ABSTRACT
Chilean peach growers have achieved worldwide recognition for their high-quality fruit products. Among the main factors influencing peach fruit quality, sweetness is pivotal for maintaining the market's competitiveness. Numerous studies have been conducted in different peach-segregating populations to unravel SSC regulation. However, different cultivars may also have distinct genetic conformation, and other factors, such as environmental conditions, can significantly impact SSC. Using a transcriptomic approach with a gene co-expression network analysis, we aimed to identify the regulatory mechanism that controls the sugar accumulation process in an 'O × N' peach population. This population was previously studied through genomic analysis, associating LG5 with the genetic control of the SSC trait. The results obtained in this study allowed us to identify 91 differentially expressed genes located on chromosome 5 of the peach genome as putative new regulators of sugar accumulation in peach, together with a regulatory network that involves genes directly associated with sugar transport (PpSWEET15), cellulose biosynthesis (PpCSLG2), flavonoid biosynthesis (PpPAL1), pectin modifications (PpPG, PpPL and PpPMEi), expansins (PpEXPA1 and PpEXPA8) and several transcription factors (PpC3H67, PpHB7, PpRVE1 and PpCBF4) involved with the SSC phenotype. These results contribute to a better understanding of the genetic control of the SSC trait for future breeding programs in peaches.
Subject(s)
Fruit , Gene Regulatory Networks , Prunus persica , Prunus persica/genetics , Prunus persica/metabolism , Fruit/genetics , Fruit/metabolism , Gene Regulatory Networks/genetics , Gene Expression Regulation, Plant/genetics , Sugars/metabolism , Gene Expression Profiling , ChileABSTRACT
This study represents a pioneering investigation and comparative analysis of lipid extracts from four different colors of peach palm (Bactris gasipaes Kunt) fruits-red, yellow, green, and white-by employing a green method based on ethanolic ultrasound-assisted extraction. This study examined the extraction yield, physico-chemical-quality attributes, chromatographic profiles (GC), color measurements, total carotenoid content, differential thermogravimetry (TG/DTA), and infrared spectroscopy (FTIR). The obtained lipid extracts displayed a high quality, considering the physico-chemical parameters of the Codex Alimentarius, and a fatty acids profile characterized by unsaturated fatty acids, notably omegas (ω-3, ω-6, and ω-9). The indices of atherogenicity (A.I.), thrombogenicity (I.T.), and hypocholesterolemic and hypercholesterolemic ratios revealed superior outcomes for the red peach palm lipid extract (approximately 0.35, 0.52, and 2.75, respectively), along with higher levels of ß-carotene (748.36 µg of ß-carotene per 100 g-1 of lipid extract) compared to the yellow, green, and white counterparts. Consequently, this research successfully demonstrates the efficacy of using a green extraction method in preserving the lipid's quality, which can display cardiovascular functionality and thermal stability. These findings underscore the considerable potential of peach palm lipid extract as a valuable raw material for diverse industrial applications across various sectors. The results support its utilization in the production of functional food products and nutraceuticals due to its favorable fatty acid composition, potent antioxidant properties exhibited by its high ß-carotene content, and notable cardiovascular functionality indices.
ABSTRACT
The rapid growth of the world population has increased the demand for new food sources, constituting a major challenge concerning the maximum use of existing food resources. The fruits of Amazonian palm trees have excellent nutritional composition and bioactive compounds. This review highlights four fruits of Amazonian palm trees that are still little explored by the food industry: açai (Euterpe oleracea), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), and tucumã (Astrocaryum aculeatum). This paper aims to inspire new ideas for researching and developing products for the food industry. It also explores the impacts of Amazonian palm fruits on health, highlighting their role in disease prevention through their nutritional effects.
ABSTRACT
Formulations of biodegradable films using macrocarpa peach palm flour (low amylose starch), chitosan and glycerol, were developed and the effects of the drying temperature on films by assessing their physicochemical, mechanical, barrier, optical, structural, antioxidant properties, and the biodegradability in soil were evaluated. Chitosan enhanced the mechanical properties of the films, but they showed no antimicrobial activity against the tested food-borne pathogens, except for Listeria monocytogenes, for which the inhibition zone was from 0.1 to 0.6 cm. Films with higher concentrations of peach palm flour are opaquer, with better antioxidant characteristics and content of phenolic compounds compared to films made with lower concentrations of flour. The films presented a yellowish color because of the carotenoids found in peach palm flour, 29.63 µg 100 g-1, and exhibited a C-type X-ray pattern, characteristic peak of materials where amylose and amylopectin are present. After 15 days in soil, the films lost 30% of their initial weight. Therefore, these results suggest that the development of films as food preservative is a promising field and that the material used in the study are suitable for their formulation.
Subject(s)
Arecaceae , Chitosan , Antioxidants , Amylose , Chitosan/chemistry , Arecaceae/chemistry , SoilABSTRACT
Peach (Prunus persica) is one of the most popular stone fruits in the world. From 2019 to 2022, typical scab symptoms were observed on 70% of peach fruits in a commercial orchard in Tepeyahualco, Puebla, Mexico (19°30'38"N 97°30'57"W). Fruit symptoms are black circular lesions of 0.3 mm in diameter. The fungus was isolated from symptomatic fruit pieces that were surface sterilized with 1% sodium hypochlorite for 30 s, rinsed in autoclaved distilled water three times, placed on PDA medium, and incubated at 28°C in darkness for 9 days. Cladosporium-like colonies were isolated. Pure cultures were obtained by single spore culture. Colonies on PDA showed aerial mycelium abundant, smoke-grey, fluffy, and with margin glabrous to feathery. Conidiophores were solitary, long, intercalary conidia narrow erect, macro- and micronematous, straight or slightly flexuous, cylindrical-oblong, olivaceous-brown, and often subnodulose. Conidia (n= 50) catenate in branched chains, obovoid to limoniform, sometimes globose, aseptate, olivaceous-brown, apically rounded, 3.1 to 5.1 × 2.5 to 3.4 µm. Secondary ramoconidia (n= 50) were fusiform to cylindrical, smooth-walled, 0-1-septate, pale brown or pale olivaceous-brown, measuring 9.1 to 20.8 × 2.9 to 4.8 µm. Morphology was consistent to that described for Cladosporium tenuissimum (Bensch et al. 2012; 2018). A representative isolate was deposited in the Culture Collection of Phytopathogenic Fungi of the Department of Agricultural Parasitology at the Chapingo Autonomous University under the accession number UACH-Tepe2. To further confirm the morphological identification, total DNA was extracted using the cetyltrimethylammonium bromide method (Doyle and Doyle 1990). The internal transcribed spacer (ITS) region, partial sequences of the translation elongation factor 1-alpha (EF1-α) and actin (act) genes were amplified by PCR, and sequenced using the primer pairs ITS5/ITS4 (White et al. 1990), EF1-728F/986R, and ACT-512F/783R (Carbone and Kohn 1999), respectively. The sequences were deposited in GenBank under the accession numbers OL851529 (ITS), OM363733 (EF1-α), and OM363734 (act). BLASTn searches in GenBank showed 100% identity with available sequences of Cladosporium tenuissimum accession (ITS: MH810309; EF1-α: OL504967; act: MK314650). A phylogenetic analysis using the maximum likelihood method placed isolate UACH-Tepe2 in the same clade as C. tenuissimum. To verify the pathogenicity of the fungus, 20 healthy peach fruits were inoculated with four drops of 15 µl of a conidial suspension (1 × 106 spores /ml). Ten control fruit were treated with sterilized water. All the fruits were kept in a moist chamber at 25°C for 10 days. Circular and necrotic lesions were produced eight days after inoculation, whereas control fruits remained healthy. Pathogenicity test was conducted three times with similar results. Fungal colonies were reisolated from the artificially inoculated fruit, thus fulfilling Koch's postulates. Cladosporium tenuissimum has been previously reported to cause diseases on strawberry, cashew, papaya, and passionfruit in Brazil (Rosado et al. 2019; Santos et al. 2020), as well as diseases on pitaya, hydrangea, and carnation in China (Xu et al. 2020; Li et al. 2021; Xie et al. 2021). Cladosporium carpophilum is reported as the causal agent of peach scab. The environmental conditions for the development of C. carpophilum are 20-30 °C in warm humid areas (Lawrence and Zehr 1982), however, in this case the infection by C. tenuissinum occurred in a temperate semi-dry climate, with temperatures of 5 -15 °C and R.H. less than 50 % with an incidence of 80 %. To our knowledge, this is the first report of Cladosporium tenuissimum causing peach scab in Mexico and worldwide.
ABSTRACT
Peach (Prunus persica) is an important stone fruit crop in Chile, with 7,665 h in 2022. Trunk diseases symptoms, including shoot dieback, longitudinal cankers and internal dark-brown to purple discolorations in cross sections were observed in a commercial orchard, in March of 2021. In severe cases, mostly in old trees, periderm sections were detached from the cankers, showing circinate groups of black long necked perithecia. To isolate the causal agent, wood samples were collected from March 2021 to October 2022, from symptomatic trees (n=23) of commercial orchards (n=12) (34°12'36.47"S 70°46'3.43"O to 34°34'26.48"S 70°58'17.97"O), located in O'Higgins Region, in the center of Chile. Isolations were performed cutting wood sections (0.5 cm) from the necrosis progress area, disinfecting them in sodium hypochlorite (10%), plating on a quarter-strength potato dextrose agar amended with 1 mg/L tetracycline (aPDA-tet) and incubating at 25°C, until mycelial development. Cultures were purified on PDA and identified by morphological means. Colonies on PDA were dark-pink and purple to orange-red, with regular margins, usually white, and produced abundant hyaline ellipsoidal to allantoid conidia (3.8-5.7 × 1.3 µm). In some cases, perithecia developed on disinfected wood on culture media, showing clavate unitunicate asci with hyaline allantoid ascospores 4.5-6.2 × 0.7 µm. The morphological characteristics of anamorph and teleomorph structures of field and culture isolates accorded to those described for Calosphaeria pulchella (1,2). DNA from representative isolates was extracted and the ITS region was amplified by PCR using ITS1/ITS4 primers (3), sequenced and BLAST analyzed. BLAST results revealed that ITS sequences identity of the representative isolates HMDu263 and HMDu271, shared 99 and 100% similarity, respectively, when compared to isolate CBS115999 (EU367451) (1,2,4). Sequences were accessioned to GenBank (OP216663 and OP216664 [ITS]). To determine the pathogenicity of C. pulchella, 17 representative isolates were inoculated on peach canes (25 cm) (n=7 per isolate), that were previously rooted on tap water amended with 500 ppm of indole-butyric acid, for 30 d. Mycelial plugs (0.5 cm) from actively growing colonies on PDA were placed on circular injuries made in the upper third of the shoots using a sterile corkborer and covered with plastic film. Sterile agar was used for controls. After 60 d of incubation in aerated tap water, at 23 +/-3 °C, bark was removed, and the necrosis length was measured and compared. Mean length values of lesions went from 9.5 to 27 cm. The most virulent isolates (n=7) were inoculated on fresh cuts of main shoots of nursery plants (n=3 per isolate) cv. Royal Glory, with 200 µL conidial suspensions (1x105 conidia/mL), on March 18th, 2022. Plants were incubated at shadehouse for 102 d and after the incubation period, shoots were cut (30 cm), bark was removed, and discoloration length was measured. All the isolates were pathogenic, with differences among their virulence (ANOVA, LSD, P < 0.05) from 5.2 cm (HMDu246) to 24.3 cm (HMDu266). Fungus was successfully reisolated from symptomatic canes (100%) and trees (98.7%), but not from the controls in both pathogenicity tests, fulfilling Koch's postulates. Calosphaeria pulchella was recently reported causing trunk disease in sweet cherry in Chile (4) and these results contribute to the knowledge of trunk diseases of fruit crops in Chile and to the understanding of the pathogen worldwide.
ABSTRACT
BACKGROUND: The suitability of commercial peaches for minimal processing (MP) is limited, mainly due to shortened shelf-life. Gamma irradiation has emerged in MP fruits as a promising technology. This study aimed to investigate the effects of gamma irradiation on the sensory and metabolic profiles of MP peaches from two cultivars - 'Forastero' (FT) and 'Ruby Prince' (RP) - and evaluate the relationship between both profiles. MP peaches were packaged and divided into two groups: one without additional treatment (K) and the other subjected to gamma irradiation (1.0 kGy, I- irradiation treatment), making a total of four samples (FTK, FTI, RPK and RPI). The sensory profile was carried out by an assessor panel. Metabolite analysis was accomplished by gas chromatography-mass spectrometry. RESULTS: Irradiation significantly affected color, homogeneity, peach aroma, total flavor intensity, peach flavor, sweetness and juiciness in FT, increasing their intensities. In the RP cultivar, irradiation increased brightness, total aroma intensity, peach aroma, and flavor and texture descriptors. Regarding metabolites, only malic acid and sucrose increased their concentrations in the irradiated samples. Partial least squares showed that sucrose was mainly correlated with sweet, total aroma intensity and peach flavors, and linked with FTI sample. Bitter along with peach aroma and total intensity flavor were associated with RPI sample. CONCLUSION: The applied dose accelerated the ripening process of the peach. The study highlights the importance of complementing sensory analysis with metabolomics tools to optimize fruit quality in minimally processed peaches. © 2023 Society of Chemical Industry.
Subject(s)
Prunus persica , Odorants , Taste , Sucrose/analysis , Fruit/chemistry , MetabolomeABSTRACT
The extraction and commercialization of palm hearts is the most profitable activity involving the peach palm (Bactris gasipaes), while consumption of its fruits is limited to Amazonian communities. The excessive attention paid to the implementation of germplasm banks contributed to the lack of development of high-performance varieties, limiting the production and consumption of peach palm fruits and by-products. In addition, with the fragmentation of the Amazonian rainforest, wild populations are in danger of extinction. The species domestication, initiated by Native Amazonians, generated a large variety of peach palm populations, as evidenced by the diversity in fruit sizes and quality. Some advances in agronomic traits also took place. However, more research needs to be conducted to understand the implications of climatic changes on plant physiological performance. Indeed, the key point is that the exploitation of the full potential of B. gasipaes has not been completely exploited. Therefore, understanding the state-of-the-art research on the peach palm with a focus on its underutilized resources is essential for expanding plantations and, consequently, promoting the market expansion of the peach palm as a fruit crop.
ABSTRACT
This study aimed to subject the albino peach palm to cooking and drying processes and characterize the raw pulp (RP), cooked pulp (CP), raw pulp flour (RPF), and cooked pulp flour (CPF). The product's chemical composition, bioactive compounds, and physicochemical, color, thermal, morphological, and functional-technological properties were evaluated. The proximate composition showed that carbohydrates were the main constituents of all the products (69.59-72.08 g/100 g). The cooking process decreased the lipids (10.21 to 8.63 g/100 g), dietary fiber (13.64 to 12.81 g/100 g), and total sugar content (59.18 to 49.10 g/100 g) of the CP. The colorimetric parameters indicated a significant browning of the CP and CPF, which can be attributed to the Maillard reaction and lipid oxidation. After cooking, the total phenolic compound and ascorbic acid content decreased in the pulp. The RPF and CPF displayed different thermogravimetric behaviors. The spectral patterns in the infrared region showed the characteristic bands of organic compounds that are present in the structure of starches. The scanning electron microscopy showed amyloplast and fiber bundles with starches in the RP and gelatinized starch granules in the CP and CPF. The RPF presented small and heterogeneous starch granules with isolated amyloplast. The RPF and CPF showed different granulometric patterns and technological indices. The results suggest that the pulp and flour from the pulp of albino peach palms can be exploited by the food, pharmaceutical, and biotechnological industries.
ABSTRACT
Harvest date is a critical parameter for producers and consumers regarding agro-industrial performance. It involves a pleiotropic effect controlling the development of other fruit quality traits through finely controlling regulatory mechanisms. Fruit ripening is a process in which various signals and biological events co-occur and are regulated by hormone signaling that produces the accumulation/degradation of multiple compounds. However, the regulatory mechanisms that control the hormone signaling involved in fruit development and ripening are still unclear. To investigate the issue, we used individuals with early, middle and late harvest dates from a peach segregating population to identify regulatory candidate genes controlling fruit quality traits at the harvest stage and validate them in contrasting peach varieties for this trait. We identified 467 and 654 differentially expressed genes for early and late harvest through a transcriptomic approach. In addition, using the Arabidopsis DAP-seq database and network analysis, six transcription factors were selected. Our results suggest significant hormonal balance and cell wall composition/structure differences between early and late harvest samples. Thus, we propose that higher expression levels of the transcription factors HB7, ERF017 and WRKY70 in early harvest individuals would induce the expression of genes associated with the jasmonic acid pathway, photosynthesis and gibberellins inhibition. While on the other hand, the high expression levels of LHY, CDF3 and NAC083 in late harvest individuals would promote the induction of genes associated with abscisic acid biosynthesis, auxins and cell wall remodeling.
ABSTRACT
In this work, we report a successful protocol to obtain in vitro peach palm (Bactris gasipaes Kunth) "Diamantes 10" plants through somatic embryogenesis from transverse thin cell layer (TCL) explants, dissected from three sections (basal, medial, and apical) of lateral offshoots of adult plants cultured on different concentrations of 4-amino-3,5,6-trichloropicolonic acid (picloram). After swelling and development of primary callus in all treatments, without any strong effect of explant origin or picloram concentration, it was possible to observe the formation of embryogenic structures and the exact point from where they developed. Browning was also observed and correlated to the induction treatments, although it was not an impairment for the production of embryogenic structures. Subsequent maturation and conversion of somatic embryos into plantlets allowed their acclimatization 17 months after culture initiation (ACI), which was quicker than previous reports with juvenile tissues (from embryos or seed-germinated plantlets). To the best of our knowledge, this is the first report on peach palm regeneration through somatic embryogenesis from TCL explants from adult plants and could constitute, after fine-tuning the acclimatization stage, a tool for mass clonal propagation of elite genotypes of this open-pollinated crop, as well as for the establishment of conservation strategies of in situ gene bank plant accessions endangered due to aging and other threats.
ABSTRACT
Bactris gasipaes var. gasipaes (Arecaceae, Palmae) is an economically and socially important plant species for populations across tropical South and Central America. It has been domesticated from its wild variety, B. gasipaes var. chichagui, since pre-Columbian times. In this study, we sequenced the plastome of the cultivated variety, B. gasipaes Kunth var. gasipaes and compared it with the published plastome of the wild variety. The chloroplast sequence obtained was 156,580 bp. The cultivated chloroplast sequence was conserved compared to the wild type sequence with 99.8% of nucleotide identity. We did, however, identify multiple Single Nucleotide Variants (SNVs), insertions, microsatellites and a resolved region of missing nucleotides. A SNV in one of the core barcode markers (matK) was detected between the wild and cultivated accessions. Phylogenetic analysis was carried out across the Arecaceae family and compared to previous reports, resulting in an identical topology. This study is a step forward in understanding the genome evolution of this species.
ABSTRACT
Peach is a fruit cultivated in temperate regions and its use generates waste composed of seeds and skin. Inadequate disposal of this waste generates an environmental impact; therefore, an alternative is to apply a vermicomposting degradation process. In this research, these four laboratory-scale reactors were used: RC (no earthworms), R1, R2, and R3 (50 earthworms each) to get mixtures in the following proportions of peach waste and load material (vegetable waste and eggshell): RC (50%-50%), R1 (50%-50%), R2 (60%-40%), and R3 (40%-60%). In addition, during this process, physicochemical parameters were analyzed (temperature, pH, humidity, total organic carbon (TOC), total nitrogen (TN), and carbon/nitrogen ratio (C/N)). For each mixture, the reaction order and rate constants were determined using mathematical models. After analysis of the reaction kinetics, the results showed that zero- and first-order reactions were best suited for the degradation of this waste in the vermicomposting process. The highest rates of degradation in the mixtures were for RC and R1, which means faster completion of the process, and consequently, smaller dimensions of the facilities necessary for vermicomposting. Thus, this research provides important information for the design of reactors that use similar substrates.
ABSTRACT
Meloidogyne enterolobii and M. floridensis are virulent species that can overcome root-knot nematode resistance in economically important crops. Our objectives were to determine the effects of temperature on the infectivity of second-stage juveniles (J2) of these two species and determine differences in duration and thermal-time requirements (degree-days [DD]) to complete their developmental cycle. Florida isolates of M. enterolobii and M. floridensis were compared to M. incognita race 3. Tomato cv. BHN 589 seedlings following inoculation were placed in growth chambers set at constant temperatures of 25°C, and 30°C, and alternating temperatures of 30°C to 25°C (day-night). Root infection by the three nematode species was higher at 30°C than at 25°C, and intermediate at 30°C to 25°C, with 33%, 15%, and 24% infection rates, respectively. There was no difference, however, in the percentages of J2 that infected roots among species at each temperature. Developmental time from infective J2 to reproductive stage for the three species was shorter at 30°C than at 25°C, and 30°C to 25°C. The shortest time and DD to egg production for the three species were 13 days after inoculation (DAI) and 285.7 DD, respectively. During the experimental timeframe of 29 d, a single generation was completed at 30°C for all three species, whereas only M. floridensis completed a generation at 30°C to 25°C. The number of days and accumulated DD for completing the life cycle (from J2 to J2) were 23 d and 506.9 DD for M. enterolobii, and 25 d and 552.3 DD for M. floridensis and M. incognita, respectively. Exposure to lower (25°C) and intermediate temperatures (30°C to 25°C) decreased root penetration and slowed the developmental cycle of M. enterolobii and M. floridensis compared with 30°C.
ABSTRACT
This paper describes studies for the determination of total concentration and bioaccessible fraction of minerals in peaches by MIP OES. The PCA analysis identified 3 distinct groups of elements concerning the total concentration, which was attributed to the origin of each cultivar. Among the macroelements, K presented higher values for total concentration, while B and Fe predominated among the microelements. Regarding the bioaccessible fraction, Mn presented the highest percentage (46-84%), followed by Zn and B (10-63% and 33-57%, respectively). Pearson's correlation coefficient revealed that reducing sugars and titratable acidity can influence the mineral bioaccessibility, highlighting the strong positive correlations between reducing sugars with Mn and total acidity with Fe. Peach cultivars have satisfactory nutritional value, but the total and bioaccessible concentrations of minerals obtained do not meet the recommended daily needs, requiring the consumption of other fruits and vegetables to complement the diet.
Subject(s)
Prunus persica , Trace Elements , Fruit/chemistry , Minerals , Sugars , Trace Elements/analysis , VegetablesABSTRACT
The study evaluated the effect of peach juice sweetened with sucrose, widely used non-nutritive sweeteners, the artificial sucralose, neotame blend, and the natural stevia extract with different rebaudioside A concentrations on the temporal and quantitative descriptive profile, and consumer acceptance of the beverage. The sensory profiling was determined by quantitative descriptive and time-intensity analyses. The results showed that the sweeteners neotame and sucralose present higher sweetening power, and the different rebaudioside A concentrations did not affect the sweetening power of the stevia extract. The samples sweetened with stevia with 40% and 95% of rebaudioside A were characterized by the sensory attributes bitter taste, bitter aftertaste, astringency, and black tea flavor, with a negative influence on the consumers' acceptance. The different concentrations of rebaudioside A in stevia interfered substantially in the descriptors bitter taste and bitter aftertaste, showing that the higher the percentage of rebaudioside A, the lower bitterness of peach juice.
ABSTRACT
The metabolomic content determines many of the important features of a fruit, such as its taste, flavor, color, nutritional value, and abiotic or biotic resistance. Peach (Prunus persica (L.) Batsch) is one of the best genetically characterized species used as a model for Rosaceae, the drupes of which are a source of minerals, vitamins, fiber, and antioxidant compounds for healthy diets around the world. During the last few years, a great advance in the analysis of the metabolic diversity and reconfiguration in different peach varieties in response to developmental and environmental factors has occurred. These studies have shown that the great phenotypic diversity among different peach varieties is correlated with differential metabolomic content. Besides, the fruit metabolome of each peach variety is not static; on the contrary, it is drastically configured in response to both developmental and environmental signals, and moreover, it was found that these metabolic reconfigurations are also variety dependent. In the present review, the main sources of metabolic diversity and conditions that induce modifications in the peach fruit metabolome are summarized. It is postulated that comparison of the metabolic reconfigurations that take place among the fruits from different varieties may help us better understand peach fruit metabolism and their key drivers, which in turn may aid in the future design of high-quality peach fruits.
Subject(s)
Agriculture/methods , Prunus persica/genetics , Prunus persica/metabolism , Antioxidants/metabolism , Fruit/chemistry , Fruit/metabolism , Metabolomics , Prunus persica/growth & developmentABSTRACT
Peach (Prunus persica) fruits have a fast ripening process and a shelf-life of days, presenting a challenge for long-distance consuming markets. To prolong shelf-life, peach fruits are stored at low temperatures (0 to 7 °C) for at least two weeks, which can lead to the development of mealiness, a physiological disorder that reduces fruit quality and decreases consumer acceptance. Several studies have been made to understand this disorder, however, the molecular mechanisms underlying mealiness are not fully understood. Epigenetic factors, such as DNA methylation, modulate gene expression according to the genetic background and environmental conditions. In this sense, the aim of this work was to identify differentially methylated regions (DMRs) that could affect gene expression in contrasting individuals for mealiness. Peach flesh was studied at harvest time (E1 stage) and after cold storage (E3 stage) for 30 days. The distribution of DNA methylations within the eight chromosomes of P. persica showed higher methylation levels in pericentromeric regions and most differences between mealy and normal fruits were at Chr1, Chr4, and Chr8. Notably, differences in Chr4 co-localized with previous QTLs associated with mealiness. Additionally, the number of DMRs was higher in CHH cytosines of normal and mealy fruits at E3; however, most DMRs were attributed to mealy fruits from E1, increasing at E3. From RNA-Seq data, we observed that differentially expressed genes (DEGs) between normal and mealy fruits were associated with ethylene signaling, cell wall modification, lipid metabolism, oxidative stress and iron homeostasis. When integrating the annotation of DMRs and DEGs, we identified a CYP450 82A and an UDP-ARABINOSE 4 EPIMERASE 1 gene that were downregulated and hypermethylated in mealy fruits, coinciding with the co-localization of a transposable element (TE). Altogether, this study indicates that genetic differences between tolerant and susceptible individuals is predominantly affecting epigenetic regulation over gene expression, which could contribute to a metabolic alteration from earlier stages of development, resulting in mealiness at later stages. Finally, this epigenetic mark should be further studied for the development of new molecular tools in support of breeding programs.
ABSTRACT
ABSTRACT An empirical study of peach supply response to own-price and yield in Colombia using time series data from 2000 to 2018 was undertaken. A quantitative, correlational and non-experimental research design was selected and the Johansen's co-integration as well as the vector error correction framework were employed. The Augmented Dickey-Fuller test showed that the time series were integrated of order one and the Johansen's co-integration confirmed the existence of a long-term relationship between the variables. Moreover; the short and long run coefficients for own-price and yield were statistically significant and presented the expected signs, however estimated own-price elasticity was below unit suggesting it is not an important factor in peach supply response. Furthermore, the vector error correction coefficient (-0.32) was negative and in line with theory which showed that in the long-run, the model converges towards equilibrium, however at a relatively slow pace. Therefore, it can be concluded that, overall, the proposed model contributes to the understanding of the dynamics in peach output supply
RESUMEN Se realizó un estudio empírico sobre la respuesta a la oferta de durazno con relación a su precio y rendimiento agr'cola en Colombia, utilizando datos de series de tiempo para el per'odo comprendido entre 2000 y 2018. Se seleccionó un diseño de investigación cuantitativo, correlacional y no experimental y se empleó la cointegración de Johansen y el modelo de vector de corrección de errores. Los resultados de la a prueba de Aumentada de Dickey-Fuller demostraron que las series temporales estaban integradas en el orden uno y la cointegración de Johansen confirmó la existencia de una relación a largo plazo entre las variables. Además, los coeficientes del precio y rendimiento a largo y corto plazo fueron estadísticamente significativos y presentaron los signos esperados. Sin embargo, la elasticidad precio estimada fue inferior a la unidad, lo cual sugiere que no es un factor importante en la respuesta de la oferta de durazno. Asimismo, el coeficiente de corrección de error del vector (-0.32) fue negativo y en línea con la teoría, denostando que, a largo plazo, el modelo converge hacia al equilibrio, pero a una velocidad relativamente lenta. Por lo tanto, se puede concluir que, en general, el modelo propuesto, contribuye a la comprensión de la dinámica de la respuesta de la oferta de durazno.
RESUMO Realizou-se um estudo empírico da resposta da oferta de pêssego em função do seu preço e rendimento agrícola na Colômbia, usando dados de séries temporais para o período entre 2000 a 2018. O estudo usou um desenho de pesquisa quantitativa, correlacional e não experimental assim como a cointegração de Johansen e o modelo Vetorial de Correção de Erro. Os resultados do teste Aumentado de Dickey-Fuller demonstraram que as séries são integradas de ordem um e a cointegração de Johansen confirmou a existência de uma relação de longo prazo entre as variáveis. Além disso, os coeficientes do curto e longo prazo para preço e rendimento foram estatisticamente significantes e apresentaram os sinais esperados; no entanto, a elasticidade estimada do preço foi menor que a unidade, sugerindo que não é um fator importante na resposta da oferta de pêssego. Além disso, o coeficiente de correção de erros vetoriais (-0,32) foi negativo e alinhado à teoria, que mostrou que, a longo prazo, o modelo converge para o equilíbrio, porém a um ritmo relativamente lento. Portanto, pode-se concluir que, de maneira geral, o modelo proposto contribui para entender a dinâmica da oferta de produção de pêssego.
ABSTRACT
Persicaria acuminata (Polygonaceae) is a perennial herb that grows in the central area of Argentina and it is commonly used by native populations to heal infected wounds and other conditions related to fungal infections. In this article, we explored the in vitro antifungal activity of its ethyl acetate extract against a panel of three fruit phytopathogenic fungi including: Penicillium digitatum, P. italicum, and Monilinia fructicola. The sesquiterpenes isolated from the extract were also evaluated against these strains, demonstrating that the dialdehyde polygodial was the responsible for this activity. In order to encourage the use of the extract rather than the pure compound, we displayed ex vivo assays using fresh oranges and peaches inoculated with P. digitatum and M. fructicola, respectively, and subsequently treated by immersion with an extract solution of 250 and 62.5 µg/mL, respectively. There were no statistically significant differences between the treatments with commercial fungicides and the extract over the control of both fruit rots. The concentration of the active compound present in the extract used on fruit experiments was determined by Gas Chromatography-Mass Spectroscopy. Finally, cytotoxicity evaluation against Huh7 cells showed that P. acuminata extract was less cytotoxic than the commercial fungicides at the assayed concentrations. After these findings we could conclude that a chemically characterized extract of P. acuminata should be further developed to treat fungal diseases in fruits from an agro-ecological model.