Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Big Data ; 7: 1366469, 2024.
Article in English | MEDLINE | ID: mdl-38665785

ABSTRACT

Particle accelerators play a crucial role in scientific research, enabling the study of fundamental physics and materials science, as well as having important medical applications. This study proposes a novel graph learning approach to classify operational beamline configurations as good or bad. By considering the relationships among beamline elements, we transform data from components into a heterogeneous graph. We propose to learn from historical, unlabeled data via our self-supervised training strategy along with fine-tuning on a smaller, labeled dataset. Additionally, we extract a low-dimensional representation from each configuration that can be visualized in two dimensions. Leveraging our ability for classification, we map out regions of the low-dimensional latent space characterized by good and bad configurations, which in turn can provide valuable feedback to operators. This research demonstrates a paradigm shift in how complex, many-dimensional data from beamlines can be analyzed and leveraged for accelerator operations.

2.
Methods Mol Biol ; 2447: 233-246, 2022.
Article in English | MEDLINE | ID: mdl-35583786

ABSTRACT

In plants, the response to stress, such as salinity, pathogen attack, drought, high concentration of metals, hyperthermia, and hypothermia, is usually accompanied by potassium ion (K+) leakage from the cytosol to the cell wall, mediated by plasma membrane cation conductivity. Stress-induced electrolyte leakage co-occurs with accumulation of reactive oxygen species (ROS) and calcium ions (Ca2+) and often results in programmed cell death (PCD). The development of X-ray and mass spectrometry (MS) based imaging techniques has enabled insight into the spatial tissue and cell-specific redistribution of major and trace elements during the stress response. In this chapter a workflow for sample preparation, imaging, and image analysis by X-ray and MS based techniques is presented.


Subject(s)
Calcium , Potassium , Apoptosis , Calcium/metabolism , Ions/metabolism , Plants/metabolism , Potassium/metabolism , Reactive Oxygen Species/metabolism
3.
Cureus ; 13(11): e19806, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34956790

ABSTRACT

Large cell neuroendocrine carcinoma, a type of non-small cell lung cancer, is quite rare and has been associated with brain metastasis, mainly to the cerebral hemispheres. However, the rate of cerebellar metastasis is underreported in the literature and appears to be quite rare. Despite the rarity of this metastasis, treatment guidelines for both supratentorial and cerebellar lesions have been established by using either radiosurgery or whole-brain radiation therapy. The choice of modality must take into consideration the vicinity of relevant structures such as the brainstem and its multiple nuclei. Here we report the case of a 68-year-old male, resident of a rural community in the Andean region of Ecuador, a low-middle income country; with the diagnosis of a large cell neuroendocrine carcinoma of the lung with dual central nervous system metastasis treated with linear particle accelerator radio-surgery due to its versatility and cost-effectiveness in a resource-limited setting. We showcase the rarity of the metastatic lesions as well as the utility of linear accelerators and their versatility to perform precise radiosurgical procedures in two simultaneous locations.

4.
Biology (Basel) ; 10(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34571701

ABSTRACT

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction using the solid lithium target. A beam shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. The BNCT technique is being tested in in vitro and in vivo studies, and dosimetry methods are being developed. Currently, the BNCT technique has entered into clinical practice in the world: after successful clinical trials, two clinics in Japan began treating patients, and four more BNCT clinics are ready to start operating. The neutron source proposed at the Budker Institute of Nuclear Physics served as a prototype for a facility created for a clinic in Xiamen (China). It is planned to equip the National Medical Research Center of Oncology (Moscow, Russia) and National Oncological Hadron Therapy Center (Pavia, Italy) with the same neutron sources. Due to the impending use of an accelerator neutron source for treating patients, the validation of the neutron yield of the 7Li(p,n)7Be reaction in lithium metal targets is required. The theoretical neutron yield has not been evaluated experimentally so far.

5.
Biology (Basel) ; 10(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919153

ABSTRACT

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The proton beam energy can be varied within a range of 0.6-2.3 MeV, keeping a high-energy stability of 0.1%. The beam current can also be varied in a wide range (from 0.3 mA to 10 mA) with high current stability (0.4%). In the device, neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction. A beam-shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. A lot of scientific research has been carried out at the facility, including the study of blistering and its effect on the neutron yield. The BNCT technique is being tested in in vitro and in vivo studies, and the methods of dosimetry are being developed. It is planned to certify the neutron source next year and conduct clinical trials on it. The neutron source served as a prototype for a facility created for a clinic in Xiamen (China).

6.
Front Med (Lausanne) ; 8: 697235, 2021.
Article in English | MEDLINE | ID: mdl-35547661

ABSTRACT

Particle therapy relies on the advantageous dose deposition which permits to highly conform the dose to the target and better spare the surrounding healthy tissues and organs at risk with respect to conventional radiotherapy. In the case of treatments with heavier ions (like carbon ions already clinically used), another advantage is the enhanced radiobiological effectiveness due to high linear energy transfer radiation. These particle therapy advantages are unfortunately not thoroughly exploited due to particle range uncertainties. The possibility to monitor the compliance between the ongoing and prescribed dose distribution is a crucial step toward new optimizations in treatment planning and adaptive therapy. The Positron Emission Tomography (PET) is an established quantitative 3D imaging technique for particle treatment verification and, among the isotopes used for PET imaging, the 11C has gained more attention from the scientific and clinical communities for its application as new radioactive projectile for particle therapy. This is an interesting option clinically because of an enhanced imaging potential, without dosimetry drawbacks; technically, because the stable isotope 12C is successfully already in use in clinics. The MEDICIS-Promed network led an initiative to study the possible technical solutions for the implementation of 11C radioisotopes in an accelerator-based particle therapy center. We present here the result of this study, consisting in a Technical Design Report for a 11C Treatment Facility. The clinical usefulness is reviewed based on existing experimental data, complemented by Monte Carlo simulations using the FLUKA code. The technical analysis starts from reviewing the layout and results of the facilities which produced 11C beams in the past, for testing purposes. It then focuses on the elaboration of the feasible upgrades of an existing 12C particle therapy center, to accommodate the production of 11C beams for therapy. The analysis covers the options to produce the 11C atoms in sufficient amounts (as required for therapy), to ionize them as required by the existing accelerator layouts, to accelerate and transport them to the irradiation rooms. The results of the analysis and the identified challenges define the possible implementation scenario and timeline.

7.
Front Artif Intell ; 4: 718950, 2021.
Article in English | MEDLINE | ID: mdl-35047766

ABSTRACT

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of origin. This information is subsequently utilized to identify failure trends and to implement corrective measures on the offending cavity. Manual inspection of large-scale, time-series data, generated by frequent system failures is tedious and time consuming, and thereby motivates the use of machine learning (ML) to automate the task. This study extends work on a previously developed system based on traditional ML methods (Tennant and Carpenter and Powers and Shabalina Solopova and Vidyaratne and Iftekharuddin, Phys. Rev. Accel. Beams, 2020, 23, 114601), and investigates the effectiveness of deep learning approaches. The transition to a DL model is driven by the goal of developing a system with sufficiently fast inference that it could be used to predict a fault event and take actionable information before the onset (on the order of a few hundred milliseconds). Because features are learned, rather than explicitly computed, DL offers a potential advantage over traditional ML. Specifically, two seminal DL architecture types are explored: deep recurrent neural networks (RNN) and deep convolutional neural networks (CNN). We provide a detailed analysis on the performance of individual models using an RF waveform dataset built from past operational runs of CEBAF. In particular, the performance of RNN models incorporating long short-term memory (LSTM) are analyzed along with the CNN performance. Furthermore, comparing these DL models with a state-of-the-art fault ML model shows that DL architectures obtain similar performance for cavity identification, do not perform quite as well for fault classification, but provide an advantage in inference speed.

8.
Sensors (Basel) ; 19(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835731

ABSTRACT

Integrator drift is a problem strongly felt in different measurement fields, often detrimental even for short-term applications. An analytical method for modelling and feed-forward correcting drift in magnetic flux measurements was developed analytically and tested experimentally. A case study is reported on the proof of principle as a novel kind of quasi-DC field marker of the 5-ppm Nuclear Magnetic Resonance (NMR) transducer Metrolab PT2026, applied to the Extra Low ENergy Antiproton (ELENA) ring and the Proton Synchrotron Booster (PSB) at CERN. In some particle accelerators, such as in ELENA, the resulting feed-forward correction guarantees 1 µ T field stability over 120-s long magnetic cycle on a plateau of 50 mT, reducing by three orders of magnitude the field error caused by the integrator drift with respect to the state of the art.

9.
Appl Radiat Isot ; 127: 142-149, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28605702

ABSTRACT

This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators.

10.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-617808

ABSTRACT

Charged particle therapy offers a better effect and obvious dosimetric and biological advantages over conventional radiotherapy in tumor control.Charged particles form Bragg peak in the dose distribution in tissue, enable most of energy to be deposited in the target region, and thus enhance tumor control and reduce the damage to normal tissues surrounding the tumor.With the increasing demand for charged particle therapy and the advances in particle accelerator, particle therapy technology is developing rapidly.The core apparatus of particle therapy facility is particle accelerator, and the accelerator type, particle type, and implementation technique determine the performance and therapeutic effect of the facility.This article provides a detailed comparative analysis of various particle therapies.Statistical data show that proton therapy is dominant in particle therapy, and high construction difficulty, large facility size, and extremely high cost have limited the development of heavy ion therapy.Nowadays, there are still some technical problems regarding charged particle therapy, and more clinical trials are required.

11.
Radiat Oncol J ; 33(4): 337-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26756034

ABSTRACT

PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.

12.
Radiation Oncology Journal ; : 337-343, 2015.
Article in English | WPRIM (Western Pacific) | ID: wpr-70159

ABSTRACT

PURPOSE: The purpose of this report is to describe the proton therapy system at Samsung Medical Center (SMC-PTS) including the proton beam generator, irradiation system, patient positioning system, patient position verification system, respiratory gating system, and operating and safety control system, and review the current status of the SMC-PTS. MATERIALS AND METHODS: The SMC-PTS has a cyclotron (230 MeV) and two treatment rooms: one treatment room is equipped with a multi-purpose nozzle and the other treatment room is equipped with a dedicated pencil beam scanning nozzle. The proton beam generator including the cyclotron and the energy selection system can lower the energy of protons down to 70 MeV from the maximum 230 MeV. RESULTS: The multi-purpose nozzle can deliver both wobbling proton beam and active scanning proton beam, and a multi-leaf collimator has been installed in the downstream of the nozzle. The dedicated scanning nozzle can deliver active scanning proton beam with a helium gas filled pipe minimizing unnecessary interactions with the air in the beam path. The equipment was provided by Sumitomo Heavy Industries Ltd., RayStation from RaySearch Laboratories AB is the selected treatment planning system, and data management will be handled by the MOSAIQ system from Elekta AB. CONCLUSION: The SMC-PTS located in Seoul, Korea, is scheduled to begin treating cancer patients in 2015.


Subject(s)
Humans , Cyclotrons , Helium , Korea , Metallurgy , Particle Accelerators , Patient Positioning , Proton Therapy , Protons , Radiation Oncology , Respiratory System , Seoul
13.
Prog Brain Res ; 215: 25-35, 2014.
Article in English | MEDLINE | ID: mdl-25376566

ABSTRACT

This chapter outlines the early development of particle accelerators with the redesign from linear accelerator to cyclotron by Ernest Lawrence with a view to reducing the size of the machines as the power increased. There are minibiographies of Ernest Lawrence and his brother John. The concept of artificial radiation is outlined and the early attempts at patient treatment are mentioned. The reasons for trying and abandoning neutron therapy are discussed, and the early use of protons is described.


Subject(s)
Particle Accelerators/history , Physics/history , Radiotherapy/history , History, 20th Century , History, 21st Century , Humans
14.
J Res Natl Inst Stand Technol ; 115(5): 353-71, 2010.
Article in English | MEDLINE | ID: mdl-27134791

ABSTRACT

During the fabrication of niobium superconducting radio frequency (SRF) particle accelerator cavities procedures are used that chemically or mechanically remove the passivating surface film of niobium pentoxide (Nb2O5). Removal of this film will expose the underlying niobium metal and allow it to react with the processing environment. If these reactions produce hydrogen at sufficient concentrations and rates, then hydrogen will be absorbed and diffuse into the metal. High hydrogen activities could result in supersaturation and the nucleation of hydride phases. If the metal repassivates at the conclusion of the processing step and the passive film blocks hydrogen egress, then the absorbed hydrogen or hydrides could be retained and alter the performance of the metal during subsequent processing steps or in-service. This report examines the feasibility of this hypothesis by first identifying the postulated events, conditions, and reactions and then determining if each is consistent with accepted scientific principles, literature, and data. Established precedent for similar events in other systems was found in the scientific literature and thermodynamic analysis found that the postulated reactions were not only energetically favorable, but produced large driving forces. The hydrogen activity or fugacity required for the reactions to be at equilibrium was determined to indicate the propensity for hydrogen evolution, absorption, and hydride nucleation. The influence of processing conditions and kinetics on the proximity of hydrogen surface coverage to these theoretical values is discussed. This examination found that the hypothesis of hydrogen absorption during SRF processing is consistent with published scientific literature and thermodynamic principles.

SELECTION OF CITATIONS
SEARCH DETAIL
...