Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 18: 1354520, 2024.
Article in English | MEDLINE | ID: mdl-38846638

ABSTRACT

The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvß3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.

2.
Biophys Rev ; 16(1): 89-107, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38495444

ABSTRACT

I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiological insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pancreatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the need for a shift towards broader accessibility through increased throughput.

3.
Methods Mol Biol ; 2752: 227-243, 2024.
Article in English | MEDLINE | ID: mdl-38194038

ABSTRACT

Cells exhibit diverse morphologic phenotypes, biophysical and functional properties, and gene expression patterns. Understanding how these features are interrelated at the level of single cells has been challenging due to the lack of techniques for multimodal profiling of individual cells. We recently developed Patch-seq, a technique that combines whole-cell patch clamp recording, immunohistochemistry, and single-cell RNA-sequencing (scRNA-seq) to comprehensively profile single cells. Here we present a detailed step-by-step protocol for obtaining high-quality morphological, electrophysiological, and transcriptomic data from single cells. Patch-seq enables researchers to explore the rich, multidimensional phenotypic variability among cells and to directly correlate gene expression with phenotype at the level of single cells.


Subject(s)
Gene Expression Profiling , Transcriptome , Biophysics , Patch-Clamp Techniques , Electrophysiology
4.
Neurosci Bull ; 40(4): 517-532, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38194157

ABSTRACT

Primates exhibit complex brain structures that augment cognitive function. The neocortex fulfills high-cognitive functions through billions of connected neurons. These neurons have distinct transcriptomic, morphological, and electrophysiological properties, and their connectivity principles vary. These features endow the primate brain atlas with a multimodal nature. The recent integration of next-generation sequencing with modified patch-clamp techniques is revolutionizing the way to census the primate neocortex, enabling a multimodal neuronal atlas to be established in great detail: (1) single-cell/single-nucleus RNA-seq technology establishes high-throughput transcriptomic references, covering all major transcriptomic cell types; (2) patch-seq links the morphological and electrophysiological features to the transcriptomic reference; (3) multicell patch-clamp delineates the principles of local connectivity. Here, we review the applications of these technologies in the primate neocortex and discuss the current advances and tentative gaps for a comprehensive understanding of the primate neocortex.


Subject(s)
Neurons , Transcriptome , Animals , Neurons/metabolism , Brain , Primates , Electrophysiology
5.
Comput Biol Med ; 168: 107783, 2024 01.
Article in English | MEDLINE | ID: mdl-38056213

ABSTRACT

The mammalian brain exhibits a remarkable diversity of neurons, contributing to its intricate architecture and functional complexity. The analysis of multimodal single-cell datasets enables the investigation of cell types and states heterogeneity. In this study, we introduce the Neuronal Spike Shapes (NSS), a straightforward approach for the exploration of excitability states of neurons based on their Action Potential (AP) waveforms. The NSS method describes the AP waveform based on a triangular representation complemented by a set of derived electrophysiological (EP) features. To support this hypothesis, we validate the proposed approach on two datasets of murine cortical neurons, focusing it on GABAergic neurons. The validation process involves a combination of NSS-based clustering analysis, features exploration, Differential Expression (DE), and Gene Ontology (GO) enrichment analysis. Results show that the NSS-based analysis captures neuronal excitability states that possess biological relevance independently of cell subtype. In particular, Neuronal Spike Shapes (NSS) captures, among others, a well-characterized fast-spiking excitability state, supported by both electrophysiological and transcriptomic validation. Gene Ontology Enrichment Analysis reveals voltage-gated potassium (K+) channels as specific markers of the identified NSS partitions. This finding strongly corroborates the biological relevance of NSS partitions as excitability states, as the expression of voltage-gated K+ channels regulates the hyperpolarization phase of the AP, being directly implicated in the regulation of neuronal excitability.


Subject(s)
Electrophysiological Phenomena , Neurons , Mice , Animals , Neurons/metabolism , Action Potentials/physiology , Mammals
6.
Cell Mol Neurobiol ; 44(1): 8, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123823

ABSTRACT

Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Sequence Analysis, RNA , Patch-Clamp Techniques , Transcriptome
7.
Patterns (N Y) ; 4(11): 100847, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38035195

ABSTRACT

Single-cell techniques like Patch-seq have enabled the acquisition of multimodal data from individual neuronal cells, offering systematic insights into neuronal functions. However, these data can be heterogeneous and noisy. To address this, machine learning methods have been used to align cells from different modalities onto a low-dimensional latent space, revealing multimodal cell clusters. The use of those methods can be challenging without computational expertise or suitable computing infrastructure for computationally expensive methods. To address this, we developed a cloud-based web application, MANGEM (multimodal analysis of neuronal gene expression, electrophysiology, and morphology). MANGEM provides a step-by-step accessible and user-friendly interface to machine learning alignment methods of neuronal multimodal data. It can run asynchronously for large-scale data alignment, provide users with various downstream analyses of aligned cells, and visualize the analytic results. We demonstrated the usage of MANGEM by aligning multimodal data of neuronal cells in the mouse visual cortex.

8.
Neuron ; 111(24): 3953-3969.e5, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37848024

ABSTRACT

Despite substantial progress in understanding the biology of axon regeneration in the CNS, our ability to promote regeneration of the clinically important corticospinal tract (CST) after spinal cord injury remains limited. To understand regenerative heterogeneity, we conducted patch-based single-cell RNA sequencing on rare regenerating CST neurons at high depth following PTEN and SOCS3 deletion. Supervised classification with Garnett gave rise to a Regeneration Classifier, which can be broadly applied to predict the regenerative potential of diverse neuronal types across developmental stages or after injury. Network analyses highlighted the importance of antioxidant response and mitochondrial biogenesis. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Our data demonstrate a universal transcriptomic signature underlying the regenerative potential of vastly different neuronal populations and illustrate that deep sequencing of only hundreds of phenotypically identified neurons has the power to advance regenerative biology.


Subject(s)
Axons , Spinal Cord Injuries , Humans , Axons/physiology , Nerve Regeneration/genetics , Antioxidants , Neurons , Spinal Cord Injuries/genetics , Pyramidal Tracts/physiology , Single-Cell Analysis
9.
bioRxiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37293040

ABSTRACT

The cochlear nuclear complex (CN) is the starting point for all central auditory processing and comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals. To examine how their striking functional specializations are determined at the molecular level, we performed single-nucleus RNA sequencing of the mouse CN to molecularly define all constituent cell types and related them to morphologically- and electrophysiologically-defined neurons using Patch-seq. We reveal an expanded set of molecular cell types encompassing all previously described major types and discover new subtypes both in terms of topographic and cell-physiologic properties. Our results define a complete cell-type taxonomy in CN that reconciles anatomical position, morphological, physiological, and molecular criteria. This high-resolution account of cellular heterogeneity and specializations from the molecular to the circuit level illustrates molecular underpinnings of functional specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.

10.
Cell Rep ; 40(11): 111322, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36103830

ABSTRACT

Retinal ganglion cells (RGCs) are the brain's gateway to the visual world. They can be classified into different types on the basis of their electrophysiological, transcriptomic, or morphological characteristics. Here, we characterize the transcriptomic, morphological, and functional features of 472 high-quality RGCs using Patch sequencing (Patch-seq), providing functional and morphological annotation of many transcriptomic-defined cell types of a previously established RGC atlas. We show a convergence of different modalities in defining the RGC identity and reveal the degree of correspondence for well-characterized cell types across multimodal data. Moreover, we complement some RGC types with detailed morphological and functional properties. We also identify differentially expressed genes among ON, OFF, and ON-OFF RGCs such as Vat1l, Slitrk6, and Lmo7, providing candidate marker genes for functional studies. Our research suggests that the molecularly distinct clusters may also differ in their roles of encoding visual information.


Subject(s)
Retinal Ganglion Cells , Transcriptome , Animals , Mammals , Phenotype , Retinal Ganglion Cells/metabolism , Transcriptome/genetics
11.
Front Synaptic Neurosci ; 14: 910820, 2022.
Article in English | MEDLINE | ID: mdl-35844900

ABSTRACT

Acute regulation of CO2 and pH homeostasis requires sensory feedback from peripheral (carotid body) and central (central) CO2/pH sensitive cells - so called respiratory chemoreceptors. Subsets of brainstem serotonin (5-HT) neurons in the medullary raphe are CO2 sensitive or insensitive based on differences in embryonic origin, suggesting these functionally distinct subpopulations may have unique transcriptional profiles. Here, we used Patch-to-Seq to determine if the CO2 responses in brainstem 5-HT neurons could be correlated to unique transcriptional profiles and/or unique molecular markers and pathways. First, firing rate changes with hypercapnic acidosis were measured in fluorescently labeled 5-HT neurons in acute brainstem slices from transgenic, Dahl SS (SSMcwi) rats expressing T2/ePet-eGFP transgene in Pet-1 expressing (serotonin) neurons (SS ePet1-eGFP rats). Subsequently, the transcriptomic and pathway profiles of CO2 sensitive and insensitive 5-HT neurons were determined and compared by single cell RNA (scRNAseq) and bioinformatic analyses. Low baseline firing rates were a distinguishing feature of CO2 sensitive 5-HT neurons. scRNAseq of these recorded neurons revealed 166 differentially expressed genes among CO2 sensitive and insensitive 5-HT neurons. Pathway analyses yielded novel predicted upstream regulators, including the transcription factor Egr2 and Leptin. Additional bioinformatic analyses identified 6 candidate gene markers of CO2 sensitive 5-HT neurons, and 2 selected candidate genes (CD46 and Iba57) were both expressed in 5-HT neurons determined via in situ mRNA hybridization. Together, these data provide novel insights into the transcriptional control of cellular chemoreception and provide unbiased candidate gene markers of CO2 sensitive 5-HT neurons. Methodologically, these data highlight the utility of the patch-to-seq technique in enabling the linkage of gene expression to specific functions, like CO2 chemoreception, in a single cell to identify potential mechanisms underlying functional differences in otherwise similar cell types.

12.
Cell Metab ; 34(2): 256-268.e5, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108513

ABSTRACT

In diabetes, glucagon secretion from pancreatic α cells is dysregulated. The underlying mechanisms, and whether dysfunction occurs uniformly among cells, remain unclear. We examined α cells from human donors and mice using electrophysiological, transcriptomic, and computational approaches. Rising glucose suppresses α cell exocytosis by reducing P/Q-type Ca2+ channel activity, and this is disrupted in type 2 diabetes (T2D). Upon high-fat feeding of mice, α cells shift toward a "ß cell-like" electrophysiological profile in concert with indications of impaired identity. In human α cells we identified links between cell membrane properties and cell surface signaling receptors, mitochondrial respiratory chain complex assembly, and cell maturation. Cell-type classification using machine learning of electrophysiology data demonstrated a heterogenous loss of "electrophysiologic identity" in α cells from donors with type 2 diabetes. Indeed, a subset of α cells with impaired exocytosis is defined by an enrichment in progenitor and lineage markers and upregulation of an immature transcriptomic phenotype, suggesting important links between α cell maturation state and dysfunction.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Islets of Langerhans , Animals , Diabetes Mellitus, Type 2/metabolism , Exocytosis/physiology , Glucagon/metabolism , Glucagon-Secreting Cells/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Mice
13.
Neuron ; 109(18): 2914-2927.e5, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34534454

ABSTRACT

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology, and morphology were assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were often subtler than differences between L5 cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy but also highlight phenotypic divergence possibly related to functional specialization of human neocortex.


Subject(s)
Dendrites/physiology , Morphogenesis/physiology , Neocortex/cytology , Neocortex/physiology , Pyramidal Cells/physiology , Transcriptome/physiology , Action Potentials/physiology , Adult , Animals , Female , Humans , Macaca nemestrina , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Organ Culture Techniques , Patch-Clamp Techniques/methods
14.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34387544

ABSTRACT

The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools. This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.


Subject(s)
Electrophysiological Phenomena , Single-Cell Analysis/methods , Transcriptome , Animals , Brain , Humans , Macaca mulatta , Mice , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques , Software
15.
Cell Rep ; 36(3): 109409, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289357

ABSTRACT

Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.


Subject(s)
Astrocytes/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cellular Reprogramming , Nerve Tissue Proteins/metabolism , Neurons/cytology , Spinal Cord/cytology , Animals , Astrocytes/metabolism , Biomarkers/metabolism , Electrophysiological Phenomena , Mice, Inbred C57BL , Neurons/metabolism , Organ Specificity , Transcription, Genetic
16.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33952696

ABSTRACT

Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.


Subject(s)
GABA Agents/pharmacology , Huntington Disease/genetics , Neurons/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Animals , Benzamides , Corpus Striatum/physiology , Disease Models, Animal , Gene Expression , Huntingtin Protein , Huntington Disease/metabolism , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Synaptic Transmission/genetics , Transcriptome
17.
Cell ; 183(4): 935-953.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33186530

ABSTRACT

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.


Subject(s)
Cerebral Cortex/cytology , Electrophysiological Phenomena , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Hippocampus/physiology , Ion Channels/metabolism , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism
18.
Cell Rep ; 32(3): 107912, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697985

ABSTRACT

The age of studied animals has a profound impact on experimental outcomes in animal-based research. In mice, age influences molecular, morphological, physiological, and behavioral parameters, particularly during rapid postnatal growth and maturation until adulthood (at 12 weeks of age). Despite this knowledge, most biomedical studies use a wide-spanning age range from 4 to 12 weeks, raising concerns about reproducibility and potential masking of relevant age differences. Here, using mouse behavior and electrophysiology in cultured dorsal root ganglia (DRG), we reveal a decline in behavioral cutaneous touch sensitivity and Piezo2-mediated mechanotransduction in vitro during mouse maturation but not thereafter. In addition, we identify distinct transcript changes in individual Piezo2-expressing mechanosensitive DRG neurons by combining electrophysiology with single-cell RNA sequencing (patch-seq). Taken together, our study emphasizes the need for accurate age matching and uncovers hitherto unknown maturational plasticity in cutaneous touch at the level of behavior, mechanotransduction, and transcripts.


Subject(s)
Ion Channels/metabolism , Mechanotransduction, Cellular , Skin/metabolism , Touch/physiology , Aging/physiology , Animals , Behavior, Animal , Ganglia, Spinal/metabolism , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Single-Cell Analysis
19.
Protein Cell ; 11(6): 417-432, 2020 06.
Article in English | MEDLINE | ID: mdl-32350740

ABSTRACT

Vision formation is classically based on projections from retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Neurons in the mouse V1 are tuned to light stimuli. Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single light-stimulated neuron in V1 remain unknown. In our study, in vivo calcium imaging and whole-cell electrophysiological patch-clamp recording were utilized to identify 53 individual cells from layer 2/3 of V1 as light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of each cell after functional tests were aspirated in vivo through a patch-clamp pipette for mRNA sequencing. Moreover, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in a live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with a high expression of genes related to transmission regulation, such as Rtn4r and Rgs7, and genes involved in membrane transport, such as Na+/K+ ATPase and NMDA-type glutamatergic receptors, preferentially responded to light stimulation. Furthermore, an antagonist that blocks Rtn4r signals could inactivate the neuronal responses to light stimulation in live mice. In conclusion, our findings of the vivo-seq analysis indicate the key role of the strength of synaptic transmission possesses neurons in V1 of light sensory.


Subject(s)
Light , Neurons/metabolism , Neurons/radiation effects , Patch-Clamp Techniques , RNA-Seq , Single-Cell Analysis , Animals , Calcium/metabolism , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Neurons/cytology , Nogo Receptor 1/genetics , Nogo Receptor 1/metabolism , RGS Proteins/genetics , RGS Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Visual Cortex/cytology , Visual Cortex/metabolism , Visual Cortex/radiation effects
20.
Cell Metab ; 31(5): 1017-1031.e4, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32302527

ABSTRACT

Impaired function of pancreatic islet cells is a major cause of metabolic dysregulation and disease in humans. Despite this, it remains challenging to directly link physiological dysfunction in islet cells to precise changes in gene expression. Here we show that single-cell RNA sequencing combined with electrophysiological measurements of exocytosis and channel activity (patch-seq) can be used to link endocrine physiology and transcriptomes at the single-cell level. We collected 1,369 patch-seq cells from the pancreata of 34 human donors with and without diabetes. An analysis of function and gene expression networks identified a gene set associated with functional heterogeneity in ß cells that can be used to predict electrophysiology. We also report transcriptional programs underlying dysfunction in type 2 diabetes and extend this approach to cryopreserved cells from donors with type 1 diabetes, generating a valuable resource for understanding islet cell heterogeneity in health and disease.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Single-Cell Analysis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...