Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.738
Filter
1.
Oncol Rep ; 52(5)2024 Nov.
Article in English | MEDLINE | ID: mdl-39219276

ABSTRACT

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the control western blots shown for Fig. 1A and B on p. 908 and Fig. 8A and C on p. 911 were apparently the same, where different experiments were intended to have been portrayed. After having re­examined their original data files, the authors realized that these figures had been published with the control western blots shown incorrectly for Fig. 1A and 8C. The  corrected versions of this pair of figures are shown on the next page. Note that the corrections made to these figures do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 33: 905­912, 2015; DOI: 10.3892/or.2014.3656].

2.
Food Chem ; 462: 140972, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39208720

ABSTRACT

Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.

3.
Food Chem ; 461: 140945, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39216453

ABSTRACT

This work explores the potential of anthocyanin-based extracts (hibiscus calyxes - HC, red cabbage - RC, and butterfly pea flower - BPF) as natural alternatives to synthetic dyes in the food industry. Analyses in a pH range for food applications revealed higher color stability for the BPF extract, keeping vibrant colors over the 7 days at room temperature. At pH 3 and 100 °C, the BPF was more stable, losing half of its anthocyanin concentration after 14 h, while RC and HC lost half of their color after 7 and 2 h, respectively. The bisulfite bleaching followed a second-order reaction for HC and RC, and a first-order reaction for BPF, suggesting a minor effect of the bisulfite on this extract. Incorporating these extracts into porcine protein and agar-agar gelatin formulations produced consistent products with appealing hues, particularly the blue and purple colors for BPF and RC, dependent on the pH.

4.
Int J Biol Macromol ; : 134818, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154679

ABSTRACT

This study explored the relationship between pea protein foaming properties and their structure and physicochemical properties under neutral and acidic pH. Results showed that pH modified the zeta potential, particle size and surface tension due to electrostatic changes. FT-MIR and fluorescence spectra revealed pH-induced conformational changes, exposing hydrophobic groups and increasing sulfhydryl content, promoting protein aggregation. At pH 3, the highest foaming capacity (1.273) and lowest foam expansion (6.967) were observed, associated with increased surface hydrophobicity and net charges, ideal for creating light foams with high liquid incorporation for acidic beverages or fruit-based mousses. Pea protein isolate generated stable foams with foam volume stability between 86.662 % and 94.255 %. Although neutral pH conditions showed the highest foam volume stability, their air bubbles increased in size and transitioned from spherical to polyhedral shape, suitable for visual-centric applications, like cappuccino foam and beer-head retention. Foams at pH 5 exhibited the smallest bubbles and maintained their spherical shape, enhancing drainage resistance, beneficial for whipped toppings. Strong correlations (Pearson correlation coefficient higher than 0.600) were noted between the structure, surface and foaming properties, providing crucial insights into optimizing pea protein functionality across various pH conditions, enabling the development of plant-based foamed products with tailored properties.

5.
Future Cardiol ; : 1-10, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39157860

ABSTRACT

Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed sequela of acute pulmonary embolism with varied clinical presentation causing significant morbidity among the affected population. There exist important differences in the occurrence, clinical features and diagnosis of CTEPH between men and women, with women carrying a greater predisposition for the disease. Ongoing studies have also pointed out variations among men and women, in the treatment offered and long-term outcomes including mortality. This focused review article highlights important sex-associated differences in multiple aspects of CTEPH including its epidemiology, clinical features, diagnosis, treatment and outcomes as reported in current literature and highlights the need for future research to facilitate a clearer understanding of these differences.


Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease where blood clots remain stuck in the lungs after a previous clotting episode which leads to high blood pressure in the lung arteries. One interesting aspect is that CTEPH affects men and women differently. Women show different symptoms and may have better survival rates than men, especially if they receive surgery to remove the clots. The reasons for these differences are not fully understood. Diagnosing CTEPH is challenging because its symptoms are similar to other heart and lung conditions, which can cause treatment delays. It is important to consider referring patients with possible CTEPH to specialists early for accurate diagnosis and treatment. Developing new treatments and collecting data will help improve care for these patients.

6.
Theor Exp Plant Physiol ; 36(3): 423-437, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-39132627

ABSTRACT

Motor cognition involves the process of planning and executing goal-directed movements and recognizing, anticipating, and interpreting others' actions. Motor cognitive functions are generally associated with the presence of a brain and are ascribed only to humans and other animal species. A growing body of evidence suggests that aneural organisms, like climbing plants, exhibit behaviors driven by the intention to achieve goals, challenging our understanding of cognition. Here, we propose an inclusive perspective under motor cognition to explain climbing plants' behavior. We will first review our empirical research based on kinematical analysis to understand movement in pea plants. Then, we situate this empirical research within the current theoretical debate aimed at extending the principles of cognition to aneural organisms. A novel comparative perspective that considers the perception-action cycle, involving transforming perceived environmental elements into intended movement patterns, is provided.

7.
Food Sci Biotechnol ; 33(10): 2333-2342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39145120

ABSTRACT

Acrylamide is a well-recognized hazardous compound with known carcinogenic, genotoxic, neurotoxic, and reproductive toxic effects. This research aimed to investigate how different legume species and roasting durations influence acrylamide formation during air-fryer roasting. The study also examined the relationship between acrylamide formation and the levels of free asparagine and free sugars in different bean species. Asparagine content varies substantially across different bean species. Sucrose was the predominant sugar across all bean species, with smaller amounts of galactose and glucose. Air-fryer-roasted Wandu kong (garden pea) showed the highest acrylamide formation, followed by Ultari kong (kidney bean) and Heoktae (black soybean), in that order. Beans roasted for longer periods in an air fryer contained significantly higher levels of acrylamide. This study revealed a strong positive correlation between acrylamide formation and the level of free asparagine in the beans, highlighting the risks associated with certain legume species and air-fryer roasting durations.

8.
Food Chem X ; 23: 101702, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39184319

ABSTRACT

This research aimed to explore binding interactions between pea protein isolate (PPI) and selected strawberry flavorings including vanillin, γ-decalactone, furaneol, and (Z)-3-hexen-1-ol within an aqueous system. The results showed that binding affinities of PPI with all various functional group of flavor compounds decreased as temperature increased from 5 °C to 25 °C. Notably, at 25 °C, γ-decalactone displayed the highest binding affinity, followed by vanillin, (Z)-3-hexen-1-ol, and furaneol. Lowest binding was observed for furaneol, explained by its greater lipophilicity (lower partition coefficient values or LogP value) and molecular structure in each functional group in the flavor compounds. Thermodynamically, the interaction between PPI and each selected flavor compound was spontaneous, with evidence suggesting primary forces being hydrophobic interactions or hydrogen bonding/van der Waals forces. Computational molecular docking further confirmed these interaction types. This research provides insights into the interactions between PPI and strawberry flavorings, aiding in the selection of optimal flavor compound proportion for protein-rich products.

9.
Physiol Mol Biol Plants ; 30(8): 1329-1351, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39184554

ABSTRACT

The current experiment was designed to evaluate the ramifications of simulated acid rain (SAR) on two pea (Pisum sativum L.) cultivars, Kashi Samridhi (Samridhi) and Kashi Nandini (Nandini), to decipher the intraspecific variations in defence mechanism considering the current scenario of rapid anthropogenic activities leading to increase in rain acidity. The pea cultivars were subjected to SAR of pH 7 (Control), 5.6, 5.0, and 4.5 under field conditions. SAR increased active oxygen species and malondialdehyde content due to increased lipid peroxidation in both cultivars; however, the increment intensity was more remarkable in Samridhi at the later growth stage. Ascorbic acid, thiol, and flavonoids were significantly increased in cultivar Nandini, along with increased peroxidase and superoxide dismutase activities. Total phenolics, glutathione reductase, and ascorbate peroxidase activities were enhanced considerably in Samridhi than in Nandini under SAR treatments. Higher stomatal density and stomatal size in Samridhi prompted greater acidic particles influx which further damaged the chloroplast and mitochondria. The present study concludes that cultivar Nandini is more proficient in inducing defence responses by elevating non-enzymatic antioxidants than Samridhi. Non-enzymatic linked defence mechanisms are more metabolically expensive, leading to less biomass accumulation in Nandini. The study depicted that innate defence responses, particularly the role of non-enzymatic antioxidants, governed the sensitivity level of cultivars towards SAR stress. Further, findings also contribute to bridging the knowledge gap regarding the responses of tropical and subtropical crops to acid rain. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01494-x.

10.
New Phytol ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187924

ABSTRACT

The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.

11.
Bull Entomol Res ; : 1-10, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189675

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a highly destructive polyphagous pest that primarily damages maize. Maize is considered a most versatile crop for growing intercrops due to the wide row it needs. Maize-pea intercropping is preferred by small and marginal farmers worldwide due to various advantages including higher yield and improved economic benefits. However, the success of this intercropping system may be hampered if pea could sustain the FAW population. Thus, to clarify the fitness and potential effect of S. frugiperda on pea, we analysed the survival and development of S. frugiperda fed on pea leaves in the laboratory and constructed age-stage and two-sex life tables. Results showed that FAW successfully completed its life cycle when fed on pea and produced fertile offspring. The pre-adult duration was significantly higher on pea than maize. The net reproductive rate, intrinsic and finite rate of population increase on pea (135.06 offspring per individual, 0.12 offspring per individual per day and 1.13 times per day) were all significantly different from those on maize (417.64 offspring per individual, 0.19 offspring per individual per day and 1.21 times per day). The probability of survival of S. frugiperda at each stage was lower when fed on pea leaves than that of maize-fed larvae. Due to the overlapping growth periods of the maize and pea, S. frugiperda can easily proliferate throughout the year by shifting between adjacent crops. Thus, this study revealed the adaptability of S. frugiperda for pea and provides the foundation for further assessment of FAW risk to other inter-crops.

12.
Heliyon ; 10(15): e35233, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170294

ABSTRACT

Field pea (Pisum sativum L.) is a key cool-season food legume grown in Ethiopia, particularly in the Southeastern Arsi Zone. Although there is potential for field pea production in the area, adopting new and improved varieties is challenging because local farmers frequently prioritize cereal crops over field peas. To tackle this issue, a study was conducted to identify and promote high-yielding, improved field pea varieties suitable for the Southeastern farming community and similar agro-ecologies. The study focused on assessing the relationship between genotype and environment as well as the stability pattern of 14 advanced field pea genotypes. The genotypes were evaluated in eight environments in two consecutive cropping seasons (2014-2015) in southeast Ethiopia. The study utilized a randomized complete block design consisting of four replications. Various parametric stability analyses were used, including joint regression, additive main effect and multiplicative interaction (AMMI), and additive main effect and multiplicative interaction stability value (ASV). The grain yield was significantly influenced by genotype, location, and their interactions. The average grain yield ranged from 2809.5 kg ha-1 to 3509.1 kg ha-1. Eberhart's stability analysis identified stable genotypes: G3, G4, and G8, while G14 was unstable. According to additive main effect and multiplicative interaction stability value (ASV) and yield stability index (YSI), genotypes G12 and G13 had very low ASV values, whereas genotype G4 had very low ASV and YSI values. The AMMI and GGE biplot graphs showed that the principal component axes (PC1) and (PC2) accounted for 64.1 % and 61.36 % of the total variation, respectively. The results indicated that genotypes responded differently to environmental conditions and that the environment also influenced genotype performance. Genotypes G4 and G3 consistently performed well and exhibited remarkable stability, making them excellent cultivars for improving field pea productivity.

13.
Carbohydr Polym ; 343: 122481, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174102

ABSTRACT

The low solubility of pea protein isolate (PPI) greatly limits its functional properties and its wide application in food field. Thus, this study investigated the effects and mechanisms of cellulose nanocrystals (CNC) (0.1-0.4 %) and CaCl2 (0.4-1.6 mM) on the solubility of PPI. The results showed that the synergistic effect of CNC (0.3 %) and Ca2+ (1.2 mM) increased the solubility of PPI by 242.31 %. CNC and Ca2+ changed the molecular conformation of PPI, enhanced intermolecular forces, and thus induced changes in the molecular morphology of PPI. Meanwhile, the turbidity of PPI decreased, while surface hydrophobicity, the absolute zeta potential value, viscoelasticity, ß-sheet ratio, and thermal properties increased. CNC bound to PPI molecules through van der Waals force and hydrogen bond. Ca2+ could strengthen the crosslinking between CNC and PPI. In summary, it is proposed a valuable combination method to improve the solubility of PPI, and it is believed that this research is of great significance for expanding the application fields of PPI and modifying plant proteins.


Subject(s)
Calcium , Cellulose , Nanoparticles , Pea Proteins , Solubility , Nanoparticles/chemistry , Cellulose/chemistry , Pea Proteins/chemistry , Calcium/chemistry , Pisum sativum/chemistry , Hydrophobic and Hydrophilic Interactions , Calcium Chloride/chemistry , Hydrogen Bonding
14.
Plant Dis ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175272

ABSTRACT

Bean leafroll virus (BLRV; Bean leafroll virus), a single-stranded RNA virus in the genus Luteovirus, is phloem-limited and primarily transmitted by aphids in a non-propagative, persistent manner (Rashed et al., 2018; Kidanemariam and Abraham, 2023). BLRV infects various legumes and has been reported from major pulse-growing regions worldwide (Agindotan et al., 2019) but not in the Canadian Prairies. Its impact on crop yield varies with plant and virus genotypes and the timing of infection. Some pea fields have experienced disease rates of up to 80% (Clement et al., 2020; Hampton, 1983). Throughout the 2022 growing season (June and July), pulse fields from across Saskatchewan were randomly selected and surveyed, and symptomatic plants demonstrating leaf yellowing and chlorosis were collected and stored at -80°C before processing. Observed symptoms included necrotic spots, chlorosis, leaf mottling, leaf rolling in peas, severe bright yellowing, and leaf marginal necrosis in chickpeas. BLRV detection was performed on 35 leaves of the collected samples using both Enzyme-Linked Immunosorbent Assay (ELISA) and Reverse transcription polymerase chain reaction (RT-PCR). ELISA testing followed the manufacturer's protocol using a commercial kit (Nano Diagnostics, San Jose, CA, USA). Total RNAs were extracted from the frozen samples using TRIzol (Invitrogen, Carlsbad, CA, USA). For the detection of the diverse BLRV isolates, sequences of various isolates were aligned and primers were specifically designed in-house, targeting the virus's highly conserved regions on the GP3 and 3' UTR (see Supplementary material). Additional primers were also designed targeting coat protein (CP) coding regions which were previously used for BLRV detection (Agindotan et al. 2019; Larsen & Webster 1999). PCR testing of 35 symptomatic samples including 12 pea plants and 23 chickpea plants, identified the presence of BLRV in two symptomatic samples, one each from a field pea (Pisum sativum L. var. CDC Inca) and a desi-type chickpea (Cicer arietinum L. var. CDC Leader). The infected pea and chickpea samples were found in Saskatoon, SK (Coordinates: 52°9'27''N,106°34'14"W), and the Leader area, southwest of Saskatchewan, SK (Coordinates: 50°52'14"N,109°23'11"W), respectively. PCR amplicons were purified and sent for Sanger sequencing. The reads were assembled to generate 1666 and 323 nucleotides from pea and chickpea, respectively, with a minimum of 2X coverage. Partial nucleotide sequences of the BLRV isolates obtained from pea (PsSK1) and chickpea (CaSK1) (GenBank accession numbers: PP240429, PP266588) showed (1521/1574 bp) 96.63% and (316/323 bp) 97.83% similarity with a BLRV reference isolate sequence (NC_003369) and to an isolate from Argentina (KR261610) which was reported on Medicago sativa L. with (1555/1574 bp) 98.79% and (319/323 bp) 98.76% similarity, correspondingly. Both infected samples were confirmed to be BLRV-infected through the ELISA and exhibited a high interaction ratio (PsSK1: 0.319 and CsSK1: 0.245) compared to a positive control (0.292) after 30 minutes as measured at 450 nm. This is the first report of BLRV in the pulse-growing region of the Canadian Prairies. In Saskatchewan, there is no history of BLRV despite the large amount of area growing susceptible crops. Therefore, the survey project that this study was part of was not intended to evaluate the severity of BLRV but rather to determine if there is any virus present that might have been overlooked. The samples were therefore taken randomly, with a focus on the number of fields and geographic coverage rather than focusing on multiple plants per field. Moreover, fields were not chosen based on symptoms but rather at random. Although, plants within fields were chosen because they displayed symptoms. Typically, a disease note includes estimates of severity and potential risk; however, that is not possible for this study. Rather, the fact that it was detected indicates a greater risk than previously perceived, since it was assumed that BLRV was not present. These findings highlight the need for further research on the virus's current status, its impact on crop production, and the resistance of pulse varieties grown in Saskatchewan.

15.
Cureus ; 16(7): e65529, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39188448

ABSTRACT

An acute abdomen that is tender to palpation often represents a life-threatening emergency requiring immediate surgical or medical management. We present a case of acute abdomen with peritoneal signs and symptoms due to epiploic appendagitis (EA) that resolved with a single dose of ibuprofen. EA often mimics appendicitis, diverticulitis, and rarely cholecystitis based on its location. It arises due to ischemic infarction of an epiploic appendage, typically caused by torsion or spontaneous thrombosis of the central draining vein. Despite its rarity, clinicians need to recognize the characteristic imaging findings of EA on CT and ultrasound to avoid unnecessary surgical interventions and to manage the condition conservatively.

16.
mSystems ; : e0042224, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166858

ABSTRACT

Rhizobial attachment to host legume roots is the first physical interaction of bacteria and plants in symbiotic nitrogen fixation. The pH-dependent primary attachment of Rhizobium leguminosarum biovar viciae 3841 to Pisum sativum (pea) roots was investigated by genome-wide insertion sequencing, luminescence-based attachment assays, and proteomic analysis. Under acid, neutral, or alkaline pH, a total of 115 genes are needed for primary attachment under one or more environmental pH, with 22 genes required for all. These include components of cell surfaces and membranes, together with enzymes that construct and modify them. Mechanisms of dealing with stress also play a part; however, exact requirements vary depending on environmental pH. RNASeq showed that knocking out the two transcriptional regulators required for attachment causes massive changes in the bacterial cell surface. Approximately half of the 54 proteins required for attachment at pH 7.0 have a role in the later stages of nodule formation. We found no evidence for a single rhicadhesin responsible for alkaline attachment, although sonicated cell surface fractions inhibited root attachment at alkaline pH. Our results demonstrate the complexity of primary root attachment and illustrate the diversity of mechanisms involved. IMPORTANCE: The first step by which bacteria interact with plant roots is by attachment. In this study, we use a combination of insertion sequencing and biochemical analysis to determine how bacteria attach to pea roots and how this is influenced by pH. We identify several key adhesins, which are molecules that enable bacteria to stick to roots. This includes a novel filamentous hemagglutinin which is needed at all pHs for attachment. Overall, 115 proteins are required for attachment at one or more pHs.

17.
Food Chem ; 461: 140861, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39167949

ABSTRACT

This work evaluated the impact of incorporating 1% of commercial protein hydrolysates [rice protein hydrolysate (RPH), pea protein hydrolysate (PPH), and casein hydrolysate (CH)] on the functional, microstructure, and texture properties of set yogurt. Yogurt prepared with RPH exhibited the highest viability number of Streptococcus thermophilus. The addition of three hydrolysate types to yogurt revealed significant increases in the antioxidant and ACE-inhibitory activities, where the highest values were noted for the yogurt prepared with RPH. RPH exhibited no differences in texture properties (firmness, consistency, and cohesiveness) to control yogurt. These results were confirmed by scanning electron microscope examination. RPH and control yogurts showed compacted and dense structures accompanied by small pores, whereas CH and PPH yogurt structures were characterized by coarse networks with large voids. Furthermore, there was no significant impact of adding protein hydrolysates on the overall acceptability of yogurt as indicated by a sensory panel.

18.
Int J Biol Macromol ; 276(Pt 1): 133736, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992543

ABSTRACT

Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.


Subject(s)
Free Radical Scavengers , Pea Proteins , Polysaccharides , Tragacanth , Free Radical Scavengers/chemistry , Polysaccharides/chemistry , Tragacanth/chemistry , Pea Proteins/chemistry , Peptides/chemistry , Antioxidants/chemistry , Pisum sativum/chemistry , Temperature , Free Radicals/chemistry , Drug Stability
19.
Nutrients ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38999765

ABSTRACT

Animal-sourced whey protein (WPr) is the most popular protein supplement among consumers and has been shown to improve muscle mass and strength. However, due to allergies, dietary restrictions/personal choices, and growing demand, alternative protein sources are warranted. Sedentary adults were randomized to pea protein (PPr) or WPr in combination with a weekly resistance training program for 84 days. Changes in whole-body muscle strength (WBMS) including handgrip, lower body, and upper body strength, body composition, and product perception were assessed. The safety outcomes included adverse events, vital signs, clinical chemistry, and hematology. There were no significant differences in the change in WBMS, muscle mass, or product perception and likability scores between the PPr and WPr groups. The participants supplemented with PPr had a 16.1% improvement in WBMS following 84 days of supplementation (p = 0.01), while those taking WPr had an improvement of 11.1% (p = 0.06). Both study products were safe and well-tolerated in the enrolled population. Eighty-four days of PPr supplementation resulted in improvements in strength and muscle mass comparable to WPr when combined with a resistance training program in a population of healthy sedentary adults. PPr may be considered as a viable alternative to animal-sourced WPr without sacrificing muscular gains and product enjoyment.


Subject(s)
Dietary Supplements , Muscle Strength , Muscle, Skeletal , Pea Proteins , Resistance Training , Sedentary Behavior , Humans , Male , Female , Adult , Pea Proteins/administration & dosage , Muscle Strength/physiology , Muscle, Skeletal/physiology , Whey Proteins/administration & dosage , Middle Aged , Young Adult , Body Composition , Hand Strength
20.
Biofabrication ; 16(4)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38996408

ABSTRACT

Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.


Subject(s)
Printing, Three-Dimensional , Animals , Tissue Scaffolds/chemistry , Pea Proteins/chemistry , Tissue Engineering/methods , Meat , Cell Survival , In Vitro Meat
SELECTION OF CITATIONS
SEARCH DETAIL