides A and E, and three spirostanol glycosides parispolyosides B-D, were isolated from rhizome of Paris polyphylla var. chinensis (Franch.) Hara, together with twenty-one known steroidal saponins. Their chemical structures were elucidated on the basis of comprehensive analysis of 1D and 2D NMR, as well as HR-ESI-MS spectroscopic data. Two of these compounds demonstrated potent inhibitory effect on NO production stimulated by lipopolysaccharide in raw 264.7 cells with IC50 values of 61.35 µM and 37.23 µM. Four compounds exhibited moderate inhibitory activity against HepG2 cells with IC50 values ranging from 9.43 to 24.54 µM. Molecular docking analysis revealed that the potential mechanism of NO inhibition by the active compounds was associated with the interactions with iNOS protein.


Subject(s)
Antineoplastic Agents , Liliaceae , Saponins , Rhizome/chemistry , Molecular Docking Simulation , Saponins/chemistry , Liliaceae/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4589-4597, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802798

ABSTRACT

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(1),(25R)-26-O-ß-D-glucopyranosyl-furost-5-en-3ß,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(2),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranoside(3),(25R)-27-O-ß-D-glucopyranosyl-5-en-3ß,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[ß-D-glucopyranosyl-(1→3)]-ß-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Tandem Mass Spectrometry , Saponins/analysis , Liliaceae/chemistry , Chromatography, High Pressure Liquid , Rhizome/chemistry , Molecular Structure
3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008626

ABSTRACT

The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.


Subject(s)
Tandem Mass Spectrometry , Saponins/analysis , Liliaceae/chemistry , Chromatography, High Pressure Liquid , Rhizome/chemistry , Melanthiaceae , Molecular Structure
4.
Carbohydr Res ; 519: 108613, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35752103

ABSTRACT

In our previous research on Vietnamese medicinal plants, we found that the ethanolic extract of the aerial parts of Paris polyphylla var. chinensis exhibited cytotoxic effects in vitro in the MCF-7 human cancer cell line. Here, we used combined chromatographic separations to isolate six compounds including a new steroid glycoside, paripoloside A (3), and five known compounds, from the butanol extract of the aerial parts of P. polyphylla. We unambiguously elucidated their structures based on spectroscopic data (proton and carbon-13 nuclear magnetic resonance, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, correlation spectroscopy, and high-resolution electrospray ionization mass spectroscopy data), and chemical reactions. Among the isolated compounds, paris saponin II (PSII) had the strongest cytotoxic effects against MCF-7 breast cancer cells. Interestingly, PSII significantly increased the expression of p53, p21, p27, and Bax protein levels and significantly suppressed the expression of cyclin D1 and retinoblastoma protein. These data suggest that PSII may induce G1/S phase cell cycle arrest and apoptosis pathway development in MCF-7 cells. Furthermore, the MCF-7 breast cancer cells mechanism of PSII was also investigated using molecular docking. Together, our results demonstrate that isolated compounds from P. polyphylla are promising candidates as breast cancer inhibitors.


Subject(s)
Breast Neoplasms , Diosgenin , Liliaceae , Saponins , Cell Cycle Checkpoints , Diosgenin/analogs & derivatives , Diosgenin/analysis , Female , Humans , Liliaceae/chemistry , MCF-7 Cells , Molecular Docking Simulation , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Saponins/chemistry
5.
Molecules ; 27(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566077

ABSTRACT

Paris polyphylla var. chinensis (Franch.) Hara is a perennial herb belonging to the Trilliaceae family. Ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to detect the composition of different fractions of Paris polyphylla var. chinensis leaves. Meanwhile, the extracts of different fractions were evaluated for their cytotoxic activities against four selected human cancer cell lines and one human normal epithelial cell line based on the MTT assay method. Multivariate statistical analysis was performed to screen differential compounds and to analyze the distributions between different fractions. Finally, more than 60 compounds were obtained and identified from the different fractions of Paris polyphylla var. chinensis leaves, and the chloroform and n-butanol extracts showed significant cytotoxic effects on these four cancer cells. Several compounds were preliminarily identified from different fractions, including 36 steroidal saponins, 11 flavonoids, 10 ceramides, 8 lipids, 6 organic acids, and 8 other compounds. Various compounds were screened out as different chemical components of different fractions, which were considered as a potential substance basis for the cytotoxicity of Paris polyphylla var. chinensis leaves.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Humans , Liliaceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Saponins/chemistry
6.
Zhongguo Zhong Yao Za Zhi ; 46(12): 2900-2911, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34467680

ABSTRACT

Paridis Rhizoma(PR) is prepared from the dried rhizome of Paris polyphylla var. yunnanensis(PPY) or P. polyphylla var. chinensis(PPC) in Liliaceae family. The rapid development of PPY or PPC planting industry resulted from resource shortage has caused the waste of a large number of non-medicinal resources. To clarify the chemical compositions in rhizomes, fibrous roots, stems, leaves, seeds and pericarps of PPC, and explore the comprehensive application value and development prospect of these parts, the qualitative and quantitative analyses on the different parts of PPC were carried out by ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography(HPLC). A total of 136 compounds were identified, including 112 steroidal saponins, 6 flavonoids, 11 nitrogen-containing compounds and 7 phytosterols. Rhizomes, fibrous roots, and seeds mainly contained protopennogenyl glycosides and pennogenyl glycosides; leaves and stems mainly contained protodiosgenyl glycosides and diosgenyl glycosides; pericarps mainly contained pennogenyl glycosides, followed by diosgenyl glycosides. The total level of four saponins was the highest in fibrous roots and rhizomes, followed by those in the pericarps and arillate seeds, and the lowest in the stems and exarillate seeds. This study can provide data support for the comprehensive development and rational application of non-medicinal parts of PPC.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Chromatography, High Pressure Liquid , Rhizome , Tandem Mass Spectrometry
7.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4023-4033, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467711

ABSTRACT

Paris polyphylla var. chinensis(PPC) is used as one of the origin plants of Paridis Rhizoma described in the Chinese Pharmacopoeia(2020 edition). Its resources shortage makes the planting scale gradually expand, and plenty of aerial parts are abandoned because of not being effectively used. On the basis of previous research, this study separated steroidal saponins to further clarify the chemical composition of the aerial parts of PPC. As a result, three pairs of 25R or 25S epimers of furostanol saponins were obtained by various column chromatography techniques. Their structures were identified as neosolanigroside Y6(1), solanigroside Y6(2), neoprotogracillin(3), protogracillin(4), neoprotodioscin(5) and protodioscin(6) by spectral data combining with chemical transformation. Compound 1 is a new compound, and compounds 2, 3 and 5 are isolated from Paris plants for the first time. Compounds 4 and 6 are isolated from this plant for the first time. Previously, only several spirostanol glycosides with 25S configuration were isolated from Paris plants. Guided by mass spectrometry, the present study isolated the furostanol saponins with 25S configuration from this genus for the first time, which further enriches the chemical information of Paris genus and provides a reference for the isolation of similar compounds.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Plant Extracts , Rhizome
8.
J Pharm Biomed Anal ; 197: 113932, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33618136

ABSTRACT

Drying method is one of the important factors affecting quality of traditional Chinese medicine. To study the effect of shaded drying and hot air drying on steroidal saponins of Paridis Rhizoma (PR), high performance liquid chromatography (HPLC) analysis was used to investigate the difference of Paris polyphylla var. chinensis (PPC) samples treated by different methods, and then, a rapid and reliable ultra-high performance liquid chromatography (UPLC) method was established to quantitatively analyze the content change of ten steroidal saponins. Hot air drying at 50 ℃ could obviously improve the content of polyphyllin Ⅶ, 17-hydroxygracillin and polyphyllin H, which were major steroidal saponins in PPC. Based on that, the main component changes induced by different drying methods were further analyzed using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), and the structural identification of varied components revealed that hot air drying could promote the transformation of proto-pennogenyl glycosides to pennogenyl glycosides. This phenomenon was also found in other plants of genus Paris rich in diosgenyl glycosides. The present study provided a useful method for improving quality of PR and valuable information for TCM containing steroidal saponins.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , Chromatography, High Pressure Liquid , Rhizome , Tandem Mass Spectrometry
9.
Plant Dis ; 105(5): 1546-1554, 2021 May.
Article in English | MEDLINE | ID: mdl-33349004

ABSTRACT

Black spot caused by Alternaria alternata (BSAA) is one of the most common diseases of Paris polyphylla var. chinensis, causing yield losses in China. Demethylation inhibitors (DMIs) have been used to control this disease in China for decades. Some farmers have complained about the decreased efficacy of DMIs against BSAA. The objective of this study was to detect and characterize the resistance of A. alternata against difenoconazole from P. polyphylla var. chinensis during 2018. Of the 22 isolates of A. alternata obtained from Sichuan Province in the southwest of China, 20 were resistant to difenoconazole. Mycelial growth rates and sporulation of the difenoconazole-resistant (DfnR) isolates were not different from those of the difenoconazole-sensitive (DfnS) isolates. No cross resistance between difenoconazole and tebuconazole or propiconazole was observed. Mutations were identified at gene AaCYP51 of DfnR isolates based on the sequence alignment of the DfnR and DfnS isolates. All of the mutations could be divided into three resistant genotypes, I (K715R + Y781C), II (K715R + D1140G + T1628A), and III (no mutation). The docking total score of the DfnS isolates was 5.6020, higher than the resistant genotype I (4.4599) or the resistant genotype II (3.8651), suggesting that the DMI resistance of A. alternata may be caused by the decreased affinity between AaCYP51 and difenoconazole.


Subject(s)
Liliaceae , Plants, Medicinal , Alternaria/genetics , Dioxolanes , Triazoles
10.
J Asian Nat Prod Res ; 23(11): 1107-1114, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33225748

ABSTRACT

A new homo-aro-cholestane glycoside parispolyside H, along with nine known compounds, were isolated from 75% ethanolic extract of the rhizome of Paris polyphylla var. chinensis. Their chemical structures were elucidated on the basic of analysis of detailed spectroscopic and physicochemical properties. In addition, the isolated compounds (1, 6-9) were evaluated for their cytotoxic activity against HepG2 human liver cancer cell lines. Among them, four known compounds (6-9) showed cytotoxicity with IC50 values ranging from 0.41 to 3.6 µM.


Subject(s)
Cholestanes , Liliaceae , Saponins , Glycosides/pharmacology , Molecular Structure , Rhizome
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888059

ABSTRACT

Paris polyphylla var. chinensis(PPC) is used as one of the origin plants of Paridis Rhizoma described in the Chinese Pharmacopoeia(2020 edition). Its resources shortage makes the planting scale gradually expand, and plenty of aerial parts are abandoned because of not being effectively used. On the basis of previous research, this study separated steroidal saponins to further clarify the chemical composition of the aerial parts of PPC. As a result, three pairs of 25R or 25S epimers of furostanol saponins were obtained by various column chromatography techniques. Their structures were identified as neosolanigroside Y6(1), solanigroside Y6(2), neoprotogracillin(3), protogracillin(4), neoprotodioscin(5) and protodioscin(6) by spectral data combining with chemical transformation. Compound 1 is a new compound, and compounds 2, 3 and 5 are isolated from Paris plants for the first time. Compounds 4 and 6 are isolated from this plant for the first time. Previously, only several spirostanol glycosides with 25S configuration were isolated from Paris plants. Guided by mass spectrometry, the present study isolated the furostanol saponins with 25S configuration from this genus for the first time, which further enriches the chemical information of Paris genus and provides a reference for the isolation of similar compounds.


Subject(s)
Liliaceae , Melanthiaceae , Plant Extracts , Rhizome , Saponins
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888028

ABSTRACT

Paridis Rhizoma(PR) is prepared from the dried rhizome of Paris polyphylla var. yunnanensis(PPY) or P. polyphylla var. chinensis(PPC) in Liliaceae family. The rapid development of PPY or PPC planting industry resulted from resource shortage has caused the waste of a large number of non-medicinal resources. To clarify the chemical compositions in rhizomes, fibrous roots, stems, leaves, seeds and pericarps of PPC, and explore the comprehensive application value and development prospect of these parts, the qualitative and quantitative analyses on the different parts of PPC were carried out by ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) and high performance liquid chromatography(HPLC). A total of 136 compounds were identified, including 112 steroidal saponins, 6 flavonoids, 11 nitrogen-containing compounds and 7 phytosterols. Rhizomes, fibrous roots, and seeds mainly contained protopennogenyl glycosides and pennogenyl glycosides; leaves and stems mainly contained protodiosgenyl glycosides and diosgenyl glycosides; pericarps mainly contained pennogenyl glycosides, followed by diosgenyl glycosides. The total level of four saponins was the highest in fibrous roots and rhizomes, followed by those in the pericarps and arillate seeds, and the lowest in the stems and exarillate seeds. This study can provide data support for the comprehensive development and rational application of non-medicinal parts of PPC.


Subject(s)
Chromatography, High Pressure Liquid , Liliaceae , Melanthiaceae , Rhizome , Saponins , Tandem Mass Spectrometry
13.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1745-1755, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32489057

ABSTRACT

Paridis Rhizoma is prepared from the dried rhizoma of Paris polyphylla var. yunnanensis or P. polyphylla var. chinensis. For the improvement of the quality standard of Paridis Rhizoma described in Chinese Pharmacopoeia(2015 edition), it is proposed that the quality marker no longer contains polyphyllin Ⅵ, and instead, polyphyllin H is an alternative for the quantitative analysis. To determine polyphyllin Ⅰ, Ⅱ, H and Ⅶ in the Paridis Rhizoma samples collected from the different growing area in China, HPLC method was established using the same chromatographic conditions as those for simultaneous determination of polyphyllin Ⅰ, Ⅱ, Ⅵ and Ⅶ described in Chinese Pharmacopoeia(2015 edition). The methodology validation indicated that there was a good linearity among the ranges of 0.006 48-0.828, 0.006 52-0.834, 0.006 17-0.790, 0.006 31-0.808 g·L~(-1) for polyphyllin Ⅰ, Ⅱ, H and Ⅶ, respectively. The average recoveries of four components were 100.2%-101.4%, with RSD less than 3.5%. The total amount of polyphyllin Ⅰ, Ⅱ, H and Ⅶ in the analyzed samples of P. polyphylla var. chinensis and P. polyphylla var. yunnanensis ranged from 0.050 9% to 3.99% and from 0.115% to 3.23%, respectively. In the tested samples collected from other Paris plants, there are high content of steroidal saponins in the samples of P. fargesii and P. forrestii, low content in the samples of P. polyphylla var. stenophylla, P. delavayi and P. thibetica, and almost not occurrence in the sample of P. mairei. As a representative adulterant of Paridis Rhizoma processed slices, 7 batches of Trillium samples contained high amount of polyphyllin Ⅵ and did not have polyphyllin H. Based on the present investigation, it is recommended that polyphyllin H together with polyphyllin Ⅰ, Ⅱ and Ⅶ are suitable for the improvement of quality standard of Paridis Rhizoma and the total amount of four components are not less than 0.80%.


Subject(s)
Liliaceae , Melanthiaceae , Saponins , China , Rhizome
14.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1893-1900, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32489075

ABSTRACT

The study aims at exploring the expression of differential genes and related metabolic pathways in the process of seed dormancy release. The dormant embryo and the dormant released embryo of Paris polyphylla var. chinensis were used as the test materials, a new generation high-throughput sequencing methods to sequence the transcriptome of the samples was used to carry out systematic bioinformatics analysis. We obtained 62 882 650 and 62 263 366 clean reads from the DNA libraries of the samples before and after dormancy breaking. A total of 69 248 differentially expressed genes(DEGs) were obtained, 56 426 up-regulated genes and 12 822 down-regulated genes. There are 138 267 differentially expressed genes in the process of embryo dormancy release, which were annotated by GO function to 58 subclasses of biological processes, molecular functions and cell components. The annotated differentially expressed genes were closely related to metabolic processes, biological regulation, cell component synthesis and enzyme catalytic activity. We found 139 metabolic pathways through pathway analysis of 58 722 differentially expressed genes. Before and after dormancy, DEGs were mainly enriched in carbon metabolism, secondary metabolite biosynthesis and polysaccharide metabolism. Based on the annotation results in KEGG database, we found 16 metabolic pathways related to the dormancy release of P. polyhoylla var. chinensis. A large number of differentially expressed genes were involved in embryo morphogenesis, polysaccharide decomposition and protein synthesis during seed development and dormancy release. It involves the interaction of multiple metabolic pathways and constitutes a complex regulation network for dormancy relief.


Subject(s)
Liliaceae , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Dormancy , Seeds
15.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5958-5966, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33496135

ABSTRACT

The purpose of this study was to explore the expression pattern of miRNA in the process of embryo dormancy and provide a reference for the mechanism of regulating seed dormancy and germination by miRNA. We used high-throughput sequencing technology, bioinformatics analysis and real-time fluorescent quantitative PCR(qPCR) technology to sequence, screen and identify miRNAs of dormant and dormant embryos. The results showed that there were 23 811 977, 24 276 695, 20 611 876 and 20 601 811 unique sequences in the four sample libraries during the period of dormancy and dormancy release. MiRNAs are mainly distributed between 21 and 24 nt, among which the length of 24 nt occurred most frequently. A total of 31 known miRNAs were identified, belonging to 13 different families. 93 new miRNAs were predicted by bioinformatics software. Ten miRNAs(mir156 a-5 p, mir160 a-5 p, mir160 h-1, mir169 a-5 p, mir157 d, mir159 a-1, mir395-3, mir156 f-5 p, mir156-2 and mir171 a-3 p) were screened out. In this study, 10 miRNAs related to seed dormancy release were identified. The target genes mainly involved carbohydrate metabolism, plant hormone signal transduction, cell division and growth. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Subject(s)
Liliaceae , MicroRNAs , Gene Expression Regulation, Plant , Humans , Plant Dormancy , RNA, Plant , Seeds
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-878857

ABSTRACT

The purpose of this study was to explore the expression pattern of miRNA in the process of embryo dormancy and provide a reference for the mechanism of regulating seed dormancy and germination by miRNA. We used high-throughput sequencing technology, bioinformatics analysis and real-time fluorescent quantitative PCR(qPCR) technology to sequence, screen and identify miRNAs of dormant and dormant embryos. The results showed that there were 23 811 977, 24 276 695, 20 611 876 and 20 601 811 unique sequences in the four sample libraries during the period of dormancy and dormancy release. MiRNAs are mainly distributed between 21 and 24 nt, among which the length of 24 nt occurred most frequently. A total of 31 known miRNAs were identified, belonging to 13 different families. 93 new miRNAs were predicted by bioinformatics software. Ten miRNAs(mir156 a-5 p, mir160 a-5 p, mir160 h-1, mir169 a-5 p, mir157 d, mir159 a-1, mir395-3, mir156 f-5 p, mir156-2 and mir171 a-3 p) were screened out. In this study, 10 miRNAs related to seed dormancy release were identified. The target genes mainly involved carbohydrate metabolism, plant hormone signal transduction, cell division and growth. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Subject(s)
Humans , Gene Expression Regulation, Plant , Liliaceae , MicroRNAs , Plant Dormancy , RNA, Plant , Seeds
17.
Mitochondrial DNA B Resour ; 4(2): 3888-3889, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-33366236

ABSTRACT

Paris polyphylla var. chinensis is a species of flowering herb of the family Liliaceae and widely distributed in 12 provinces in China. It has been used in Chinese traditional medicine for centuries. The chloroplast (cp) genome of P. polyphylla var. chinensis, sequenced based on next-generation platform (NEOSAT), is 164,429 bp in size. The cp genome encodes 133 genes, including eight rRNA genes, 87 protein-coding genes (PCGs), and 38 tRNA genes. Phylogenetic relationship analysis based on complete cp genome sequences exhibited that P. polyphylla var. chinensis was most related to Daiswa forrestii.

18.
Chinese Pharmaceutical Journal ; (24): 1342-1346, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-858235

ABSTRACT

OBJECTIVE: To study the chemical constituents from the aerial parts of Paris polyphylla var. chinensis. METHODS: The compounds were isolated and purified from the 75% ethanol extract by chromatography on HPD100 macroporous resin, silica gel, and Sephadex LH-20 as well as semi-preparative HPLC. Their structures were elucidated on the basis of spectral data. RESULTS: Eleven compounds were isolated and identified as corchionoside C (1), β-ecdysterone (2), coronatasterone (3), kaempferol-3-O-β-D-galactopyranoside (4), astragalin (5), isorhamnetin-3-O-β-D-glucopyranoside (6), kaempferol-3-O-β-D-glucopyranosyl-(l→2)-β-D-galactopyranoside(7), isorhamnetin-3-O-β-D-glucopyranosyl-(l→2)-β-D-galactopyranoside (8), kaempferol-3-O-β-D-glucopyranosyl-(l→2)-β-D-glucopyranoside (9), isorhamnetin-3-O-β-D-galactopyranosyl-(l→6)-β-D-glucopyranoside (10), and isorhamnetin-3-O-β-D-gentiobioside (11). CONCLUSION: Compounds 1 and 3-11 are isolated from this plant for the first time and compounds 1, 3-5 and 8-10 are isolated from Paris plants for the first time.

19.
Microbiology ; (12)1992.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-684915

ABSTRACT

One endophytic stain SS02 was isolated from the underground stems of Paris polyphylla var. Chinensis franch. The ferments of SS02 showed antibiosis activities against 13 kinds of the crop causes germs. The characteristics of morphology,physiological and biochemical showed that SS02 belonged to Bacillus sp. The 16S rDNA of SS02 was PCR and sequenced. The accession of GenBank is AY842144. The one 16S rDNA phylogenetic tree was constructed by comparing with the published 16S rDNA sequences of the relative bacteria species. In the phylogenetic tree SS02 and Paenibacillus daejeonensis was the closest relative with 97.7% sequence similarity. According to the phylogenetic analysis it was identified as Paenibacillus daejeonensis SS02.

SELECTION OF CITATIONS
SEARCH DETAIL
...