Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 284
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2400486121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976731

ABSTRACT

Reptilian skin coloration is spectacular and diverse, yet little is known about the ontogenetic processes that govern its establishment and the molecular signaling pathways that determine it. Here, we focus on the development of the banded pattern of leopard gecko hatchlings and the transition to black spots in the adult. With our histological analyses, we show that iridophores are present in the white and yellow bands of the hatchling and they gradually perish in the adult skin. Furthermore, we demonstrate that melanophores can autonomously form spots in the absence of the other chromatophores both on the regenerated skin of the tail and on the dorsal skin of the Mack Super Snow (MSS) leopard geckos. This color morph is characterized by uniform black coloration in hatchlings and black spots in adulthood; we establish that their skin is devoid of xanthophores and iridophores at both stages. Our genetic analyses identified a 13-nucleotide deletion in the PAX7 transcription factor of MSS geckos, affecting its protein coding sequence. With our single-cell transcriptomics analysis of embryonic skin, we confirm that PAX7 is expressed in iridophores and xanthophores, suggesting that it plays a key role in the differentiation of both chromatophores. Our in situ hybridizations on whole-mount embryos document the dynamics of the skin pattern formation and how it is impacted in the PAX7 mutants. We hypothesize that the melanophores-iridophores interactions give rise to the banded pattern of the hatchlings and black spot formation is an intrinsic capacity of melanophores in the postembryonic skin.


Subject(s)
Chromatophores , Lizards , Skin Pigmentation , Animals , Lizards/genetics , Lizards/metabolism , Lizards/physiology , Chromatophores/metabolism , Skin Pigmentation/genetics , Skin Pigmentation/physiology , Skin/metabolism , Melanophores/metabolism , Gene Expression Regulation, Developmental
2.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891790

ABSTRACT

Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.


Subject(s)
Hedgehog Proteins , Ribs , Spine , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Ribs/metabolism , Ribs/embryology , Spine/metabolism , Spine/embryology , Gene Expression Regulation, Developmental , Mesoderm/metabolism , Mesoderm/embryology , Quail , Somites/metabolism , Somites/embryology , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Carrier Proteins
3.
Stem Cell Reports ; 19(7): 1024-1040, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38876109

ABSTRACT

Increasing evidence suggests that the muscle stem cell (MuSC) pool is heterogeneous. In particular, a rare subset of PAX7-positive MuSCs that has never expressed the myogenic regulatory factor MYF5 displays unique self-renewal and engraftment characteristics. However, the scarcity and limited availability of protein markers make the characterization of these cells challenging. Here, we describe the generation of StemRep reporter mice enabling the monitoring of PAX7 and MYF5 proteins based on equimolar levels of dual nuclear fluorescence. High levels of PAX7 protein and low levels of MYF5 delineate a deeply quiescent MuSC subpopulation with an increased capacity for asymmetric division and distinct dynamics of activation, proliferation, and commitment. Aging primarily reduces the MYF5Low MuSCs and skews the stem cell pool toward MYF5High cells with lower quiescence and self-renewal potential. Altogether, we establish the StemRep model as a versatile tool to study MuSC heterogeneity and broaden our understanding of mechanisms regulating MuSC quiescence and self-renewal in homeostatic, regenerating, and aged muscles.


Subject(s)
Aging , Genes, Reporter , Myogenic Regulatory Factor 5 , PAX7 Transcription Factor , Regeneration , Animals , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Mice , Aging/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cell Proliferation , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Cell Differentiation , Mice, Transgenic , Cell Self Renewal
4.
Stem Cell Res Ther ; 15(1): 179, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902774

ABSTRACT

BACKGROUND: Adult skeletal muscle contains resident muscle stem cells (MuSC) with high myogenic and engraftment potentials, making them suitable for cell therapy and regenerative medicine approaches. However, purification process of MuSC remains a major hurdle to their use in the clinic. Indeed, muscle tissue enzymatic dissociation triggers a massive activation of stress signaling pathways, among which P38 and JNK MAPK, associated with a premature loss of MuSC quiescence. While the role of these pathways in the myogenic progression of MuSC is well established, the extent to which their dissociation-induced activation affects the functionality of these cells remains unexplored. METHODS: We assessed the effect of P38 and JNK MAPK induction on stemness marker expression and MuSC activation state during isolation by pharmacological approaches. MuSC functionality was evaluated by in vitro assays and in vivo transplantation experiments. We performed a comparative analysis of the transcriptome of human MuSC purified with pharmacological inhibitors of P38 and JNK MAPK (SB202190 and SP600125, respectively) versus available RNAseq resources. RESULTS: We monitored PAX7 protein levels in murine MuSC during muscle dissociation and demonstrated a two-step decline partly dependent on P38 and JNK MAPK activities. We showed that simultaneous inhibition of these pathways throughout the MuSC isolation process preserves the expression of stemness markers and limits their premature activation, leading to improved survival and amplification in vitro as well as increased engraftment in vivo. Through a comparative RNAseq analysis of freshly isolated human MuSC, we provide evidence that our findings in murine MuSC could be relevant to human MuSC. Based on these findings, we implemented a purification strategy, significantly improving the recovery yields of human MuSC. CONCLUSION: Our study highlights the pharmacological limitation of P38 and JNK MAPK activities as a suitable strategy to qualitatively and quantitatively ameliorate human MuSC purification process, which could be of great interest for cell-based therapies.


Subject(s)
p38 Mitogen-Activated Protein Kinases , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Humans , Mice , MAP Kinase Signaling System/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Cell Differentiation/drug effects , Mice, Inbred C57BL , Male , Anthracenes/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism
5.
Article in English | MEDLINE | ID: mdl-38912737

ABSTRACT

While studies have identified characteristics of quiescent satellite cells, their isolation has been hampered by the fact that the isolation procedures result in the activation of these cells into their rapidly proliferating progeny (myoblasts). Thus, the use of myoblasts for therapeutic (regenerative medicine) or industrial applications (cellular agriculture) has been impeded by the limited proliferative and differentiative capacity of these myogenic progenitors. Here we identify a subpopulation of satellite cells isolated from mouse skeletal muscle using flow cytometry that are highly Pax7-positive, exhibit a very slow proliferation rate (7.7 ± 1.2 days/doubling), and are capable of being maintained in culture for at least three months without a change in phenotype. These cells can be activated from quiescence using a p38 inhibitor or by exposure to freeze-thaw cycles. Once activated, these cells proliferate rapidly (22.7 ± 0.2 hours/doubling), have reduced Pax7 expression (3-fold decrease in Pax7 fluorescence vs. quiescence) and differentiate into myotubes with a high efficiency. Furthermore, these cells withstand freeze-thawing readily without a significant loss of viability (83.1 ± 2.1% live). The results presented here provide researchers with a method to isolate quiescent satellite cells, allowing for more detailed examinations of the factors affecting satellite cell quiescence/activation and providing a cell source that has a unique potential in the regenerative medicine and cellular agriculture fields.

6.
Fish Physiol Biochem ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819758

ABSTRACT

Lines with few or no pigment cells have been established in fishes, and these lines are useful for bioimaging. The transparent goldfish (tra) line previously established by N-ethyl-N-nitrosourea (ENU) mutagenesis is also suitable for such experiments. However, in the case of tra, leucophores form in the adult fish, making it difficult to observe the organs inside body from outside the body. In this study, we attempted to create a knockout line of the pax7a and pax7b genes, which are thought to be involved in the formation of leucophores, to further improve the transparency of tra strain.Mutations were introduced by microinjection of the CRISPR/Cas9 mixture into single-cell embryos, mutant individuals were found in F0, and the next generation was generated to confirm the mutation patterns. As a result, multiple mutation patterns, including knockout, were obtained. The same pattern of knockout F1 with pax7a and pax7b mutations was crossed to generate a homozygous knockout in F2.In the resulting pax7b-/- (tra) fish but not in pax7a-/- (tra) fish, the number of leucophores was reduced compared to that in tra, and the transparency of the body was improved. It was suggested that pax7b plays an important role in leucophore formation in goldfish. The established transparent pax7b-/- (tra) goldfish line will be a useful model for bioimaging of the body interior.

7.
Bio Protoc ; 14(9): e4984, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38737507

ABSTRACT

Various protocols have been proven effective in the directed differentiation of mouse and human pluripotent stem cells into skeletal muscles and used to study myogenesis. Current 2D myogenic differentiation protocols can mimic muscle development and its alteration under pathological conditions such as muscular dystrophies. 3D skeletal muscle differentiation approaches can, in addition, model the interaction between the various cell types within the developing organoid. Our protocol ensures the differentiation of human embryonic/induced pluripotent stem cells (hESC/hiPSC) into skeletal muscle organoids (SMO) via cells with paraxial mesoderm and neuromesodermal progenitors' identity and further production of organized structures of the neural plate margin and the dermomyotome. Continuous culturing omits neural lineage differentiation and promotes fetal myogenesis, including the maturation of fibroadipogenic progenitors and PAX7-positive myogenic progenitors. The PAX7 progenitors resemble the late fetal stages of human development and, based on single-cell transcriptomic profiling, cluster close to adult satellite cells of primary muscles. To overcome the limited availability of muscle biopsies from patients with muscular dystrophy during disease progression, we propose to use the SMO system, which delivers a stable population of skeletal muscle progenitors from patient-specific iPSCs to investigate human myogenesis in healthy and diseased conditions. Key features • Development of skeletal muscle organoid differentiation from human pluripotent stem cells, which recapitulates myogenesis. • Analysis of early embryonic and fetal myogenesis. • Provision of skeletal muscle progenitors for in vitro and in vivo analysis for up to 14 weeks of organoid culture. • In vitro myogenesis from patient-specific iPSCs allows to overcome the bottleneck of muscle biopsies of patients with pathological conditions.

8.
Maxillofac Plast Reconstr Surg ; 46(1): 1, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227085

ABSTRACT

BACKGROUND: Worldwide cleft lip with or without a cleft palate (CL/P) is the most common craniofacial birth defect. Apart from changes in facial appearance, additionally affected individuals often suffer from various associated comorbidities requiring complex multidisciplinary treatment with overall high expenses. Understanding the complete pathogenetic mechanisms of CL/P might aid in developing new preventative strategies and therapeutic approaches, help with genetic counselling, and improve quality of life. Many genes have been associated with the development of orofacial clefts; however, the majority require further research. Based on the role of PAX7, PAX9, SHH, SOX3, WNT3A, and WNT9B in orofacial development, the intention was to use chromogenic in situ hybridization to detect the six genes in postnatal CLP-affected palatine tissue and compare their distribution within the tissue samples. RESULTS: Statistically significant differences in the distribution of PAX7, PAX9, WNT3A, and WNT9B were observed. In total, 19 pairs of moderate to very strong positive correlations were noted. CONCLUSIONS: Changes in the cleft-affected palatine epithelium primarily seem to be associated with the PAX7 gene; however, PAX9, WNT3A, WNT9B, and SOX3 role seems to be more limited. Whilst connective tissue changes seem to depend on PAX7 only, SHH seems to participate individually and indistinctly. Numerous positive correlations reflect the complicating interactions of the pathways and their components in the orofacial cleft morphopathogenesis.

9.
FASEB Bioadv ; 5(12): 541-557, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094159

ABSTRACT

Mustn1, a gene expressed exclusively in the musculoskeletal system, was shown in previous in vitro studies to be a key regulator of myogenic differentiation and myofusion. Other studies also showed Mustn1 expression associated with skeletal muscle development and hypertrophy. However, its specific role in skeletal muscle function remains unclear. This study sought to investigate the effects of Mustn1 in a conditional knockout (KO) mouse model in Pax7 positive skeletal muscle satellite cells. Specifically, we investigated the potential effects of Mustn1 on myogenic gene expression, grip strength, alterations in gait, ex vivo investigations of isolated skeletal muscle isometric contractions, and potential changes in the composition of muscle fiber types. Results indicate that Mustn1 KO mice did not present any substantial phenotypic changes or significant variations in genes related to myogenic differentiation and fusion. However, an approximately 10% decrease in overall grip strength was observed in the 2-month-old KO mice in comparison to the control wild type (WT), but this decrease was not significant when normalized by weight. KO mice also generated approximately 8% higher vertical force than WT at 4 months in the hindlimb. Ex vivo experiments revealed decreases in about 20 to 50% in skeletal muscle contractions and about 10%-20% fatigue in soleus of both 2- and 4-month-old KO mice, respectively. Lastly, immunofluorescent analyses showed a persistent increase of Type IIb fibers up to 15-fold in the KO mice while Type I fibers decreased about 20% and 30% at both 2 and 4 months, respectively. These findings suggest a potential adaptive or compensatory mechanism following Mustn1 loss, as well as hinting at an association between Mustn1 and muscle fiber typing. Collectively, Mustn1's complex roles in skeletal muscle physiology requires further research, particularly in terms of understanding the potential role of Mustn1 in muscle repair and regeneration, as well as with influence of exercise. Collectively, these will offer valuable insights into Mustn1's key biological functions and regulatory pathways.

10.
Iran J Basic Med Sci ; 26(12): 1444-1448, 2023.
Article in English | MEDLINE | ID: mdl-37970442

ABSTRACT

Objectives: Diabetes is a metabolic disorder that affects the development of the central nervous system and plays an important role in learning and memory. Diabetes increases the reactive oxygen species (ROS) level in cells and changes the expression of several genes, including SYP, BDNF, PAX7, and SYNCAM1, through the FOXO transcription factor. This study was done to assess the effect of diabetes on morphometric indexes of the cerebellar cortex and gene expression in mice. Materials and Methods: Diabetes was induced in twelve adult, male C57BL mice using an injection of streptozotocin. After two months, the mice were dissected, and the cerebellum was stored for further analysis. For the morphometric analysis, tissue sections were stained with cresyl violet and examined with a light microscope. For gene expression analysis, the RNA was extracted, and cDNA was synthesized. The mRNA levels of SYP, BDNF, PAX7, and SYNCAM1 genes were measured by the real-time PCR method. Results: The thickness of the molecular layer and Purkinje layer, and the number of Purkinje and granular cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The area, perimeter, and diameter of Purkinje cells in the diabetic group were significantly reduced compared to controls P<0.0 1). The expression of PAX7, SYP, and BDNF genes of the diabetic group was significantly reduced. However, SYNCAM1 expression in the cerebellum of the diabetic group was significantly increased compared to controls (P<0.05). Conclusion: Induced diabetes in mice can decrease the expression of memory-related genes in the cerebellum. Also, these genes affect the morphology and thickness of the cerebellum.

11.
Aging (Albany NY) ; 15(21): 12618-12632, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37963838

ABSTRACT

High mobility group box-1 (HMGB1) is a driver of inflammation in various muscular diseases. In a previous study, we determined that HMGB1 induced the atrophy of skeletal muscle by impairing myogenesis. Skeletal muscle regeneration after injury is dependent on pair box 7 (Pax-7)-mediated myogenic differentiation. In the current study, we determined that the HMGB1-induced downregulation of Pax-7 expression in myoblasts inhibited the regeneration of skeletal muscle. We also determined that HMGB1 inhibits Pax-7 and muscle differentiation by increasing miR-342-5p synthesis via receptors for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, TLR4, and c-Src signaling pathways. In a mouse model involving glycerol-induced muscle injury, the therapeutic inhibition of HMGB1 was shown to rescue Pax-7 expression and muscle regeneration. The HMGB1/Pax-7 axis is a promising therapeutic target to promote muscular regeneration.


Subject(s)
HMGB1 Protein , MicroRNAs , Muscular Diseases , Mice , Animals , Down-Regulation , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Wound Healing , Muscle, Skeletal/metabolism , MicroRNAs/genetics
12.
Elife ; 122023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963071

ABSTRACT

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Subject(s)
Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation , Fetus/metabolism , Satellite Cells, Skeletal Muscle/physiology , Muscle Development/physiology , PAX7 Transcription Factor/metabolism
13.
Cell Rep ; 42(10): 113222, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37819755

ABSTRACT

Human embryonic stem cells (hESCs) can differentiate into any cell lineage. Here, we report that ZEB1 and ZEB2 promote and inhibit mesodermal-to-myogenic specification of hESCs, respectively. Knockdown and/or overexpression experiments of ZEB1, ZEB2, or PAX7 in hESCs indicate that ZEB1 is required for hESC Nodal/Activin-mediated mesodermal specification and PAX7+ human myogenic progenitor (hMuP) generation, while ZEB2 inhibits these processes. ZEB1 downregulation induces neural markers, while ZEB2 downregulation induces mesodermal/myogenic markers. Mechanistically, ZEB1 binds to and transcriptionally activates the PAX7 promoter, while ZEB2 binds to and activates the promoter of the neural OTX2 marker. Transplanting ZEB1 or ZEB2 knocked down hMuPs into the muscles of a muscular dystrophy mouse model, showing that hMuP engraftment and generation of dystrophin-positive myofibers depend on ZEB1 and are inhibited by ZEB2. The mouse model results suggest that ZEB1 expression and/or downregulating ZEB2 in hESCs may also enhance hESC regenerative capacity for human muscular dystrophy therapy.


Subject(s)
Human Embryonic Stem Cells , Muscular Dystrophies , Zinc Finger E-box Binding Homeobox 2 , Zinc Finger E-box-Binding Homeobox 1 , Animals , Humans , Mice , Activins/metabolism , Cell Differentiation/physiology , Cell Lineage , Human Embryonic Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
14.
Stem Cell Res Ther ; 14(1): 294, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833800

ABSTRACT

Ever since its introduction as a genetic tool, the Cre-lox system has been widely used for molecular genetic studies in vivo in the context of health and disease, as it allows time- and cell-specific gene modifications. However, insertion of the Cre-recombinase cassette in the gene of interest can alter transcription, protein expression, or function, either directly, by modifying the landscape of the locus, or indirectly, due to the lack of genetic compensation or by indirect impairment of the non-targeted allele. This is sometimes the case when Cre-lox is used for muscle stem cell studies. Muscle stem cells are required for skeletal muscle growth, regeneration and to delay muscle disease progression, hence providing an attractive model for stem cell research. Since the transcription factor Pax7 is specifically expressed in all muscle stem cells, tamoxifen-inducible Cre cassettes (CreERT2) have been inserted into this locus by different groups to allow targeted gene recombination. Here we compare the two Pax7-CreERT2 mouse lines that are mainly used to evaluate muscle regeneration and development of pathological features upon deletion of specific factors or pathways. We applied diverse commonly used tamoxifen schemes of CreERT2 activation, and we analyzed muscle repair after cardiotoxin-induced injury. We show that consistently the Pax7-CreERT2 allele targeted into the Pax7 coding sequence (knock-in/knock-out allele) produces an inherent defect in regeneration, manifested as delayed post-injury repair and reduction in muscle stem cell numbers. In genetic ablation studies lacking proper controls, this inherent defect could be misinterpreted as being provoked by the deletion of the factor of interest. Instead, using an alternative Pax7-CreERT2 allele that maintains bi-allelic Pax7 expression or including appropriate controls can prevent misinterpretation of experimental data. The findings presented here can guide researchers establish appropriate experimental design for muscle stem cell genetic studies.


Subject(s)
Haploinsufficiency , Satellite Cells, Skeletal Muscle , Mice , Animals , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Haploinsufficiency/genetics , Tamoxifen/pharmacology , Integrases/genetics , Integrases/metabolism , Stem Cells/metabolism , Muscles , Satellite Cells, Skeletal Muscle/metabolism , Muscle, Skeletal/metabolism
15.
Stem Cell Res Ther ; 14(1): 243, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37679820

ABSTRACT

BACKGROUND: The capacity of skeletal muscles to regenerate relies on Pax7+ muscle stem cells (MuSC). While in vitro-amplified MuSC are activated and lose part of their regenerative capacity, in vitro-generated human muscle reserve cells (MuRC) are very similar to quiescent MuSC with properties required for their use in cell-based therapies. METHODS: In the present study, we investigated the heterogeneity of human MuRC and characterized their molecular signature and metabolic profile. RESULTS: We observed that Notch signaling is active and essential for the generation of quiescent human Pax7+ MuRC in vitro. We also revealed, by immunofluorescence and flow cytometry, two distinct subpopulations of MuRC distinguished by their relative Pax7 expression. After 48 h in differentiation medium (DM), the Pax7High subpopulation represented 35% of the total MuRC pool and this percentage increased to 61% after 96 h in DM. Transcriptomic analysis revealed that Pax7High MuRC were less primed for myogenic differentiation as compared to Pax7Low MuRC and displayed a metabolic shift from glycolysis toward fatty acid oxidation. The bioenergetic profile of human MuRC displayed a 1.5-fold decrease in glycolysis, basal respiration and ATP-linked respiration as compared to myoblasts. We also observed that AMPKα1 expression was significantly upregulated in human MuRC that correlated with an increased phosphorylation of acetyl-CoA carboxylase (ACC). Finally, we showed that fatty acid uptake was increased in MuRC as compared to myoblasts, whereas no changes were observed for glucose uptake. CONCLUSIONS: Overall, these data reveal that the quiescent MuRC pool is heterogeneous for Pax7 with a Pax7High subpopulation being in a deeper quiescent state, less committed to differentiation and displaying a reduced metabolic activity. Altogether, our data suggest that human Pax7High MuRC may constitute an appropriate stem cell source for potential therapeutic applications in skeletal muscle diseases.


Subject(s)
Muscle Cells , Satellite Cells, Skeletal Muscle , Humans , Fatty Acids , Metabolome , Muscle, Skeletal
16.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685856

ABSTRACT

Muscular dystrophy is a heterogenous group of hereditary muscle disorders caused by mutations in the genes responsible for muscle development, and is generally defined by a disastrous progression of muscle wasting and massive loss in muscle regeneration. Pax7 is closely associated with myogenesis, which is governed by various signaling pathways throughout a lifetime and is frequently used as an indicator in muscle research. In this review, an extensive literature search adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was performed to identify research that examined signaling pathways in living models, while quantifying Pax7 expression in myogenesis. A total of 247 articles were retrieved from the Web of Science (WoS), PubMed and Scopus databases and were thoroughly examined and evaluated, resulting in 19 articles which met the inclusion criteria. Admittedly, we were only able to discuss the quantification of Pax7 carried out in research affecting various type of genes and signaling pathways, rather than the expression of Pax7 itself, due to the massive differences in approach, factor molecules and signaling pathways analyzed across the research. However, we highlighted the thorough evidence for the alteration of the muscle stem cell precursor Pax7 in multiple signaling pathways described in different living models, with an emphasis on the novel approach that could be taken in manipulating Pax7 expression itself in dystrophic muscle, towards the discovery of an effective treatment for muscular dystrophy. Therefore, we believe that this could be applied to the potential gap in muscle research that could be filled by tuning the well-established marker expression to improve dystrophic muscle.


Subject(s)
Muscular Dystrophies , Humans , Muscular Dystrophies/genetics , Muscles , Databases, Factual , Muscle Development , Signal Transduction , PAX7 Transcription Factor/genetics
17.
Brain Commun ; 5(5): fcad221, 2023.
Article in English | MEDLINE | ID: mdl-37731904

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. Clinical trials for FSHD are hindered by heterogeneous biomarkers poorly associated with clinical severity, requiring invasive muscle biopsy. Macroscopically, FSHD presents with slow fatty replacement of muscle, rapidly accelerated by inflammation. Mis-expression of the transcription factor DUX4 is currently accepted to underlie pathogenesis, and mechanisms including PAX7 target gene repression have been proposed. Here, we performed RNA-sequencing on MRI-guided inflamed and isogenic non-inflamed muscle biopsies from the same clinically characterized FSHD patients (n = 24), alongside isogenic peripheral blood mononucleated cells from a subset of patients (n = 13) and unaffected controls (n = 11). Multivariate models were employed to evaluate the clinical associations of five published FSHD transcriptomic biomarkers. We demonstrated that PAX7 target gene repression can discriminate control, inflamed and non-inflamed FSHD muscle independently of age and sex (P < 0.013), while the discriminatory power of DUX4 target genes was limited to distinguishing FSHD muscle from control. Importantly, the level of PAX7 target gene repression in non-inflamed muscle associated with clinical assessments of FSHD severity (P = 0.04). DUX4 target gene biomarkers in FSHD muscle showed associations with lower limb fat fraction and D4Z4 array length but not clinical assessment. Lastly, PAX7 target gene repression in FSHD muscle correlated with the level in isogenic peripheral blood mononucleated cells (P = 0.002). A refined PAX7 target gene biomarker comprising 143/601 PAX7 target genes computed in peripheral blood (the FSHD muscle-blood biomarker) associated with clinical severity in FSHD patients (P < 0.036). Our new circulating biomarker validates as a classifier of clinical severity in an independent data set of 54 FSHD patient and 29 matched control blood samples, with improved power in older patients (P = 0.03). In summary, we present the minimally invasive FSHD muscle-blood biomarker of FSHD clinical severity valid in patient muscle and blood, of potential use in routine disease monitoring and clinical trials.

18.
Anim Biosci ; 36(12): 1889-1897, 2023 12.
Article in English | MEDLINE | ID: mdl-37592381

ABSTRACT

OBJECTIVE: 'Cultured meat' has been suggested as means of solving the problems associated with overpopulation and gas emissions. Satellite cells are a major component in the production of cultured meat; however, these cells cannot be maintained in vitro over long periods. Fibronectin is a glycoprotein that affects biological processes such as cell adhesion, differentiation, and migration. Unfortunately, the characteristics of porcine satellite cells grown in a long-term culture when exposed to fibronectin-coated dishes are unknown. The objective of this study was to investigate the appropriate concentration of fibronectin coated dishes for proliferation and maintenance of porcine satellite cells at long-term culture. METHODS: In this study, we isolated the satellite cells and fibroblast cells with pre-plating method. We next analyzed the cell doubling time, cell cycle, and rate of expressed paired box 7 (Pax7) and myogenic differentiation 1 (MyoD1) in porcine satellite cells cultured with 20 µg/mL of fibronectin-, gelatin-, and non-coated dishes at early and late passage. We then analyzed the proliferation of porcine satellite cells with various concentrations of mixed gelatin/fibronectin. We next determined the optimal concentration of fibronectin that would encourage proliferation and maintenance of porcine satellite cells in a long-term culture. RESULTS: Doubling time was lowest when 20 µg/mL of fibronectin was used (as tested during an early and late passage). Levels of expressed Pax7 and MyoD1, assessed using immunocytochemistry, were highest in cells grown using fibronectin-coated dishes. The proliferation of gelatin/fibronectin mixed coatings had no significant effect on porcine satellite cells. The concentration of 5 µg/mL fibronectin coated dishes showed the lowest doubling time and maintained expression of Pax7. CONCLUSION: Fibronectin with 5µg/mL effectively maintains porcine satellite cells, a discovery that will be of interest to those developing the next generation of artificial meats.

19.
Cells ; 12(13)2023 06 30.
Article in English | MEDLINE | ID: mdl-37443785

ABSTRACT

Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular response machinery, enabling precise spatiotemporal control of stem cell fate. Of many sensory modules found in proteins from prokaryotes to mammals, Per-Arnt-Sim (PAS) domains are one of the most ancient and found in the most diverse physiological context. In metazoa, PAS domains are found in many transcription factors and ion channels; however, PAS domain-containing Kinase (PASK) is the only metazoan kinase where the PAS sensory domain is connected to a signaling kinase domain. PASK is predominantly expressed in undifferentiated, self-renewing embryonic and adult stem cells, and its expression is rapidly lost upon differentiation, resulting in its nearly complete absence from the adult mammalian tissues. Thus, PASK is expressed within a narrow but critical temporal window when stem cell fate is established. In this review, we discuss the emerging insight into the sensory and signaling functions of PASK as an integrator of metabolic and nutrient signaling information that serves to balance self-renewal and differentiation programs during mammalian tissue regeneration.


Subject(s)
Protein Serine-Threonine Kinases , Stem Cells , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Cell Differentiation , Stem Cells/metabolism , Mammals/metabolism
20.
Head Neck Pathol ; 17(3): 826-831, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37378830

ABSTRACT

Biphenotypic sinonasal sarcoma (BSNS) is a rare low-grade malignancy occurring in the sinonasal tract that is characterized by dual neural and myogenic differentiation. Rearrangements involving the PAX3 gene, usually with MAML3, are a hallmark of this tumor type and their identification are useful for diagnosis. Rarely, a MAML3 rearrangement without associated PAX3 rearrangement has been described. Other gene fusions have not been previously reported. Herein, we report a 22 year-old woman with a BSNS harboring a novel gene fusion involving the PAX7 gene (specifically PAX7::PPARGC1A), which is a paralogue of PAX3. The histologic features of the tumor were typical with two exceptions: a lack of entrapment of surface respiratory mucosa and no hemangiopericytoma-like vasculature. Immunophenotypically, the tumor was notably negative for smooth muscle actin, which is usually positive in BSNS. However, the classic S100 protein-positive, SOX10-negative staining pattern was present. In addition, the tumor was positive for desmin and MyoD1 but negative for myogenin, a pattern that is common among BSNS with variant fusions. Awareness of the possibility of PAX7 gene fusions in BSNS is important as it may aid in the diagnosis of PAX3 fusion negative tumors.


Subject(s)
Paranasal Sinus Neoplasms , Sarcoma , Soft Tissue Neoplasms , Female , Humans , Young Adult , Adult , PAX3 Transcription Factor/genetics , Immunohistochemistry , Paranasal Sinus Neoplasms/pathology , Sarcoma/pathology , Gene Fusion , PAX7 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...