Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Comput Biol Med ; 179: 108793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955126

ABSTRACT

Skin tumors are the most common tumors in humans and the clinical characteristics of three common non-melanoma tumors (IDN, SK, BCC) are similar, resulting in a high misdiagnosis rate. The accurate differential diagnosis of these tumors needs to be judged based on pathological images. However, a shortage of experienced dermatological pathologists leads to bias in the diagnostic accuracy of these skin tumors in China. In this paper, we establish a skin pathological image dataset, SPMLD, for three non-melanoma to achieve automatic and accurate intelligent identification for them. Meanwhile, we propose a lesion-area-based enhanced classification network with the KLS module and an attention module. Specifically, we first collect thousands of H&E-stained tissue sections from patients with clinically and pathologically confirmed IDN, SK, and BCC from a single-center hospital. Then, we scan them to construct a pathological image dataset of these three skin tumors. Furthermore, we mark the complete lesion area of the entire pathology image to better learn the pathologist's diagnosis process. In addition, we applied the proposed network for lesion classification prediction on the SPMLD dataset. Finally, we conduct a series of experiments to demonstrate that this annotation and our network can effectively improve the classification results of various networks. The source dataset and code are available at https://github.com/efss24/SPMLD.git.

2.
J Transl Med ; 22(1): 686, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061062

ABSTRACT

BACKGROUND: During the prolonged period from Human Papillomavirus (HPV) infection to cervical cancer development, Low-Grade Squamous Intraepithelial Lesion (LSIL) stage provides a critical opportunity for cervical cancer prevention, giving the high potential for reversal in this stage. However, there is few research and a lack of clear guidelines on appropriate intervention strategies at this stage, underscoring the need for real-time prognostic predictions and personalized treatments to promote lesion reversal. METHODS: We have established a prospective cohort. Since 2018, we have been collecting clinical data and pathological images of HPV-infected patients, followed by tracking the progression of their cervical lesions. In constructing our predictive models, we applied logistic regression and six machine learning models, evaluating each model's predictive performance using metrics such as the Area Under the Curve (AUC). We also employed the SHAP method for interpretative analysis of the prediction results. Additionally, the model identifies key factors influencing the progression of the lesions. RESULTS: Model comparisons highlighted the superior performance of Random Forests (RF) and Support Vector Machines (SVM), both in clinical parameter and pathological image-based predictions. Notably, the RF model, which integrates pathological images and clinical multi-parameters, achieved the highest AUC of 0.866. Another significant finding was the substantial impact of sleep quality on the spontaneous clearance of HPV and regression of LSIL. CONCLUSIONS: In contrast to current cervical cancer prediction models, our model's prognostic capabilities extend to the spontaneous regression stage of cervical cancer. This model aids clinicians in real-time monitoring of lesions and in developing personalized treatment or follow-up plans by assessing individual risk factors, thus fostering lesion spontaneous reversal and aiding in cervical cancer prevention and reduction.


Subject(s)
Precancerous Conditions , Precision Medicine , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Precancerous Conditions/pathology , Precancerous Conditions/virology , Adult , Machine Learning , Middle Aged , Disease Progression , Models, Biological
3.
Cancers (Basel) ; 16(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001511

ABSTRACT

Interobserver variations in the pathology of common astrocytic tumors impact diagnosis and subsequent treatment decisions. This study leveraged a residual neural network-50 (ResNet-50) in digital pathological images of diffuse astrocytoma, anaplastic astrocytoma, and glioblastoma to recognize characteristic pathological features and perform classification at the patch and case levels with identification of incorrect predictions. In addition, cellularity and nuclear morphological features, including axis ratio, circularity, entropy, area, irregularity, and perimeter, were quantified via a hybrid task cascade (HTC) framework and compared between different characteristic pathological features with importance weighting. A total of 95 cases, including 15 cases of diffuse astrocytoma, 11 cases of anaplastic astrocytoma, and 69 cases of glioblastoma, were collected in Taiwan Hualien Tzu Chi Hospital from January 2000 to December 2021. The results revealed that an optimized ResNet-50 model could recognize characteristic pathological features at the patch level and assist in diagnosis at the case level with accuracies of 0.916 and 0.846, respectively. Incorrect predictions were mainly due to indistinguishable morphologic overlap between anaplastic astrocytoma and glioblastoma tumor cell area, zones of scant vascular lumen with compact endothelial cells in the glioblastoma microvascular proliferation area mimicking the glioblastoma tumor cell area, and certain regions in diffuse astrocytoma with too low cellularity being misrecognized as the glioblastoma necrosis area. Significant differences were observed in cellularity and each nuclear morphological feature among different characteristic pathological features. Furthermore, using the extreme gradient boosting (XGBoost) algorithm, we found that entropy was the most important feature for classification, followed by cellularity, area, circularity, axis ratio, perimeter, and irregularity. Identifying incorrect predictions provided valuable feedback to machine learning design to further enhance accuracy and reduce errors in classification. Moreover, quantifying cellularity and nuclear morphological features with importance weighting provided the basis for developing an innovative scoring system to achieve objective classification and precision diagnosis among common astrocytic tumors.

4.
Front Oncol ; 14: 1391486, 2024.
Article in English | MEDLINE | ID: mdl-38826785

ABSTRACT

Introduction: Immune infiltration within the tumor microenvironment (TME) plays a significant role in the onset and progression of hepatocellular carcinoma (HCC). Machine learning applied to pathological images offers a practical means to explore the TME at the cellular level. Our former research employed a transfer learning procedure to adapt a convolutional neural network (CNN) model for cell recognition, which could recognize tumor cells, lymphocytes, and stromal cells autonomously and accurately within the images. This study introduces a novel immune classification system based on the modified CNN model. Method: Patients with HCC from both Beijing Hospital and The Cancer Genome Atlas (TCGA) database were included in this study. Additionally, least absolute shrinkage and selection operator (LASSO) analyses, along with logistic regression, were utilized to develop a prognostic model. We proposed an immune classification based on the percentage of lymphocytes, with a threshold set at the median lymphocyte percentage. Result: Patients were categorized into high or low infiltration subtypes based on whether their lymphocyte percentages were above or below the median, respectively. Patients with different immune infiltration subtypes exhibited varying clinical features and distinct TME characteristics. The low-infiltration subtype showed a higher incidence of hypertension and fatty liver, more advanced tumor stages, downregulated immune-related genes, and higher infiltration of immunosuppressive cells. A reliable prognostic model for predicting early recurrence of HCC based on clinical features and immune classification was established. The area under the curve (AUC) of the receiver operating characteristic (ROC) curves was 0.918 and 0.814 for the training and test sets, respectively. Discussion: In conclusion, we proposed a novel immune classification system based on cell information extracted from pathological slices, provides a novel tool for prognostic evaluation in HCC.

5.
Med Image Anal ; 95: 103199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759258

ABSTRACT

The accurate diagnosis on pathological subtypes for lung cancer is of significant importance for the follow-up treatments and prognosis managements. In this paper, we propose self-generating hybrid feature network (SGHF-Net) for accurately classifying lung cancer subtypes on computed tomography (CT) images. Inspired by studies stating that cross-scale associations exist in the image patterns between the same case's CT images and its pathological images, we innovatively developed a pathological feature synthetic module (PFSM), which quantitatively maps cross-modality associations through deep neural networks, to derive the "gold standard" information contained in the corresponding pathological images from CT images. Additionally, we designed a radiological feature extraction module (RFEM) to directly acquire CT image information and integrated it with the pathological priors under an effective feature fusion framework, enabling the entire classification model to generate more indicative and specific pathologically related features and eventually output more accurate predictions. The superiority of the proposed model lies in its ability to self-generate hybrid features that contain multi-modality image information based on a single-modality input. To evaluate the effectiveness, adaptability, and generalization ability of our model, we performed extensive experiments on a large-scale multi-center dataset (i.e., 829 cases from three hospitals) to compare our model and a series of state-of-the-art (SOTA) classification models. The experimental results demonstrated the superiority of our model for lung cancer subtypes classification with significant accuracy improvements in terms of accuracy (ACC), area under the curve (AUC), positive predictive value (PPV) and F1-score.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/classification , Tomography, X-Ray Computed/methods , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms
6.
Cancer Med ; 13(6): e7101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506243

ABSTRACT

BACKGROUND: Pseudomyxoma peritonei (PMP) is a rare clinical malignant syndrome, and its rarity causes a lack of pathology research. This study aims to quantitatively analyze HE-stained pathological images (PIs), and develop a new predictive model integrating digital pathological parameters with clinical information. METHODS: Ninety-two PMP patients with complete clinic-pathological information, were included. QuPath was used for PIs quantitative feature analysis at tissue-, cell-, and nucleus-level. The correlations between overall survival (OS) and general clinicopathological characteristics, and PIs features were analyzed. A nomogram was established based on independent prognostic factors and evaluated. RESULTS: Among the 92 PMP patients, there were 34 (37.0%) females and 58 (63.0%) males, with a median age of 57 (range: 31-76). A total of 449 HE stained images were obtained for QuPath analysis, which extracted 40 pathological parameters at three levels. Kaplan-Meier survival analysis revealed eight clinicopathological characteristics and 20 PIs features significantly associated with OS (p < 0.05). Partial least squares regression was used to screen the multicollinearity features and synthesize four new features. Multivariate survival analysis identified the following five independent prognostic factors: preoperative CA199, completeness of cytoreduction, histopathological type, component one at tissue-level, and tumor nuclei circularity variance. A nomogram was established with internal validation C-index 0.795 and calibration plots indicating improved prediction performance. CONCLUSIONS: The quantitative analysis of HE-stained PIs could extract the new prognostic information on PMP. A nomogram established by five independent prognosticators is the first model integrating digital pathological information with clinical data for improved clinical outcome prediction.


Subject(s)
Peritoneal Neoplasms , Pseudomyxoma Peritonei , Male , Female , Humans , Pseudomyxoma Peritonei/pathology , Prognosis , Nomograms , Survival Analysis , Retrospective Studies
7.
Front Physiol ; 15: 1279982, 2024.
Article in English | MEDLINE | ID: mdl-38357498

ABSTRACT

Introduction: Early predictive pathological complete response (pCR) is beneficial for optimizing neoadjuvant chemotherapy (NAC) strategies for breast cancer. The hematoxylin and eosin (HE)-stained slices of biopsy tissues contain a large amount of information on tumor epithelial cells and stromal. The fusion of pathological image features and clinicopathological features is expected to build a model to predict pCR of NAC in breast cancer. Methods: We retrospectively collected a total of 440 breast cancer patients from three hospitals who underwent NAC. HE-stained slices of biopsy tissues were scanned to form whole-slide images (WSIs), and pathological images of representative regions of interest (ROI) of each WSI were selected at different magnifications. Based on several different deep learning models, we propose a novel feature extraction method on pathological images with different magnifications. Further, fused with clinicopathological features, a multimodal breast cancer NAC pCR prediction model based on a support vector machine (SVM) classifier was developed and validated with two additional validation cohorts (VCs). Results: Through experimental validation of several different deep learning models, we found that the breast cancer pCR prediction model based on the SVM classifier, which uses the VGG16 model for feature extraction of pathological images at ×20 magnification, has the best prediction efficacy. The area under the curve (AUC) of deep learning pathological model (DPM) were 0.79, 0.73, and 0.71 for TC, VC1, and VC2, respectively, all of which exceeded 0.70. The AUCs of clinical model (CM), a clinical prediction model established by using clinicopathological features, were 0.79 for TC, 0.73 for VC1, and 0.71 for VC2, respectively. The multimodal deep learning clinicopathological model (DPCM) established by fusing pathological images and clinicopathological features improved the AUC of TC from 0.79 to 0.84. The AUC of VC2 improved from 0.71 to 0.78. Conclusion: Our study reveals that pathological images of HE-stained slices of pre-NAC biopsy tissues can be used to build a pCR prediction model. Combining pathological images and clinicopathological features can further enhance the predictive efficacy of the model.

8.
Med Biol Eng Comput ; 62(3): 901-912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38087041

ABSTRACT

Breast cancer pathological image segmentation (BCPIS) holds significant value in assisting physicians with quantifying tumor regions and providing treatment guidance. However, achieving fine-grained semantic segmentation remains a major challenge for this technology. The complex and diverse morphologies of breast cancer tissue structures result in high costs for manual annotation, thereby limiting the sample size and annotation quality of the dataset. These practical issues have a significant impact on the segmentation performance. To overcome these challenges, this study proposes a semi-supervised learning model based on classification-guided segmentation. The model first utilizes a multi-scale convolutional network to extract rich semantic information and then employs a multi-expert cross-layer joint learning strategy, integrating a small number of labeled samples to iteratively provide the model with class-generated multi-cue pseudo-labels and real labels. Given the complexity of the breast cancer samples and the limited sample quantity, an innovative approach of augmenting additional unlabeled data was adopted to overcome this limitation. Experimental results demonstrate that, although the proposed model falls slightly behind supervised segmentation models, it still exhibits significant progress and innovation. The semi-supervised model in this study achieves outstanding performance, with an IoU (Intersection over Union) value of 71.53%. Compared to other semi-supervised methods, the model developed in this study demonstrates a performance advantage of approximately 3%. Furthermore, the research findings indicate a significant correlation between the classification and segmentation tasks in breast cancer pathological images, and the guidance of a multi-expert system can significantly enhance the fine-grained effects of semi-supervised semantic segmentation.


Subject(s)
Neoplasms , Physicians , Humans , Expert Systems , Semantics , Supervised Machine Learning , Image Processing, Computer-Assisted
9.
Methods ; 222: 28-40, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159688

ABSTRACT

Due to the abnormal secretion of adreno-cortico-tropic-hormone (ACTH) by tumors, Cushing's disease leads to hypercortisonemia, a precursor to a series of metabolic disorders and serious complications. Cushing's disease has high recurrence rate, short recurrence time and undiscovered recurrence reason after surgical resection. Qualitative or quantitative automatic image analysis of histology images can potentially in providing insights into Cushing's disease, but still no software has been available to the best of our knowledge. In this study, we propose a quantitative image analysis-based pipeline CRCS, which aims to explore the relationship between the expression level of ACTH in normal cell tissues adjacent to tumor cells and the postoperative prognosis of patients. CRCS mainly consists of image-level clustering, cluster-level multi-modal image registration, patch-level image classification and pixel-level image segmentation on the whole slide imaging (WSI). On both image registration and classification tasks, our method CRCS achieves state-of-the-art performance compared to recently published methods on our collected benchmark dataset. In addition, CRCS achieves an accuracy of 0.83 for postoperative prognosis of 12 cases. CRCS demonstrates great potential for instrumenting automatic diagnosis and treatment for Cushing's disease.


Subject(s)
Pituitary ACTH Hypersecretion , Humans , Pituitary ACTH Hypersecretion/diagnostic imaging , Prognosis , Adrenocorticotropic Hormone
10.
Med Image Anal ; 89: 102845, 2023 10.
Article in English | MEDLINE | ID: mdl-37597317

ABSTRACT

Self-supervised representation learning (SSL) has achieved remarkable success in its application to natural images while falling behind in performance when applied to whole-slide pathological images (WSIs). This is because the inherent characteristics of WSIs in terms of gigapixel resolution and multiple objects in training patches are fundamentally different from natural images. Directly transferring the state-of-the-art (SOTA) SSL methods designed for natural images to WSIs will inevitably compromise their performance. We present a novel scheme SGCL: Spatial Guided Contrastive Learning, to fully explore the inherent properties of WSIs, leveraging the spatial proximity and multi-object priors for stable self-supervision. Beyond the self-invariance of instance discrimination, we expand and propagate the spatial proximity for the intra-invariance from the same WSI and inter-invariance from different WSIs, as well as propose the spatial-guided multi-cropping for inner-invariance within patches. To adaptively explore such spatial information without supervision, we propose a new loss function and conduct a theoretical analysis to validate it. This novel scheme of SGCL is able to achieve additional improvements over the SOTA pre-training methods on diverse downstream tasks across multiple datasets. Extensive ablation studies have been carried out and visualizations of these results have been presented to aid understanding of the proposed SGCL scheme. As open science, all codes and pre-trained models are available at https://github.com/HHHedo/SGCL.


Subject(s)
Image Interpretation, Computer-Assisted , Machine Learning , Pathology, Clinical , Pathology, Clinical/methods
11.
J Cancer Res Clin Oncol ; 149(9): 6075-6083, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36653539

ABSTRACT

PURPOSE: We analyzed clinical features and the representative HE-stained pathologic images to predict 5-year overall survival via the deep-learning approach in cervical cancer patients in order to assist oncologists in designing the optimal treatment strategies. METHODS: The research retrospectively collected 238 non-surgical cervical cancer patients treated with radiochemotherapy from 2014 to 2017. These patients were randomly divided into the training set (n = 165) and test set (n = 73). Then, we extract deep features after segmenting the HE-stained image into patches of size 224 × 224. A Lasso-Cox model was constructed with clinical data to predict 5-year OS. C-index evaluated this model performance with 95% CI, calibration curve, and ROC. RESULTS: Based on multivariate analysis, 2 of 11 clinical characteristics (C-index 0.68) and 2 of 2048 pathomic features (C-index 0.74) and clinical-pathomic model (C-index 0.83) of nomograms predict 5-year survival in the training set, respectively. In test set, compared with the pathomic and clinical characteristics used alone, the clinical-pathomic model had an AUC of 0.750 (95% CI 0.540-0.959), the clinical predictor model had an AUC of 0.729 (95% CI 0.551-0.909), and the pathomic model AUC was 0.703 (95% CI 0.487-0.919). Based on appropriate nomogram scores, we divided patients into high-risk and low-risk groups, and Kaplan-Meier survival probability curves for both groups showed statistical differences. CONCLUSION: We built a clinical-pathomic model to predict 5-year OS in non-surgical cervical cancer patients, which may be a promising method to improve the precision of personalized therapy.


Subject(s)
Deep Learning , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/therapy , Retrospective Studies , Calibration , Nomograms
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986687

ABSTRACT

The incidence of bladder cancer is increasing annually, and the gold standard for its diagnosis relies on histopathological biopsy. Whole-slide digitization technology can produce thousands of high-resolution captured pathological images and has greatly promoted the development of digital pathology. Deep learning, as a new method of artificial intelligence, has achieved remarkable results in the analysis of pathological images for tumor diagnosis, molecular typing, and prediction of prognosis and recurrence of bladder cancer. Traditional pathology relies heavily on the professional level and experience of pathologists; as such, it is highly subjective and has poor reproducibility. Deep learning can automatically extract image features. It can also improve diagnostic efficiency and repeatability and reduce missed and misdiagnosed rates when used to assist pathologists in making decisions. This technology cannot only alleviate the pressure of the current shortage of skilled workforce and uneven medical resources but also promote the development of precision medicine. This article reviews the latest research progress and prospects of deep learning in pathological image analysis of bladder cancer.

13.
IEEE J Transl Eng Health Med ; 10: 4300108, 2022.
Article in English | MEDLINE | ID: mdl-35317416

ABSTRACT

BACKGROUND: At present, radical total mesorectal excision after neoadjuvant chemoradiotherapy is crucial for locally advanced rectal cancer. Therefore, the use of histopathological images analysis technology to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer is of great significance for the subsequent treatment of patients. METHODS: In this study, we propose a new pathological images analysis method based on multi-instance learning to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer. Specifically, we proposed a gated attention normalization mechanism based on the multilayer perceptron, which accelerates the convergence of stochastic gradient descent optimization and can speed up the training process. We also proposed a bilinear attention multi-scale feature fusion mechanism, which organically fuses the global features of the larger receptive fields and the detailed features of the smaller receptive fields and alleviates the problem of pathological images context information loss caused by block sampling. At the same time, we also designed a weighted loss function to alleviate the problem of imbalance between cancerous instances and normal instances. RESULTS: We evaluated our method on a locally advanced rectal cancer dataset containing 150 whole slide images. In addition, to verify our method's generalization performance, we also tested on two publicly available datasets, Camelyon16 and MSKCC. The results show that the AUC values of our method on the Camelyon16 and MSKCC datasets reach 0.9337 and 0.9091, respectively. CONCLUSION: Our method has outstanding performance and advantages in predicting the efficacy of neoadjuvant chemoradiotherapy for rectal cancer. Clinical and Translational Impact Statement -This study aims to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer to assist clinicians quickly diagnose and formulate personalized treatment plans for patients.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Chemoradiotherapy , Humans , Neoadjuvant Therapy/methods , Neural Networks, Computer , Rectal Neoplasms/therapy , Retrospective Studies , Treatment Outcome
14.
Front Oncol ; 11: 762733, 2021.
Article in English | MEDLINE | ID: mdl-34926264

ABSTRACT

BACKGROUND: An accurate pathological diagnosis of hepatocellular carcinoma (HCC), one of the malignant tumors with the highest mortality rate, is time-consuming and heavily reliant on the experience of a pathologist. In this report, we proposed a deep learning model that required minimal noise reduction or manual annotation by an experienced pathologist for HCC diagnosis and classification. METHODS: We collected a whole-slide image of hematoxylin and eosin-stained pathological slides from 592 HCC patients at the First Affiliated Hospital, College of Medicine, Zhejiang University between 2015 and 2020. We propose a noise-specific deep learning model. The model was trained initially with 137 cases cropped into multiple-scaled datasets. Patch screening and dynamic label smoothing strategies are adopted to handle the histopathological liver image with noise annotation from the perspective of input and output. The model was then tested in an independent cohort of 455 cases with comparable tumor types and differentiations. RESULTS: Exhaustive experiments demonstrated that our two-step method achieved 87.81% pixel-level accuracy and 98.77% slide-level accuracy in the test dataset. Furthermore, the generalization performance of our model was also verified using The Cancer Genome Atlas dataset, which contains 157 HCC pathological slides, and achieved an accuracy of 87.90%. CONCLUSIONS: The noise-specific histopathological classification model of HCC based on deep learning is effective for the dataset with noisy annotation, and it significantly improved the pixel-level accuracy of the regular convolutional neural network (CNN) model. Moreover, the model also has an advantage in detecting well-differentiated HCC and microvascular invasion.

15.
Chin Med Sci J ; 36(3): 204-209, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34666873

ABSTRACT

Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images (WSIs). Methods We retrospectively collected 1,250 gastric biopsy specimens (1,128 gastritis, 122 normal mucosa) from PLA General Hospital. The deep learning algorithm based on DeepLab v3 (ResNet-50) architecture was trained and validated using 1,008 WSIs and 100 WSIs, respectively. The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs, with the pathologists' consensus diagnosis as the gold standard. Results The receiver operating characteristic (ROC) curves were generated for chronic superficial gastritis (CSuG), chronic active gastritis (CAcG), and chronic atrophic gastritis (CAtG) in the test set, respectively.The areas under the ROC curves (AUCs) of the algorithm for CSuG, CAcG, and CAtG were 0.882, 0.905 and 0.910, respectively. The sensitivity and specificity of the deep learning algorithm for the classification of CSuG, CAcG, and CAtG were 0.790 and 1.000 (accuracy 0.880), 0.985 and 0.829 (accuracy 0.901), 0.952 and 0.992 (accuracy 0.986), respectively. The overall predicted accuracy for three different types of gastritis was 0.867. By flagging the suspicious regions identified by the algorithm in WSI, a more transparent and interpretable diagnosis can be generated. Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs. By pre-highlighting the different gastritis regions, it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists.


Subject(s)
Deep Learning , Gastritis , Algorithms , Gastritis/diagnosis , Humans , ROC Curve , Retrospective Studies
16.
Transl Oncol ; 14(9): 101161, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34192650

ABSTRACT

BACKGROUND: Deep learning has the potential to improve diagnostic accuracy and efficiency in medical image recognition. In the current study, we developed a deep learning algorithm and assessed its performance in discriminating melanoma from nevus using whole-slide pathological images (WSIs). METHODS: The deep learning algorithm was trained and validated using a set of 781 WSIs (86 melanomas, 695 nevi) from PLA General Hospital. The diagnostic performance of the algorithm was tested on an independent test set of 104 WSIs (29 melanomas, 75 nevi) from Tianjin Chang Zheng Hospital. The same test set was also diagnostically classified by 7 expert dermatopathologists. RESULTS: The deep learning algorithm receiver operating characteristic (ROC) curve achieved a sensitivity 100% at the specificity of 94.7% in the classification of melanoma and nevus on the test set. The area under ROC curve was 0.99. Dermatopathologists achieved a mean sensitivity and specificity of 95.1% (95% confidence interval [CI]: 92.0%-98.2%) and 96.0% (95% CI: 94.2%-97.8%), respectively. At the operating point of sensitivity of 95.1%, the algorithm revealed a comparable specificity with 7 dermatopathologists (97.3% vs. 96.0%, P = 0.11). At the operating point of specificity of 96.0%, the algorithm also achieved a comparable sensitivity with 7 dermatopathologists (96.5% vs. 95.1%, P = 0.30). A more transparent and interpretable diagnosis could be generated by highlighting the regions of interest recognized by the algorithm in WSIs. CONCLUSION: The performance of the deep learning algorithm was on par with that of 7 expert dermatopathologists in interpreting WSIs with melanocytic lesions. By pre-screening the suspicious melanoma regions, it might serve as a supplemental diagnostic tool to improve working efficiency of pathologists.

17.
Front Oncol ; 11: 642945, 2021.
Article in English | MEDLINE | ID: mdl-33928031

ABSTRACT

Lung cancer is a kind of cancer with high morbidity and mortality which is associated with various gene mutations. Individualized targeted-drug therapy has become the optimized treatment of lung cancer, especially benefit for patients who are not qualified for lung lobectomy. It is crucial to accurately identify mutant genes within tumor region from stained pathological slice. Therefore, we mainly focus on identifying mutant gene of lung cancer by analyzing the pathological images. In this study, we have proposed a method by identifying gene mutations in lung cancer with histopathological stained image and deep learning to predict target-drug therapy, referred to as DeepIMLH. The DeepIMLH algorithm first downloaded 180 hematoxylin-eosin staining (H&E) images of lung cancer from the Cancer Gene Atlas (TCGA). Then deep convolution Gaussian mixture model (DCGMM) was used to perform color normalization. Convolutional neural network (CNN) and residual network (Res-Net) were used to identifying mutated gene from H&E stained imaging and achieved good accuracy. It demonstrated that our method can be used to choose targeted-drug therapy which might be applied to clinical practice. More studies should be conducted though.

18.
Technol Health Care ; 29(S1): 335-344, 2021.
Article in English | MEDLINE | ID: mdl-33682770

ABSTRACT

BACKGROUND: Malignant lymphoma is a type of tumor that originated from the lymphohematopoietic system, with complex etiology, diverse pathological morphology, and classification. It takes a lot of time and energy for doctors to accurately determine the type of lymphoma by observing pathological images. OBJECTIVE: At present, an automatic classification technology is urgently needed to assist doctors in analyzing the type of lymphoma. METHODS: In this paper, by comparing the training results of the BP neural network and BP neural network optimized by genetic algorithm (GA-BP), adopts a deep residual neural network model (ResNet-50), with 374 lymphoma pathology images as the experimental data set. After preprocessing the dataset by image flipping, color transformation, and other data enhancement methods, the data set is input into the ResNet-50 network model, and finally classified by the softmax layer. RESULTS: The training results showed that the classification accuracy was 98.63%. By comparing the classification effect of GA-BP and BP neural network, the accuracy of the network model proposed in this paper is improved. CONCLUSIONS: The network model can provide an objective basis for doctors to diagnose lymphoma types.


Subject(s)
Lymphoma , Physicians , Disease Progression , Humans , Lymphoma/diagnosis , Neural Networks, Computer
19.
Article in English | WPRIM (Western Pacific) | ID: wpr-921870

ABSTRACT

Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images (WSIs). Methods We retrospectively collected 1,250 gastric biopsy specimens (1,128 gastritis, 122 normal mucosa) from PLA General Hospital. The deep learning algorithm based on DeepLab v3 (ResNet-50) architecture was trained and validated using 1,008 WSIs and 100 WSIs, respectively. The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs, with the pathologists' consensus diagnosis as the gold standard. Results The receiver operating characteristic (ROC) curves were generated for chronic superficial gastritis (CSuG), chronic active gastritis (CAcG), and chronic atrophic gastritis (CAtG) in the test set, respectively.The areas under the ROC curves (AUCs) of the algorithm for CSuG, CAcG, and CAtG were 0.882, 0.905 and 0.910, respectively. The sensitivity and specificity of the deep learning algorithm for the classification of CSuG, CAcG, and CAtG were 0.790 and 1.000 (accuracy 0.880), 0.985 and 0.829 (accuracy 0.901), 0.952 and 0.992 (accuracy 0.986), respectively. The overall predicted accuracy for three different types of gastritis was 0.867. By flagging the suspicious regions identified by the algorithm in WSI, a more transparent and interpretable diagnosis can be generated. Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs. By pre-highlighting the different gastritis regions, it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists.


Subject(s)
Humans , Algorithms , Deep Learning , Gastritis/diagnosis , ROC Curve , Retrospective Studies
20.
Cells ; 8(5)2019 05 23.
Article in English | MEDLINE | ID: mdl-31126166

ABSTRACT

As a typical biomedical detection task, nuclei detection has been widely used in human health management, disease diagnosis and other fields. However, the task of cell detection in microscopic images is still challenging because the nuclei are commonly small and dense with many overlapping nuclei in the images. In order to detect nuclei, the most important key step is to segment the cell targets accurately. Based on Mask RCNN model, we designed a multi-path dilated residual network, and realized a network structure to segment and detect dense small objects, and effectively solved the problem of information loss of small objects in deep neural network. The experimental results on two typical nuclear segmentation data sets show that our model has better recognition and segmentation capability for dense small targets.


Subject(s)
Cell Nucleus , Deep Learning , Image Processing, Computer-Assisted/methods , Computer Storage Devices , Eosine Yellowish-(YS)/chemistry , Hematoxylin/chemistry , Humans , Logistic Models , Microscopy, Fluorescence , Models, Biological , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...