Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Am J Ind Med ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180259

ABSTRACT

BACKGROUND: A retrospective cohort study was conducted to estimate associations between an ultrafine aluminum powder, McIntyre Powder (MP), and cardiovascular disease incidence in a cohort of mine workers from Ontario, Canada. Disease outcomes included ischemic heart disease (IHD), acute myocardial infarction (AMI), congestive heart failure (CHF), and strokes and transient ischemic attacks (STIA). METHODS: Using work history records from the Ontario Mining Master File (MMF) mine workers were followed for disease incidence in administrative health records. The analysis included 25,813 mine workers who were exposed to MP between 1943 and 1979 and followed for cardiovascular disease (CVD) diagnoses between 2006 and 2018. Cardiovascular disease cases were ascertained using physician, hospital, and ambulatory care records. Poisson regression models were used to estimate age and birth-year adjusted incidence rate ratios (RR) and 95% confidence intervals (CI) for associations between MP exposure and CVD outcomes. RESULTS: Ever-exposure to MP was positively associated with modest increases in the incidence rate of IHD, AMI, and CHF, but not STIA, using both assessment approaches. Duration of self-reported MP exposure was positively associated with monotonically increasing rates of IHD and AMI compared to never-exposed miners, with the greatest association observed among miners with >20 years of exposure (for IHD: RR 1.24, 95% CI: 0.91-1.68; and for AMI: RR 1.52, 95% CI 1.01-2.28). CONCLUSION: Mine workers ever-exposed to MP had modestly elevated rates of CVD. The rate of CVD diagnoses appeared to increase with longer duration of exposure when assessed by both self-reported exposure and through historical records.

2.
Sci Rep ; 14(1): 17561, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39079951

ABSTRACT

The increased risk of liver malignancies was found in workers of the first Russian nuclear production facility, Mayak Production Association, who had been chronically exposed to gamma rays externally and to alpha particles internally due to plutonium inhalation. In the present study, we updated the radiogenic risk estimates of the hepatobiliary malignancies using the extended follow-up period (1948-2018) of the Mayak worker cohort and the improved «Mayak worker dosimetry system-2013¼. The cohort comprised 22,377 workers hired at the Mayak PA between 1948 and 1982. The analysis considered 62 liver malignancies (32 hepatocellular carcinomas, 13 intrahepatic cholangiocarcinomas, 16 angiosarcomas, and 1 anaplastic cancer) and 33 gallbladder adenocarcinomas. The analysis proved the positive significant association of the liver malignancy risk (the total of histological types, hepatocellular carcinoma) with the liver absorbed alpha dose from internal exposure. The excess relative risk per Gy (95% confidence interval) of alpha dose (the linear model) was 7.56 (3.44; 17.63) for the total of histological types and 3.85 (0.95; 13.30) for hepatocellular carcinoma. Indications of non-linearity were observed in the dose-response for internal exposure to alpha radiation. No impact of external gamma-ray exposure on the liver malignancy incidence was found. In the study cohort, the number of angiosarcomas among various types of liver malignancies was very high (25.8%), and most of these tumors (73.3%) were registered in individuals internally exposed to alpha radiation at doses ranging between 6.0 and 21.0 Gy. No association with chronic occupational radiation exposure was observed for the incidence of gallbladder malignancies.


Subject(s)
Liver Neoplasms , Neoplasms, Radiation-Induced , Occupational Exposure , Humans , Occupational Exposure/adverse effects , Liver Neoplasms/epidemiology , Liver Neoplasms/etiology , Male , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Incidence , Middle Aged , Female , Radiation, Ionizing , Cohort Studies , Adult , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Russia/epidemiology , Aged , Alpha Particles/adverse effects , Gamma Rays/adverse effects , Radiation Exposure/adverse effects
3.
Sleep Med ; 121: 251-257, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024779

ABSTRACT

Poor sleep quality is a widespread concern. While the influence of particle exposure on sleep disturbances has received considerable attention, research exploring other dimensions of sleep quality and the chemical components of the particles remains limited. We employed a marginal structural model to explore the association of long-term exposure to PM2.5 and its chemical components with poor sleep quality. The odds ratio (95 % CI) for poor sleep quality was 1.335 (1.292-1.378), 1.097 (1.080-1.113), 1.137 (1.100-1.174), 1.197 (1.156-1.240), and 1.124 (1.107-1.140) per IQR increase in the concentration of PM2.5, SO42-, NO3-, NH4+, and BC, respectively. The score (and 95 % CI) of sleep latency, use of sleep medication, habitual sleep efficiency, subjective sleep quality, and daytime dysfunction were affected by PM2.5, with an increase of 0.059 (0.050-0.069), 0.054 (0.049-0.059), 0.011 (0.008-0.014), 0.011 (0.005-0.018), and 0.026 (0.018-0.034) per IQR increase in PM2.5 concentrations, respectively. This study supports the association of long-term exposure to PM2.5 and its chemical components with poor sleep quality.


Subject(s)
Particulate Matter , Sleep Quality , Humans , Particulate Matter/analysis , Particulate Matter/adverse effects , Male , Female , Environmental Exposure/adverse effects , Middle Aged , Air Pollutants/analysis , Air Pollutants/adverse effects , Adult , Sleep Wake Disorders
4.
Sci Total Environ ; 920: 170947, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367734

ABSTRACT

Understanding the relationships between ultrafine particle (UFP) exposure, socioeconomic status (SES), and sustainable transportation accessibility in Toronto, Canada is crucial for promoting public health, addressing environmental justice, and ensuring transportation equity. We conducted a large-scale mobile measurement campaign and employed a gradient boost model to generate exposure surfaces using land use, built environment, and meteorological conditions. The Ontario Marginalization Index was used to quantify various indicators of social disadvantage for Toronto's neighborhoods. Our findings reveal that people in socioeconomically disadvantaged areas experience elevated UFP exposures. We highlight significant disparities in accessing sustainable transportation, particularly in areas with higher ethnic concentrations. When factoring in daily mobility, UFP exposure disparities in disadvantaged populations are further exacerbated. Furthermore, individuals who do not generate emissions themselves are consistently exposed to higher UFPs, with active transportation users experiencing the highest UFP exposures both at home and at activity locations. Finally, we proposed a novel index, the Community Prioritization Index (CPI), incorporating three indicators, including air quality, social disadvantage, and sustainable transportation. This index identifies neighborhoods experiencing a triple burden, often situated near major infrastructure hubs with high diesel truck activity and lacking greenspace, marking them as high-priority areas for policy action and targeted interventions.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Particulate Matter/analysis , Air Pollution/analysis , Ontario , Poverty
5.
Biomedicines ; 12(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255233

ABSTRACT

The exposure of human lung and skin to carbon black (CB) is continuous due to its widespread applications. Current toxicological testing uses 'healthy' cellular systems; however, questions remain whether this mimics the everyday stresses that human cells are exposed to, including infection. Staphylococcus aureus lung and skin infections remain prevalent in society, and include pneumonia and atopic dermatitis, respectively, but current in vitro toxicological testing does not consider infection stress. Therefore, investigating the effects of CB co-exposure in 'stressed' infected epithelial cells in vitro may better approximate true toxicity. This work aims to study the impact of CB exposure during Staphylococcus aureus infection stress in A549 (lung) and HaCaT (skin) epithelial cells. Physicochemical characterisation of CB confirmed its dramatic polydispersity and potential to aggregate. CB significantly inhibited S. aureus growth in cell culture media. CB did not induce cytokines or antimicrobial peptides from lung and skin epithelial cells, when given alone, but did reduce HaCaT and A549 cell viability to 55% and 77%, respectively. In contrast, S. aureus induced a robust interleukin (IL)-8 response in both lung and skin epithelial cells. IL-6 and human beta defensin (hßD)-2 could only be detected when cells were stimulated with S. aureus with no decreases in cell viability. However, co-exposure to CB (100 µg/mL) and S. aureus resulted in significant inhibition of IL-8 (compared to S. aureus alone) without further reduction in cell viability. Furthermore, the same co-exposure induced significantly more hßD-2 (compared to S. aureus alone). This work confirms that toxicological testing in healthy versus stressed cells gives significantly different responses. This has significant implications for toxicological testing and suggests that cell stresses (including infection) should be included in current models to better represent the diversity of cell viabilities found in lung and skin within a general population. This model will have significant application when estimating CB exposure in at-risk groups, such as factory workers, the elderly, and the immunocompromised.

6.
Front Public Health ; 11: 1292420, 2023.
Article in English | MEDLINE | ID: mdl-38054074

ABSTRACT

Introduction: Additive manufacturing is a novel state-of-the art technology with significant economic and practical advantages, including the ability to produce complex structures on demand while reducing the need of stocking materials and products. Additive manufacturing is a technology that is here to stay; however, new technologies bring new challenges, not only technical but also from an occupational health and safety perspective. Herein, leading Swedish companies using metal additive manufacturing were studied with the aim of investigating occupational exposure and the utility of chosen exposure- and clinical markers as predictors of potential exposure-related health risks. Methods: Exposure levels were investigated by analysis of airborne dust and metals, alongside particle counting instruments measuring airborne particles in the range of 10 nm-10 µm to identify dusty work tasks. Health examinations were performed on a total of 48 additive manufacturing workers and 39 controls. All participants completed a questionnaire, underwent spirometry, and blood and urine sampling. A subset underwent further lung function tests. Results: Exposure to inhalable dust and metals were low, but particle counting instruments identified specific work tasks with high particle emissions. Examined health parameters were well within reference values on a group level. However, statistical analysis implied an impact on workers kidney function and possible airway inflammation. Conclusion: The methodology was successful for investigating exposure-related health risks in additive manufacturing. However, most participants have been working <5 years. Therefore, long-term studies are needed before we can conclusively accept or reject the observed effects on health.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Humans , Air Pollutants, Occupational/analysis , Occupational Exposure/analysis , Dust/analysis , Surveys and Questionnaires , Health Surveys
7.
Article in English | MEDLINE | ID: mdl-37297582

ABSTRACT

Smokefree laws are intended to protect against second-hand smoke (SHS) in outdoor areas. We examined if exposure to PM2.5 particles in outdoor smoking areas changed breathing rates in 60 patients with asthma (n = 30) or with COPD (n = 30), in an open, non-randomised, interventional study model in Czechia, Ireland and Spain. The patients wore a PM2.5 particle monitor (AirSpeck) and a breath monitor (RESpeck) for 24 h to determine changes in breathing rates (Br) at rest and during a visit to an outside smoking area. Spirometry and breath CO were measured before and the day after visiting an outdoor smoking area. The PM2.5 levels at the 60 venues were highly variable, ranging from ≥2000 µg/m3 (in 4 premises) to ≤10 µg/m3 (in 3 premises, which had only a single wall in the structure). At 39 venues, the mean PM 2.5 levels were ≥25 µg/m3. The breathing rate changed significantly in 57 of the 60 patients, resulting in an increase in some patients and a decrease in others. Comprehensive smokefree laws were ineffective in protecting asthma and COPD patients from exposure to high levels of SHS in outside areas of pubs and terraces, which should be avoided by these patients. These findings also support the extension of smokefree laws to outside areas.


Subject(s)
Air Pollution, Indoor , Asthma , Pulmonary Disease, Chronic Obstructive , Tobacco Smoke Pollution , Humans , Tobacco Smoke Pollution/analysis , Spain , Asthma/epidemiology , Smoking , Pulmonary Disease, Chronic Obstructive/epidemiology
8.
Radiat Environ Biophys ; 62(1): 51-71, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36326926

ABSTRACT

Heart diseases are one of the main causes of death. The incidence risks were assessed for various types of heart diseases (HDs) in a cohort of Russian nuclear workers of the Mayak Production Association (PA) who had been chronically occupationally exposed to external gamma and/ or internal alpha radiation. The study cohort included all workers (22,377 individuals) who had been hired at the Mayak PA during 1948-1982 and followed up until 31 December 2018. The mean gamma-absorbed dose to the liver (standard deviation) was 0.43 (0.63) Gy, and the mean alpha-absorbed dose to the liver was 0.25 (1.19) Gy. Excess relative risk (ERR) per unit liver-absorbed dose (Gy) was calculated based on maximum likelihood. At the end of the follow-up, 559 chronic rheumatic heart disease (CRHD), 7722 ischemic heart disease (IHD) [including 2185 acute myocardial infarction (AMI) and 3976 angina pectoris (AP)], 4939 heart failure (HF), and 3689 cardiac arrhythmia and conduction disorder (CACD) cases were verified in the study cohort. Linear model fits of the gamma dose response for HDs were best once adjustments for non-radiation factors (sex, attained age, calendar period, smoking status and alcohol consumption) and alpha dose were included. ERR/Gy in males and females was 0.17 (95% confidence intervals: 0.10, 0.26) and 0.23 (0.09, 0.38) for IHD; 0.18 (0.09, 0.29) and 0.26 (0.08, 0.49) for AP; - 0.01 (n/a, 0.1) and - 0.01 (n/a, 0.27) for AMI; 0.27 (0.16, 0.40) and 0.27 (0.10, 0.49) for HF; 0.32 (0.19, 0.46) and 0.05 (- 0.09, 0.22) for CACD; 0.73 (- 0.02, 2.40) and - 0.12 (- 0.50, 0.69) for CRHD, respectively. Sensitivity analyses demonstrated the persistence of a significant dose-response regardless of exclusion/inclusion of adjustments for known potential non-radiation confounders (smoking, alcohol consumption, body mass index, hypertension, diabetes mellitus), and it was only the magnitude of the risk estimate that varied. The risks of HD incidence were not modified with sex (except for the CACD risk). This study provides evidence for a significant association of certain types of HDs with cumulative dose of occupational chronic external exposure to gamma radiation.


Subject(s)
Myocardial Ischemia , Occupational Diseases , Occupational Exposure , Male , Female , Humans , Incidence , Cohort Studies , Risk , Russia/epidemiology , Occupational Diseases/epidemiology
9.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555307

ABSTRACT

Lung epithelial organoids for the hazard assessment of inhaled nanomaterials offer a promising improvement to in vitro culture systems used so far. Organoids grow in three-dimensional (3D) spheres and can be derived from either induced pluripotent stem cells (iPSC) or primary lung tissue stem cells from either human or mouse. In this perspective we will highlight advantages and disadvantages of traditional culture systems frequently used for testing nanomaterials and compare them to lung epithelial organoids. We also discuss the differences between tissue and iPSC-derived organoids and give an outlook in which direction the whole field could possibly go with these versatile tools.


Subject(s)
Induced Pluripotent Stem Cells , Lung , Mice , Humans , Animals , Organoids , Cell Differentiation
11.
Inhal Toxicol ; 34(11-12): 329-339, 2022.
Article in English | MEDLINE | ID: mdl-35968917

ABSTRACT

BACKGROUND: We are currently screening human volunteers to determine their sputum polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are identified for their subsequent participation in mitigation studies against WSP-induced airways inflammation. In this report we compared responder status (<i>N</i> = 52) at both 6 and 24 hr time points to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and sex on responder status, and explored whether sputum soluble phase markers of inflammation correlate with PMN responsiveness to WSP. RESULTS: Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. The GSTM1 null genotype significantly (<i>p</i> &lt; 0.05) enhanced the %PMN response by 24% in the 24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by responder status), we found a significant, but very small decrease in FVC and systolic blood pressure immediately following WSP exposure and sputum %PMNs were significantly increased and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in %PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response. CONCLUSIONS: The 24-hour time point was more informative than the 6-hour time point in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. GSTM1 and asthma status are significant effect modifiers of this response. These study design and subject parameters should be considered before enrolling volunteers for proof-of-concept WSP mitigation studies.


Subject(s)
Asthma , Glutathione Transferase , Smoke , Humans , Asthma/genetics , Biomarkers , Genotype , Inflammation , Interleukin-6 , Interleukin-8 , Neutrophils , Smoke/adverse effects , Wood , Glutathione Transferase/genetics
12.
Radiat Environ Biophys ; 61(1): 5-16, 2022 03.
Article in English | MEDLINE | ID: mdl-35182179

ABSTRACT

Incidence risks for cerebrovascular diseases (CeVD) and some types of stroke in a cohort of 22,377 Russian Mayak nuclear workers chronically exposed to ionising radiation and followed up until the end of 2018 are reported. Among total 9469 cases of CeVD, 2078 cases were strokes that included 262 hemorrhagic strokes (HS) and 1611 ischemic strokes (IS). Data evaluation was performed with categorical and dose-response analyses estimating the relative risk (RR) and excess relative risk (ERR) per unit cumulative liver absorbed dose of external gamma-ray or internal alpha-particle exposure based on a linear model utilizing the AMFIT module of the EPICURE software. CeVD incidence was found to be significantly associated with cumulative radiation dose: ERR/Gy was 0.37 (95% confidence interval (CI) 0.27, 0.47) in males and 0.47 (95% CI 0.31, 0.66) in females for external exposure, and 0.31 (95% CI 0.11, 0.59) in males and 0.32 (95% CI 0.11, 0.61) in females for internal exposure. When the model for the analysis of external radiation effect did not include an adjustment for alpha radiation dose (and vice versa), the radiogenic risk estimate increased notably both for males and for females. In contrast, exclusion from or inclusion in the model of additional adjustments for non-radiation factors did not notably change the risk estimates. ERR/Gy of external gamma dose for CeVD incidence significantly decreased with increasing attained age (males and females) and duration of employment (females). No significant associations of either stroke or its types with cumulative gamma-ray dose of external exposure or alpha-particle dose of internal exposure were found.


Subject(s)
Cerebrovascular Disorders , Occupational Diseases , Occupational Exposure , Stroke , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/etiology , Female , Humans , Incidence , Male , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Russia/epidemiology , Stroke/epidemiology
13.
Ind Health ; 60(4): 371-386, 2022 07 31.
Article in English | MEDLINE | ID: mdl-34719600

ABSTRACT

This paper presents the results of a measurement campaign for assessing the release of particles and the potential exposure of workers in metal additive manufacturing. The monitoring deals with three environments, i.e., two academic laboratories and one production site, while printing different metallic alloys for chemical composition and size. The monitored devices implement different metal 3D printing processes, named Selective Laser Melting, Laser Metal Deposition and Hybrid Laser Metal Deposition, providing a wide overview of the current laser-based Additive Manufacturing technologies. Despite showing the generation of metal powders during the printing processes, the usual measurements based on gravimetric analysis did not highlight concentrations higher than the international exposure limits for the selected metals (i.e., chromium, cobalt, iron, nickel, and copper). Additional data, collected through a cascade impactor and particle counter coupled with the achievements from previous measurements reported in literature, indicate that during the printing operations, fine and ultrafine metal particles might be generated. Finally, the authors introduced a preliminary characterisation of the particles released during the different phases of the investigated AM processes (powder charging, printing, part cleaning and support removal), highlighting how the different operations may affect the particle size and concentration.


Subject(s)
Metals , Particulate Matter , Chromium/chemistry , Humans , Lasers , Particle Size , Particulate Matter/analysis
14.
Biomarkers ; 27(1): 60-70, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34872432

ABSTRACT

INTRODUCTION: In light of potential negative health effects of cobalt exposure, a characterization of inflammatory mechanisms in exposed individuals is warranted. The current study investigated cobalt exposure in the Swedish hard metal industry and its relationship to inflammatory markers, including NLRP3 inflammasome activation and white blood cell (WBC) counts. MATERIALS AND METHODS: Inhalable cobalt and dust exposures, and systemic cobalt levels, were determined for 72 workers in the hard metal industry and linear regression models were applied to correlate exposure to markers of inflammasome activation and WBC counts. RESULTS: Mean exposures to inhalable dust (0.11 mg/m3) and cobalt (0.0034 mg/m3) were below the Swedish occupational exposure limits, and these low exposures did not correlate with any investigated outcomes. Instead, cobalt blood levels significantly correlated with a ca 10% decrease in IL-18 plasma levels per 10 nM cobalt increase. Furthermore, pre-shift cobalt blood and/or urine levels significantly correlated with some WBC measures, including decreased neutrophil-to-lymphocyte ratio, increased lymphocyte-to-monocyte ratio, and lymphocyte counts. CONCLUSION: The low inhalable particle exposures had no impact on WBC counts and inflammasome activation. Instead, systemic cobalt levels, which also include skin exposure, demonstrated possible suppressive effects on inflammatory responses in cobalt-exposed individuals in the hard metal industry.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Air Pollutants, Occupational/toxicity , Alloys , Cobalt/toxicity , Dust/analysis , Humans , Inflammasomes , Leukocyte Count , NLR Family, Pyrin Domain-Containing 3 Protein , Occupational Exposure/analysis , Occupational Exposure/statistics & numerical data , Tungsten
15.
J Hazard Mater ; 416: 125852, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33873033

ABSTRACT

The rising indoor air pollution from particles is a cause for concern especially in houses where children and the elderly reside. In South Korea, assessment of exposure to particle number (PN) in residential apartments, which account for 76% of all houses, is limited. In our study, the indoor and outdoor PN (sizes 0.3-10.0 µm) concentrations were measured in ten typical apartments for 24 h each. In addition, the occupants' schedules were examined by conducting a survey. Results showed that the average outdoor PN concentrations were 0.30-4.37 × 109/m3 with very large deviations. Indoor peak events were mainly caused by cooking, and total emitted particles were 0.01-81.3 × 1013 particles. Indoor PN concentrations were sustained for a long time because of inefficient ventilation that led to lowered attenuation. Indoor particles are generated during various indoor activities. The daily-integrated particle exposures were 21.4% and 78.6% for indoor and outdoor sources, respectively. Thus, outdoor sources were the predominant sources of particle exposure compared with indoor sources. In conclusion, penetration from outdoor sources needs to be reduced by adding air filtration to improve the airtightness of buildings when introducing outdoor air to lower the indoor PN concentration.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Aged , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Child , Environmental Monitoring , Humans , Particle Size , Particulate Matter/analysis , Republic of Korea , Ventilation
16.
Indoor Air ; 31(3): 818-831, 2021 05.
Article in English | MEDLINE | ID: mdl-33247488

ABSTRACT

More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10-800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events. The highest emission rate was caused by burning candles (5.3 × 1013  h-1 ). Data were analyzed by the single-parameter approach (SPA) and the indoor aerosol dynamics model approach (IAM). Due to the consideration of particle deposition, coagulation, and time-dependent ventilation rates, the emission rates of the IAM approach were about twice as high as those of the SPA. Correction factors are proposed to convert the emission rates obtained from the SPA approach into more realistic values. Overall, indoor sources contributed ~ 56% of the daily-integrated particle number exposure in households under study. Burning candles and opening the window leads to seasonal differences in the contributions of indoor sources to residential exposure (70% and 40% in the cold and warm season, respectively). Application of the IAM approach allowed to attribute the contributions of outdoor particles to the penetration through building shell and entry through open windows (26% and 15%, respectively).


Subject(s)
Air Pollutants , Air Pollution, Indoor , Environmental Monitoring , Particulate Matter , Aerosols , Family Characteristics , Humans , Particle Size , Seasons , Ventilation
17.
J Hazard Mater ; 398: 122838, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32512440

ABSTRACT

Although, photocatalytic cement contains nanosized TiO2, a possibly carcinogen, no exposure assessments exist for construction workers. We characterized airborne nanoparticle exposures during construction activities simulated in an exposure chamber. We collected some construction site samples for regular cement in Switzerland and Thailand for comparison. Airborne nanoparticles were characterized using scanning mobility particle sizer (SMPS), portable aerosol spectrometer (PAS), diffusion size classifier (DiSCmini), transmission electron microscopy (TEM), scanning electron microscope energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray diffraction. Bagged photocatalytic cement had 2.0 wt% (GSD ± 0.55) TiO2, while TiO2 in aerosols reached 16.5 wt% (GSD ± 1.72) during bag emptying and 9.7 wt% (GSD ± 1.36) after sweeping. The airborne photocatalytic cement particles were far smaller (approximately 50 nm) compared to regular cement. Cutting blocks made from photocatalytic cement or concrete, resulted in similar amounts of airborne nano TiO2 (2.0 wt% GSD ± 0.57) particles as in bagged material. Both photocatalytic and regular cement had a geometric mean diameter (GMD) < 3.5 µm. Main exposures for Thai workers were during sweeping and Swiss workers during drilling and polishing cement blocks. Targeted nanoparticle exposure assessments are needed as a significantly greater exposure to nano TiO2 were observed than what would have been predicted from the material's nano- TiO2 contents.

18.
Mar Environ Res ; 156: 104917, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32174337

ABSTRACT

Calcium oxide (CaO) is being considered as a possible treatment for both the control of echinoderm populations and the treatment against sea lice infestation in Norwegian salmon farms. CaO particles produce an exothermal reaction when in contact with water, which can cause epidermal burns and lesions to certain target organisms leading to death. The aim of the present study was to determine the effects of fine (<0.8 mm) and coarse (<2.5 mm) CaO particles to a range of marine species from different taxonomic groups: two echinoderms (Asterias ruben and Strongylocentrotus droebachiensis); two crustaceans (Carcinus maenas and Tisbe battagliai); two molluscs (Mytilus edulis and Hinia reticulata); a polychaete (Nereis pelagica); a fish (Cyclopterus sp.); and seaweed germlings (Fucus vesiculosus). Overall, the fine CaO particles were more toxic to the selected marine species than the coarse particles. Coarse CaO particle effects were only observed in four of the nine species tested (A. rubens, S. droebachiensis, N. pelagica, T. battagliai) with similar LC50 values between 207 and 268 g/m2. For the fine CaO particles, the lowest LC50 was for the epibenthic copepod (T. battagliai) at 3.14 g/m2, followed by the sea urchin (20.1 g/m2), starfish (22.2 g/m2), ragworm (29.6 g/m2), and netted dog whelk (41.9 g/m2). Lump sucker fish exhibited significant mortalities only at the highest fine CaO concentration tested (320 g/m2) and recorded an LC50 of 226 g/m2. The toxicity data were used to generate species sensitivity distributions (SSDs) for both fine and coarse CaO particles. The hazard concentrations for 5% of the species (HC5) calculated from the SSDs, based on NOEC values, for the coarse and fine particles were 35.5 and 1.5 g/m2 respectively. Using a recommended assessment factor of 5, the Predicted No Effect Concentration (PNEC) was calculated as 7.1 and 0.3 g/m2 for coarse and fine CaO particles respectively.


Subject(s)
Aquatic Organisms/drug effects , Calcium Compounds/toxicity , Environmental Monitoring , Oxides/toxicity , Animals , Crustacea , Echinodermata , Fishes , Mytilus edulis , Polychaeta , Risk Assessment , Seaweed
19.
Saf Health Work ; 10(3): 377-383, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497336

ABSTRACT

OBJECTIVES: Exposure to fine particles in urban air has been associated with a number of negative health effects. High levels of fine particles have been detected at underground stations in big cities. We investigated the exposure conditions in four occupational groups in the Stockholm underground train system to identify high-exposed groups and study variations in exposure. METHODS: PM1 and PM2.5 were measured during three full work shifts on 44 underground workers. Fluctuations in exposure were monitored by a real-time particle monitoring instrument, pDR, DataRAM. Qualitative analysis of particle content was performed using inductively coupled plasma mass spectrometry. Nitrogen dioxide was measured using passive monitors. RESULTS: For all underground workers, the geometric mean (GM) of PM1 was 18 µg/m3 and of PM2.5 was 37 µg/m3. The particle exposure was highest for cleaners/platform workers, and the GM of PM1 was 31.6 µg/m3 [geometric standard deviation (GSD), 1.6] and of PM2.5 was 76.5 µg/m3 (GSD, 1.3); the particle exposure was lowest for ticket sellers, and the GM of PM1  was 4.9 µg/m3 (GSD, 2.1) and of PM2.5 was 9.3 µg/m3 (GSD, 1.5). The PM1 and PM2.5 levels were five times higher in the underground system than at the street level, and the particles in the underground had high iron content. The train driver's nitrogen dioxide exposure level was 64.1 µg/m3 (GSD, 1.5). CONCLUSIONS: Cleaners and other platform workers were statistically significantly more exposed to particles than train drivers or ticket sellers. Particle concentrations (PM2.5) in the Stockholm underground system were within the same range as in the New York underground system but were much lower than in several older underground systems around the world.

20.
Saf Health Work ; 10(4): 518-526, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31890335

ABSTRACT

BACKGROUND: Additive manufacturing (AM) is a rapidly expanding new technology involving challenges to occupational health. Here, metal exposure in an AM facility with large-scale metallic component production was investigated during two consecutive years with preventive actions in between. METHODS: Gravimetric analyzes measured airborne particle concentrations, and filters were analyzed for metal content. In addition, concentrations of airborne particles <300 nm were investigated. Particles from recycled powder were characterized. Biomonitoring of urine and dermal contamination among AM operators, office personnel, and welders was performed. RESULTS: Total and inhalable dust levels were almost all below occupational exposure limits, but inductively coupled plasma mass spectrometry showed that AM operators had a significant increase in cobalt exposure compared with welders. Airborne particle concentrations (<300 nm) showed transient peaks in the AM facility but were lower than those of the welding facility. Particle characterization of recycled powder showed fragmentation and condensates enriched in volatile metals. Biomonitoring showed a nonsignificant increase in the level of metals in urine in AM operators. Dermal cobalt and a trend for increasing urine metals during Workweek Year 1, but not in Year 2, indicated reduced exposure after preventive actions. CONCLUSION: Gravimetric analyses showed low total and inhalable dust exposure in AM operators. However, transient emission of smaller particles constitutes exposure risks. Preventive actions implemented by the company reduced the workers' metal exposure despite unchanged emissions of particles, indicating a need for careful design and regulation of the AM environments. It also emphasizes the need for relevant exposure markers and biomonitoring of health risks.

SELECTION OF CITATIONS
SEARCH DETAIL