Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Bioorg Chem ; 146: 107320, 2024 May.
Article in English | MEDLINE | ID: mdl-38569323

ABSTRACT

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Subject(s)
Interleukin-4 , Mast Cells , Mice , Animals , Interleukin-4/metabolism , Interleukin-4/pharmacology , Mast Cells/metabolism , Passive Cutaneous Anaphylaxis , Molecular Docking Simulation , Immunoglobulin E/metabolism , Immunoglobulin E/pharmacology , Mice, Inbred ICR , Mice, Inbred BALB C
2.
Int Immunopharmacol ; 131: 111851, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38492337

ABSTRACT

Allergic diseases have become a serious problem worldwide and occur when the immune system overreacts to stimuli. Sargassum horneri is an edible marine brown alga with pharmacological relevance in treating various allergy-related conditions. Therefore, this study aimed to investigate the effect of fucosterol (FST) isolated from S. horneri on immunoglobulin E(IgE)/bovine serum albumin (BSA)-stimulated allergic reactions in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. The in silico analysis results revealed the binding site modulatory potential of FST on the IgE and IgE-FcεRI complex. The findings of the study revealed that FST significantly suppressed the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine in a dose-dependent manner. In addition, FST effectively decreased the expression of FcεRI on the surface of BMCMCs and its IgE binding. FST dose-dependently downregulated the expression of allergy-related cytokines (interleukin (IL)-4, -5, -6, -13, tumor necrosis factor (TNF)-α, and a chemokine (thymus and activation-regulated chemokine (TARC)) by suppressing the activation of nuclear factor-κB (NF-κB) and Syk-LAT-ERK-Gab2 signaling in IgE/BSA-stimulated BMCMCs. As per the histological analysis results of the in vivo studies with IgE-mediated PCA in BALB/c mice, FST treatment effectively attenuated the PCA reactions. These findings suggest that FST has an immunopharmacological potential as a naturally available bioactive compound for treating allergic reactions.


Subject(s)
Anaphylaxis , Anti-Allergic Agents , Hypersensitivity , Sargassum , Stigmasterol/analogs & derivatives , Mice , Animals , Immunoglobulin E/metabolism , Serum Albumin, Bovine , Sargassum/metabolism , Mast Cells , Passive Cutaneous Anaphylaxis , Hypersensitivity/drug therapy , Tumor Necrosis Factor-alpha/metabolism , Cell Degranulation , Mice, Inbred BALB C , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use
3.
Int Immunopharmacol ; 126: 111274, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38041954

ABSTRACT

Atopic dermatitis (AD) is a chronic, inflammatory cutaneous disease driven by immune dysregulation. Catalpol is an iridoids, possessing anti-inflammatory, antioxidant, and neuroprotective activities. It can be added to food as a dietary supplement. To evaluate the effects and mechanisms of catalpol on AD, both in vitro and in vivo studies were conducted. It was found that catalpol downregulated the phosphorylation of Lyn and Syk to inhibit various downstream pathways, including intracellular Ca2+ elevation, cytokines generation, and histamine release, which ultimately controlled mast cell (MCs) degranulation. The results showed that catalpol alleviated AD-like skin lesions and MC infiltration via regulation of pro-Th2 and Th2 cytokines in vivo. Furthermore, this compound reduced the levels of IgE in AD mice and improved allergic reactions in PCA mice. The results provided that catalpol was potentially developed as a dietary supplement to improve AD and other atopic diseases.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Mast Cells , Dinitrochlorobenzene , Immunoglobulin E/metabolism , Skin , Cytokines/metabolism , Mice, Inbred BALB C
4.
J Ethnopharmacol ; 321: 117529, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38042384

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY: Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS: The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of ß-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS: TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1ß, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS: These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.


Subject(s)
Anaphylaxis , Hypersensitivity , Mice , Animals , Immunoglobulin E , Curcuma , Serum Albumin, Bovine , NF-kappa B/metabolism , Histamine/metabolism , Mast Cells , Passive Cutaneous Anaphylaxis , Mice, Inbred BALB C , Bone Marrow , Hypersensitivity/drug therapy , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , beta-N-Acetylhexosaminidases/metabolism , Chemokines/metabolism , Cell Degranulation
5.
Allergy Asthma Clin Immunol ; 19(1): 98, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012745

ABSTRACT

BACKGROUND: Human placental extract (HPE) has been documented to facilitate the healing of certain disorders including allergy. However, the effects of HPE on the functionality of mast cells, a critical cell type in allergic diseases, have not been reported. METHODS: To investigate the effects of HPE on the regulation of allergy with respect to the biological functions of mast cells, the mast cell line C57 or HMC-1 cells were treated with HPE followed by the assessment of cell proliferation, apoptosis, activation, chemotaxis and phagocytosis. Mouse peritoneal mast cells were also investigated for their responses to induction of apoptosis by HPE in vivo. Furthermore, the effect of HPE on mast cell degranulation was confirmed using the passive cutaneous anaphylaxis (PCA) assay, an acute allergy model. RESULTS: HPE was capable of suppressing mast cell proliferation and inducing mast cell apoptosis. Mast cell degranulation in response to compound 48/80- or anti-DNP IgE and DNP-mediated activation was suppressed. In addition, treatment with HPE compromised the production of cytokines by mast cells and cell chemotaxis. These observations were consistent with the dampened passive cutaneous anaphylaxis (PCA) assay following treatment with HPE. CONCLUSION: This study revealed a suppressive effect of HPE on overall mast cell activities, suggesting a potential regulatory role of HPE on the alleviation of allergic diseases through mast cells.

6.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202652

ABSTRACT

2-O-Alkyl-l-ascorbic acids and 3-O-alkyl-l-ascorbic acids were synthesized, and their degranulation inhibitory activities were evaluated. Among ascorbic acid derivatives with butyl, octyl, dodecyl, hexadecyl, and octadecyl groups introduced at the C-2 or C-3 positions, an AA derivative with a dodecyl group introduced at the C-3 position, 3-O-dodecyl-l-ascorbic acid (compound 8), showed the strongest inhibitory activity against antigen-stimulated degranulation. Compound 8 also inhibited calcium ionophore-stimulated degranulation. Compound 11, in which the hydroxyl group at the C-6 position of compound 8 was substituted with an amino group, and compound 12, in which the dodecyloxy group at the C-3 position of compound 8 was exchanged with a dodecylamino group, were synthesized, and these derivatives showed weaker inhibitory activity against antigen-stimulated degranulation than that of compound 8. In addition, orally administered compound 8 inhibited passive cutaneous anaphylaxis reactions in mice with a potency equal to that of oxatomide, an antiallergic agent. These results suggest that compound 8 may be a candidate for antiallergic treatment.


Subject(s)
Anti-Allergic Agents , Animals , Mice , Anti-Allergic Agents/pharmacology , Ascorbic Acid/pharmacology
7.
Plants (Basel) ; 11(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36235405

ABSTRACT

Grewia tomentosa Juss. is a deciduous shrub that mainly grows in Asia. Despite studies of other Grewia species for treatment of various diseases, Grewia tomentosa Juss. has not been studied as a medicinal herb. This study evaluates the anti-allergic and anti-topic dermatitis activity of Grewia tomentosa Juss. ethanol extract (Gt-EE). The results show that Gt-EE suppressed IgE-antigen-induced ß-hexosaminidase release. The mRNA expression of IL-1ß, IL-4, IL-5, IL-6, IL-13, TNF-α, MCP-1, and TSLP, which are involved in allergic responses, was inhibited by Gt-EE in IgE-stimulated RBL-2H3 cells. In addition, the phosphorylation of Syk, PLCγ1, PKCδ, PI3K, AKT, NF-κB p65, NF-κB p50, p38, JNK, and ERK1/2 was decreased by Gt-EE in these cells. Gt-EE also showed anti-inflammatory effects in in vivo mouse models. In passive cutaneous anaphylaxis (PCA), a commonly used mouse model, Gt-EE decreased the allergic response, infiltration of mast cells, and mRNA level of IL-4. Furthermore, Gt-EE ameliorated symptoms of DNCB-induced atopic dermatitis (AD). In DNCB-induced AD, Gt-EE suppressed the increase in mast cells, serum IgE level, expression of allergic mediators (IL-1ß, IL-4, IL-5, IL-6, TNF-α), and phosphorylation of proteins (IκBα, NF-κB p65, NF-κB p50, p38, JNK, and ERK1/2) implicated in allergic reactions.

8.
Clin Immunol ; 244: 109102, 2022 11.
Article in English | MEDLINE | ID: mdl-36049600

ABSTRACT

Atopic dermatitis (AD), a type of skin inflammation, is associated with immune response mediated by T-helper 2 (Th2) cells, and mast cells. Vasicine is an alkaloid isolated from Adhatoda vasica, a popular Ayurvedic herbal medicine used for treating inflammatory conditions. In the present study, the anti-AD effects of vasicine were evaluated on 2,4-dinitrochlorobenzene-induced AD-like skin lesions in BALB/c mice. The potential anti-allergic effects of vasicine were also assessed using the passive cutaneous anaphylaxis (PCA) test. The results showed that the oral administration of vasicine improved the severity of AD-like lesional skin by decreasing histopathological changes and restoring epidermal thickness. Vasicine also inhibited the infiltration of mast cells in the skin and reduced the levels of pro-Th2 and Th2 cytokines as well as immunoglobulin E in the serum. Finally, vasicine inhibited the expression of pro-Th2 and Th2 cytokines in skin tissues, indicating the therapeutic potential of vasicine for AD.


Subject(s)
Alkaloids , Anti-Allergic Agents , Dermatitis, Atopic , Skin Diseases , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Anti-Allergic Agents/adverse effects , Cytokines , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Immunoglobulin E , Mice , Mice, Inbred BALB C , Passive Cutaneous Anaphylaxis , Quinazolines , Skin , Skin Diseases/pathology
9.
BMC Pharmacol Toxicol ; 23(1): 52, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35850712

ABSTRACT

Polysorbate 80 for injection (TW80) is a common excipient used for injection whose macromolecular impurities, including those that cause anaphylactoid reactions, are frequently ignored. The main aim of this study was to prove that the macromolecular impurities in the excipient are an important cause of anaphylactoid reactions. Component A (containing macromolecules > 100 kDa), Component B (containing macromolecules from 10 to 100 kDa), and Component C (containing substances < 10 kDa) were prepaired from the original TW80 using ultrafilters. The original TW80 contained numerous substances with molecular weights > 10kD. The original TW80 and Components A and B caused strong anaphylactoid reactions in both guinea pigs and rabbits by intravenous administration. Moreover, the original TW80 and Components A and B even caused strong passive cutaneous anaphylactoid (PCA) reactions and pulmonary capillary permeability. The PCA reaction and increased permeability were partly prevented by cromolyn sodium. Additionally, the original TW80 and Components A and B caused vasodilation and severe hemolysis in vitro. The anaphylactoid reactions were associated with histamine release but not with mast cell degranulation. Nevertheless, Component C almost caused no anaphylactoid reactions or hemolysis and was weaker in the few reactions that ocurred. Taken together, these results suggest that macromolecular substances are one of the main risk factors responsible for anaphylactoid reactions and hemolysis caused by TW80.


Subject(s)
Anaphylaxis , Polysorbates , Anaphylaxis/chemically induced , Animals , Excipients/toxicity , Guinea Pigs , Hemolysis , Injections , Polysorbates/toxicity , Rabbits
10.
Mar Drugs ; 20(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35200662

ABSTRACT

In this study, we investigated the anti-allergic effects of 3,4-dihydroxybenzaldehyde (DHB) isolated from the marine red alga, Polysiphonia morrowii, in mouse bone-marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in anti-dinitrophenyl (DNP) immunoglobulin E (IgE)-sensitized mice. DHB inhibited IgE/bovine serum albumin (BSA)-induced BMCMCs degranulation by reducing the release of ß-hexosaminidase without inducing cytotoxicity. Further, DHB dose-dependently decreased the IgE binding and high-affinity IgE receptor (FcεRI) expression and FcεRI-IgE binding on the surface of BMCMCs. Moreover, DHB suppressed the secretion and/or the expression of the allergic cytokines, interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis factor (TNF)-α, and the chemokine, thymus activation-regulated chemokine (TARC), by regulating the phosphorylation of IκBα and the translocation of cytoplasmic NF-κB into the nucleus. Furthermore, DHB attenuated the passive cutaneous anaphylactic (PCA) reaction reducing the exuded Evans blue amount in the mouse ear stimulated by IgE/BSA. These results suggest that DHB is a potential therapeutic candidate for the prevention and treatment of type I allergic disorders.


Subject(s)
Anti-Allergic Agents/pharmacology , Benzaldehydes/pharmacology , Catechols/pharmacology , Mast Cells/drug effects , Rhodophyta/metabolism , Animals , Anti-Allergic Agents/administration & dosage , Anti-Allergic Agents/isolation & purification , Benzaldehydes/administration & dosage , Benzaldehydes/isolation & purification , Catechols/administration & dosage , Catechols/isolation & purification , Cells, Cultured , Cytokines/immunology , Disease Models, Animal , Dose-Response Relationship, Drug , Immunoglobulin E/immunology , Male , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Passive Cutaneous Anaphylaxis/drug effects , Passive Cutaneous Anaphylaxis/immunology , Serum Albumin, Bovine/immunology
11.
Int Immunopharmacol ; 105: 108567, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35114442

ABSTRACT

Basophils and mast cells are characteristic effector cells in allergic reactions. Sargahydorquinoic acid (SHQA), a compound isolated from Sargassum serratifolium (marine alga), possesses various biochemical properties, including potent antioxidant activities. The objective of the present study was to investigate inhibitory effects of SHQA on the activation of human basophilic KU812F cells induced by phorbol myristate acetate and A23187 (PMACI), a calcium ionophore. Furthermore, we confirmed the inhibitory effects of SHQA on the activation of rat basophilic leukemia (RBL)-2H3 cells induced by compound 48/80 (com 48/80), bone marrow-derived mast cells (BMCMCs) induced by anti-dinitrophenyl(DNP)-immunoglobulin E (IgE)/DNP-bovine serum albumin (BSA), DNP/IgE and on the reaction of passive cutaneous anaphylaxis (PCA) mediated by IgE. SHQA reduced PMACI-induced intracellular reactive oxygen species (ROS) and calcium levels. Western blot analysis revealed that SHQA downregulated the activation of ERK, p38, and NF-κB in a dose-dependent manner. Moreover, SHQA suppressed the production and gene expression of various cytokines, including interleukin (IL)-1 ß, IL-4, IL-6, and IL-8 in PMACI-induced KU812F cells and IL-4 and tumor necrosis factor (TNF)- α in com 48/80-induced RBL-2H3 cells. It also determined the inhibition of PMACI, com 48/80- and IgE/DNP-induced degranulation by reducing the release of ß -hexosaminidase. Furthermore, it attenuated the IgE/DNP-induced PCA reaction in the ears of BALB/c mice. These results suggest that SHQA isolated from S. serratifolium is a potential therapeutic functional food material for inhibiting effector cell activation in allergic reactions and anaphylaxis in animal model.


Subject(s)
Anaphylaxis , Sargassum , Alkenes , Anaphylaxis/metabolism , Animals , Basophils , Benzoquinones , Mast Cells , Mice , Mice, Inbred BALB C , Passive Cutaneous Anaphylaxis , Rats
12.
J Sci Food Agric ; 102(7): 2704-2709, 2022 May.
Article in English | MEDLINE | ID: mdl-34708420

ABSTRACT

BACKGROUND: The increase in patients suffering from type I hypersensitivity, including hay fever and food allergy, is a serious public health issue around the world. Recent studies have focused on allergy prevention by food factors with fewer side effects. The purpose of this study was to evaluate the effect of dietary glucosylceramide from pineapples (P-GlcCer) on type I hypersensitivity and elucidate mechanisms. RESULTS: Oral administration of P-GlcCer inhibited ear edema in passive cutaneous anaphylaxis reaction. In a Caco-2/RBL-2H3 co-culture system, P-GlcCer inhibited ß-hexosaminidase release from RBL-2H3 cells. The direct treatment of P-GlcCer on RBL-2H3 did not affect ß-hexosaminidase release, but sphingoid base moiety of P-GlcCer did. These results predicted that sphingoid base, a metabolite of P-GlcCer, through the intestine inhibited type I hypersensitivity by inhibiting mast cell degranulation. In addition, the inhibitory effects of P-GlcCer on ear edema and degranulation of RBL-2H3 cells were canceled by pretreatment of leukocyte mono-immunoglobulin-like receptor 3 (LMIR3)-Fc, which can block LMIR3-mediated inhibitory signals. CONCLUSION: It was demonstrated that a sphingoid base, one of the metabolites of P-GlcCer, may inhibit mast cell degranulation by binding to LMIR3. The oral administration of P-GlcCer is a novel and attractive food factor that acts directly on mast cells to suppress allergy. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Ananas , Food Hypersensitivity , Allergens/metabolism , Ananas/metabolism , Caco-2 Cells , Cell Degranulation , Edema/chemically induced , Edema/drug therapy , Food Hypersensitivity/metabolism , Food Hypersensitivity/prevention & control , Glucosylceramides/metabolism , Glucosylceramides/pharmacology , Humans , Leukocytes/metabolism , Mast Cells , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/pharmacology
13.
Int Immunopharmacol ; 99: 108026, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358858

ABSTRACT

Japanese Cedar (JC) pollinosis is the most common seasonal allergic rhinitis in Japan. Throughout the JC pollen season, patients suffer from the allergic symptoms, resulting in a reduction of quality of life. Allergy immunotherapy (AIT) is an established treatment option for a wide range of allergens that unlike symptomatic treatments (e.g. antihistamines) may provide sustained immune tolerance. However, AIT, especially subcutaneous immunotherapy (SCIT) has a fatal anaphylaxis risk due to the use of crude allergen extracts. Consequently, development of allergen derivatives with substantially reduced anaphylactic potential is desirable. An allergen derivative that showed reduced IgE-binding and anaphylactic potential was developed through conjugation of native Cry j 1 (n Cry j 1), a major JC allergen, to the polysaccharide pullulan followed by chemical but non-covalent denaturation. The resulting Cry j 1 allergen derivative, Dn p-Cry j 1, showed reduced IgE-binding and IgE-mediated effector cell activation in vitro using an ELISA competition assay and a mast cell activation model (EXiLE). Reduced anaphylactic potential of Dn p-Cry j 1 in vivo was demonstrated using the rat passive cutaneous anaphylaxis (PCA) assay. The difference in anaphylactic potential of Dn p-Cry j 1 compared to n Cry j 1 in wild-type rats was of the same magnitude as the difference seen in the anaphylaxis reactions obtained with n Cry j 1 in wild-type rats and mast-cell deficient rats, indicating a dramatic reduction in anaphylactic potential of Dn p-Cry j 1. These results indicate that Dn p-Cry j 1 is a promising candidate for next-generation JC AIT.


Subject(s)
Antigens, Plant/administration & dosage , Desensitization, Immunologic/methods , Glucans/administration & dosage , Plant Proteins/administration & dosage , Rhinitis, Allergic, Seasonal/therapy , Allergens/immunology , Animals , Antigens, Plant/chemistry , Antigens, Plant/immunology , Cryptomeria/immunology , Disease Models, Animal , Glucans/chemistry , Glucans/immunology , Humans , Mast Cells/immunology , Mice , Passive Cutaneous Anaphylaxis , Plant Proteins/chemistry , Plant Proteins/immunology , Pollen/immunology , Rats , Rhinitis, Allergic, Seasonal/blood , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/immunology
14.
Molecules ; 26(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361837

ABSTRACT

Allergy is an excessive immune response to a specific antigen. Type I allergies, such as hay fever and food allergies, have increased significantly in recent years and have become a worldwide problem. We previously reported that an ascorbic acid derivative having palmitoyl and glucosyl groups, 2-O-α-d-glucopyranosyl-6-O-hexadecanoyl-l-ascorbic acid (6-sPalm-AA-2G), showed inhibitory effects on degranulation in vitro and on the passive cutaneous anaphylaxis (PCA) reaction in mice. In this study, several palmitoyl derivatives of ascorbic acid were synthesized and a structure-activity relationship study was performed to discover more potent ascorbic acid derivatives with degranulation inhibitory activity. 6-Deoxy-2-O-methyl-6-(N-hexadecanoyl)amino-l-ascorbic acid (2-Me-6-N-Palm-AA), in which a methyl group was introduced into the hydroxyl group at the C-2 position of ascorbic acid and in which the hydroxyl group at the C-6 position was substituted with an N-palmitoyl group, exhibited much higher inhibitory activity for degranulation in vitro than did 6-sPalm-AA-2G. 2-Me-6-N-Palm-AA strongly inhibit the PCA reaction in mice at lower doses than those of 6-sPalm-AA-2G. These findings suggest that 2-Me-6-N-Palm-AA may be a promising therapeutic candidate for allergic diseases.


Subject(s)
Anti-Allergic Agents , Ascorbic Acid , Cell Degranulation/drug effects , Hypersensitivity/drug therapy , Passive Cutaneous Anaphylaxis , Animals , Anti-Allergic Agents/chemical synthesis , Anti-Allergic Agents/chemistry , Anti-Allergic Agents/pharmacology , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/chemical synthesis , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Disease Models, Animal , Mice
15.
Pharm Biol ; 59(1): 672-682, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34078224

ABSTRACT

CONTEXT: Huoxiangzhengqi oral liquid (HXZQ-OL), a traditional Chinese medicine formula, has antibacterial, anti-inflammation and gastrointestinal motility regulation effects. OBJECTIVE: The study investigates the anti-allergic activity and underlying mechanism of HXZQ-OL. MATERIALS AND METHODS: IgE/Ag-mediated RBL-2H3 cells were used to evaluate the anti-allergic activity of HXZQ-OL (43.97, 439.7 and 4397 µg/mL) in vitro. The release of cytokines and eicosanoids were quantified using ELISA. RT-qPCR was used to measure the gene expression of cytokines. The level of intracellular Ca2+ was measured with Fluo 3/AM. Immunoblotting analysis was performed to investigate the mechanism of HXZQ-OL. In the passive cutaneous anaphylaxis (PCA), BALB/c mice (5 mice/group) were orally administrated with HXZQ-OL (263.8, 527.6 and 1055 mg/kg/d) or dexamethasone (5 mg/kg/d, positive control) for seven consecutive days. RESULTS: HXZQ-OL not only inhibited degranulation of mast cells (IC50, 123 µg/mL), but also inhibited the generation and secretion of IL-4 (IC50, 171.4 µg/mL), TNF-α (IC50, 88.4 µg/mL), LTC4 (IC50, 52.9 µg/mL) and PGD2 (IC50, 195.8 µg/mL). Moreover, HXZQ-OL suppressed the expression of IL-4 and TNF-α mRNA, as well as the phosphorylation of Fyn, Lyn and multiple downstream signalling proteins including MAPK and PI3K/NF-κB pathways. In addition, HXZQ-OL (527.5 mg/kg) attenuated the IgE-mediated PCA with 55% suppression of Evans blue exudation in mice. CONCLUSIONS: HXZQ-OL attenuated the activation of mast cell and PCA. Therefore, HXZQ-OL might be used as an alternative treatment for allergic diseases.


Subject(s)
Anti-Allergic Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Mast Cells/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Administration, Oral , Animals , Anti-Allergic Agents/administration & dosage , Cell Line, Tumor , Cytokines/metabolism , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Eicosanoids/metabolism , Female , Immunoglobulin E/immunology , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Rats
16.
J Nat Med ; 75(4): 994-997, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33939081

ABSTRACT

To evaluate the pharmacological property of glucoglycyrrhizin (GGL), a unique glycoside of glycyrrhetinic acid (GA), we investigated the anti-allergic effect of GGL on IgE-mediated immediate hypersensitivity in mice. GGL exhibited the antiallergic effect against IgE-mediated immediate hypersensitivity. At a dose of 100 mg/kg, GGL exhibited antiallergic activity equivalent to that of glycyrrhizin (GL). Furthermore, the pretreatment with anti-GA monoclonal antibody eliminated the antiallergic action of GGL. These results indicated that GGL may act in the same way as GL in the human body. Its safety should be verified for its use as a drug similar to GL.


Subject(s)
Anti-Allergic Agents , Glycyrrhetinic Acid , Hypersensitivity, Immediate , Hypersensitivity , Animals , Glycyrrhizic Acid , Hypersensitivity, Immediate/drug therapy , Immunoglobulin E , Mice
17.
Front Immunol ; 12: 604974, 2021.
Article in English | MEDLINE | ID: mdl-33679742

ABSTRACT

Antigen (Ag)-mediated mast cell activation plays a critical role in the immunopathology of IgE-dependent allergic diseases. Restraining the signaling cascade that regulates the release of mast cell-derived inflammatory mediators is an attractive therapeutic strategy to treat allergic diseases. Orosomucoid-like-3 (ORMDL3) regulates the endoplasmic reticulum stress (ERS)-induced unfolded protein response (UPR) and autophagy. Although ERS/UPR/autophagy pathway is crucial in Ag-induced mast cell activation, it is unknown whether ORMDL3 regulates the ERS/UPR/autophagy pathway during mast cell activation. In this study, we found that ORMDL3 expression was downregulated in Ag-activated MC/9 cells. Overexpression of ORMDL3 significantly inhibited degranulation, and cytokine/chemokine production, while the opposite effect was observed with ORMDL3 knockdown in MC/9 cells. Importantly, ORMDL3 overexpression upregulated mediators of ERS-UPR (SERCA2b, ATF6) and autophagy (Beclin 1 and LC3BII). Knockdown of ATF6 and/or inhibition of autophagy reversed the decreased degranulation and cytokine/chemokine expression caused by ORMDL3 overexpression. Moreover, in vivo knockdown of ORMDL3 and/or ATF6 enhanced passive cutaneous anaphylaxis (PCA) reactions in mouse ears. These data indicate that ORMDL3 suppresses Ag-mediated mast cell activation via an ATF6 UPR-autophagy dependent pathway and thus, attenuates anaphylactic reaction. This highlights a potential mechanism to intervene in mast cell mediated diseases.


Subject(s)
Activating Transcription Factor 6/metabolism , Autophagy , Mast Cells/immunology , Mast Cells/metabolism , Membrane Proteins/metabolism , Signal Transduction , Unfolded Protein Response , Animals , Antigens/immunology , Autophagy/immunology , Cell Degranulation/immunology , Cell Line , Cytokines/metabolism , Gene Expression , Gene Knockdown Techniques , Humans , Immunomodulation , Membrane Proteins/genetics , Mice , Phosphorylation
18.
Int Immunopharmacol ; 94: 107394, 2021 May.
Article in English | MEDLINE | ID: mdl-33582590

ABSTRACT

Black soybean hull extract (BSHE) exhibits a variety of biological activities. However, little is known about the effects of BSHE on immunoglobulin E (IgE)-mediated type I allergic reactions. The anti-allergic effect of BSHE was assessed with the degranulation assay using rat basophilic leukemia RBL-2H3 cells and the passive cutaneous anaphylaxis (PCA) reaction in mice. An active compound in BSHE was identified by ultra-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry analysis. BSHE inhibited the release of ß-hexosaminidase and histamine in RBL-2H3 cells, and cyanidin-3-O-glucoside (C3G) was identified as one of its active compounds. Oral administering of 200 µmol/kg of C3G to IgE-sensitized mice prior to antigen injection suppressed the PCA reaction, as compared with control (p < 0.01). Intravenous administration of BSHE (C3G content, 5.4%) more strongly inhibited PCA responses at lower doses (100 mg/kg, p < 0.01) than oral administration (1,000 mg/kg, p = 0.059). Intravenous C3G also suppressed PCA response at a low dose (40 mg/kg, p < 0.05), showing the same trend as BSHE. This information can be useful to design appropriate formulations of anthocyanin-based drug products to suppress allergic reactions. This study provides evidence for the potential use of BSHE and C3G for the prevention or the treatment of type I allergies.


Subject(s)
Anthocyanins/pharmacology , Anthocyanins/therapeutic use , Cell Degranulation/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Animals , Cell Line , Hexosaminidases/metabolism , Histamine Release/drug effects , Male , Mice, Inbred ICR , Plant Extracts , Rats , Glycine max
19.
Int J Food Sci Nutr ; 72(4): 478-484, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33076718

ABSTRACT

Allergy is a global issue, however, medical intervention for allergy treatment is limited. Recent studies have focussed on allergy prevention with food factors. In this study, Lactobacillus plantarum 22 A-3 (LP22A3) exerted an anti-allergic effect in passive cutaneous anaphylaxis (PCA) reaction and increased transforming growth factor (TGF)-ß contents in blood. The increase of TGF-ß contents in blood by exogenous TGF-ß injection intraperitoneally decreased Evans blue release into mice ears to the same level as LP22A3 treatment in PCA reaction. LP22A3 treatment directly to RBL-2H3 cells shows no effect on ß-hexosaminidase release from RBL-2H3 but inhibited its release using the Caco-2/RBL-2H3 cells co-culture system stimulated with LP22A3 from the apical side. Moreover, TGF-ß treatment to RBL-2H3 inhibited ß-hexosaminidase release from RBL-2H3. However, ß-hexosaminidase release was cancelled by TGF-ß neutralising antibody without the influence of TGF-ß mRNA expression in Caco-2 cells. These results showed that LP22A3 ameliorates allergy by TGF-ß secretion through the intestine.


Subject(s)
Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Hypersensitivity/drug therapy , Lactobacillus plantarum/metabolism , Passive Cutaneous Anaphylaxis/drug effects , Transforming Growth Factor beta/metabolism , Administration, Oral , Animals , Caco-2 Cells , Cell Line, Tumor , Female , Humans , Immunoglobulin E/immunology , Mice , Mice, Inbred BALB C , beta-N-Acetylhexosaminidases/metabolism
20.
Mar Drugs ; 18(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256200

ABSTRACT

Sargassum horneri (S. horneri), an edible brown alga, has been proposed as a functional food with an improvement effect on abnormal skin immune responses. The present study investigates the anti-allergic effect of an ethanol extract from S. horneri (SHE) on immunoglobulin E (IgE)/bovine serum albumin (BSA)-mediated activation in bone marrow-derived cultured-mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) reaction in mice. SHE markedly and dose-dependently suppressed the degranulation of BMCMCs by reducing the ß-hexosaminidase and histamine release without cytotoxicity. In addition, SHE significantly decreased the FcεRI expression on the surface of BMCMCs and its IgE binding. Moreover, SHE reduced the mRNA expression and the production of allergic cytokines; interleukin (IL)-1ß, IL-4, IL-5, IL-6, IL-10, IL-13; interferon (IFN)-γ and/or tumor necrosis factor (TNF)-α; and a chemokine, thymus and activation-regulated chemokine (TARC), by suppressing the activation of Src-family kinases and nuclear factor (NF)-κB signaling. In further study, the application of SHE reduced the PCA reaction in an IgE/BSA-induced type I allergic mice model. Taken together, we suggest that SHE has an anti-allergic effect in type I allergic responses.


Subject(s)
Anti-Allergic Agents/pharmacology , Cell Degranulation/drug effects , Functional Food , Histamine Release/drug effects , Hypersensitivity, Immediate/prevention & control , Mast Cells/drug effects , Passive Cutaneous Anaphylaxis/drug effects , Receptors, IgE/metabolism , Sargassum/metabolism , Skin/drug effects , Animal Feed , Animals , Anti-Allergic Agents/isolation & purification , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dinitrophenols , Disease Models, Animal , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Serum Albumin, Bovine , Skin/immunology , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...