Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(17): 9555-9566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648511

ABSTRACT

The filamentous fungus Penicillium sclerotiorum is significant in ecological and industrial domains due to its vast supply of secondary metabolites that have a diverse array of biological functions. We have gathered the metabolic potential and biological activities associated with P. sclerotiorum metabolites of various structures, based on extensive research of the latest literature. The review incorporated literature spanning from 2000 to 2023, drawing from reputable databases including Google Scholar, ScienceDirect, Scopus, and PubMed, among others. Ranging from azaphilones, meroterpenoids, polyketides, and peptides group exhibits fascinating potential pharmacological activities such as antimicrobial, anti-inflammatory, and antitumor effects, holding promise in pharmaceutical and industrial sectors. Additionally, P. sclerotiorum showcases biotechnological potential through the production of enzymes like ß-xylosidases, ß-d-glucosidase, and xylanases, pivotal in various industrial processes. This review underscores the need for further exploration into its genetic foundations and cultivation conditions to optimize the yield of valuable compounds and enzymes, highlighting the unexplored potential of P. sclerotiorum in diverse applications across industries.


Subject(s)
Penicillium , Secondary Metabolism , Penicillium/metabolism , Humans , Animals , Polyketides/metabolism , Polyketides/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
2.
Molecules ; 28(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049911

ABSTRACT

Penazaphilones J-L (1-3), three new hydrophilic azaphilone pigments, as well as six known compounds, were discovered from the filamentous fungus Penicillium sclerotiorum cib-411. Compounds 1-3 were structurally elucidated by the detailed interpretation of their 1D and 2D NMR spectroscopic data. Compound 1 is an unprecedented hybrid of an azaphilone and a glycerophosphate choline. Compounds 2 and 3 each contain an intact amino acid moiety. The bioassay showed that compound 3 exhibited significant anti-inflammatory activity. Concretely, compound 3 significantly suppressed the NO production, the expression levels of COX-2, IL-6, IL-1ß, and iNOS mRNA in LPS-stimulated RAW264.7 cells. Moreover, treatment of compound 3 prevented the translocation of NF-κB through inhibiting the phosphorylation of PI3K, PDK1, Akt, and GSK-3ß. Thus, the inhibition of compound 3 against LPS-induced inflammation should rely on its inactivation on NF-κB.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Glycogen Synthase Kinase 3 beta , Anti-Inflammatory Agents/chemistry , Inflammation/drug therapy , RAW 264.7 Cells
3.
Mar Drugs ; 21(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36827116

ABSTRACT

Nine new azaphilones, including penicilazaphilones I-N (1, 2 and 6-9), epi-geumsanol D (3) and penidioxolanes C (4) and D (5) were isolated from the culture of the marine-derived fungus Penicillium sclerotiorum E23Y-1A. The structures of the isolates were deduced from extensive spectroscopic data (1D and 2D NMR), high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. All the azaphilones from P. sclerotiorum E23Y-1A were tested for their anti-inflammatory and antitumor activities. Penicilazaphilone N (9) showed moderate anti-inflammatory activity with an IC50 value of 22.63 ± 2.95 µM, whereas penidioxolane C (4) exhibited moderate inhibition against human myeloid leukemia cells (K562), human liver cancer cells (BEL-7402), human gastric cancer cells (SGC-7901), human non-small cell lung cancer cells (A549), and human hela cervical cancer cells, with IC50 values of 23.94 ± 0.11, 60.66 ± 0.13, 46.17 ± 0.17, 60.16 ± 0.26, and 59.30 ± 0.60 µM, respectively.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Penicillium , Humans , Penicillium/chemistry , Anti-Inflammatory Agents , Molecular Structure
4.
Fitoterapia ; 165: 105428, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36632918

ABSTRACT

Seven previously undescribed meroterpenoids, peniscmeroterpenoids H - N (1-7), were isolated from the marine-derived fungus Penicillium sclerotiorum GZU-XW03-2. Their structures were established by the spectroscopic methods and the electronic circular dichroism (ECD) calculations. Peniscmeroterpenoid H was a 6/6/6/5/6 rearranged pentacyclic meroterpenoid, featuring a unique 2-oxaspiro[5.5] undeca-4,7-dien-3-one motif. Peniscmeroterpenoids I and J (2 and 3) owned rare 6(D)/5(E) fused rings were not common in natural products, and compound 2 was the second example of a berkeleyone analogue stripped of the methyl ester fragment. Peniscmeroterpenoid K (4) was the first case where the C-24 was oxidized. In bioassay, compound 5 showed moderate anti-inflammatory activity.


Subject(s)
Fungi , Penicillium , Molecular Structure , Penicillium/chemistry , Circular Dichroism
5.
Phytochemistry ; 202: 113307, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35792159

ABSTRACT

Seven undescribed meroterpenoids, peniscmeroterpenoids A - G, were isolated from the marine-derived fungus Penicillium sclerotiorum GZU-XW03-2. Their structures were established by the spectroscopic methods and the electronic circular dichroism (ECD) calculations. Peniscmeroterpenoid A possessed an unprecedented and highly oxidized 6/7/6/5/5 pentacyclic system, featuring a unique tetrahydrofuro [2,3-b]furan-2(3H)-one motif. Peniscmeroterpenoids B - E owned rare 6(D)/5(E) fused rings were not common in natural products, and peniscmeroterpenoid E is the first example of a berkeleyone analogue stripped of the methyl ester fragment. In bioassays, peniscmeroterpenoids A and D inhibited the production of nitric oxide (NO) in RAW264.7 cells with IC50 values of 26.60 ± 1.15 and 8.79 ± 1.22 µM. Moreover, peniscmeroterpenoid D significantly suppressed the production of pro-inflammatory mediators (COX-2, IL-1ß and IL-6) and the protein expression of the enzyme iNOS.


Subject(s)
Penicillium , Animals , Anti-Inflammatory Agents/chemistry , Fungi , Mice , Molecular Structure , Penicillium/chemistry , RAW 264.7 Cells
6.
J Asian Nat Prod Res ; : 1-6, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727201

ABSTRACT

A new chromone analog (1) and a new pyrrole alkaloid (2), together with four known compounds, were isolated from the endophytic fungus Penicillium sclerotiorum MPT-250 obtained from the stems of Taxus wallichiana var. chinensis (Pilger) Florin. The structural elucidation of these metabolites was performed by high-resolution mass spectrometry and NMR spectroscopy. Compounds 1 and 5 exhibited significant antibacterial activity against carbapenems-resistant Pseudomonas aeruginosa and multidrug-resistant Enterococcus faecium with an minimum inhibitory concentration (MIC) value of 3.13 µg/ml respectively.

7.
Front Microbiol ; 13: 880874, 2022.
Article in English | MEDLINE | ID: mdl-35516422

ABSTRACT

Mangrove is a unique marine ecosystem growing in the intertidal zone of tropical and subtropical coast, with the characteristics of hypoxia tolerance, high salinity, and high humidity. In order to discover novel leading compounds with potent phytotoxicity, seven pairs of azaphilones E/Z isomers, isochromophilone H (1a/1b), sclerotiorins A and B (2a/2b and 3a/3b), ochlephilone (4a/4b), isochromophilone IV (5a/5b), isochromophilone J (6a/6b), and isochromophilone I (7a/7b), were isolated from the culture broth of the mangrove-derived fungus, the Penicillium sclerotiorum HY5, by various chromatographic methods. Among them, 1a, 1b, 2a, 3a, 4a, 5a, 6a, and 6b were new compounds. Their chemical structures and absolute configurations were elucidated based on high resolution electrospray ionization mass spectroscopy (HRESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopic analysis, and comparisons of electronic circular dichroism (ECD) data. Compounds 3, 4, and 7 exhibited potent phytotoxicity against the growth of radicle and plumule on Amaranthus retroflexus L., with EC50 values ranging from 234.87 to 320.84 µM, compared to the positive control glufosinate-ammonium, with EC50 values of 555.11 µM for radicle, and 656.04 µM for plumule. Compounds 4 and 7 also showed inhibitory effects on the growth of velvetleaf (Abutilon theophrasti Medikus), with EC50 values ranging from 768.97 to 1,201.52 µM. This study provides new leading compounds for the research and development of marine-derived bioherbicides.

8.
Bioorg Chem ; 122: 105721, 2022 05.
Article in English | MEDLINE | ID: mdl-35305481

ABSTRACT

Nine undescribed azaphilone derivatives, sclerazaphilones A-H (1-9), and three known analogues (10-12), were obtained and identified from the fermented rice cultures of a mangrove endophytic fungus Penicillium sclerotiorum ZJHJJ-18. 1D and 2D NMR, HRESIMS and spectral data indicated the chemical structures of 1-9, and their absolute configurations were assigned by experimental and computational analyses of electronic circular dichroism (ECD) spectra, and application of the chemical transformations. Compounds 1-4 were the first reported N-containing azaphilone derivatives with 5/6 dicyclic core. The bioassay results showed that compounds 3-5 exhibited effective inhibitory effects on the nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells with IC50 values in the range of 6.30-9.45 µM. Moreover, a molecular docking study was conducted to investigate the probable binding interaction of 3-5 with inducible nitric oxide synthase (iNOS).


Subject(s)
Penicillium , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Benzopyrans , Fungi , Molecular Docking Simulation , Molecular Structure , Penicillium/chemistry , Pigments, Biological
9.
Braz. j. biol ; 82: e241863, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278488

ABSTRACT

Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).


Subject(s)
Penicillium , Resorcinols , Anti-Bacterial Agents , Antifungal Agents
10.
Braz. j. biol ; 82: 1-9, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468536

ABSTRACT

Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).


Subject(s)
Antifungal Agents/isolation & purification , Phenolic Compounds/analysis , Penicillium/chemistry , Fusarium
11.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468723

ABSTRACT

Abstract Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Resumo Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).

12.
Mar Drugs ; 19(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34677428

ABSTRACT

To discover the new medical entity from edible marine algae, our continuously natural product investigation focused on endophytes from marine macroalgae Grateloupia sp. Two new azaphilones, 8a-epi-hypocrellone A (1), 8a-epi-eupenicilazaphilone C (2), together with five known azaphilones, hypocrellone A (3), eupenicilazaphilone C (4), ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (5), sclerotiorin (6), and isochromophilone IV (7) were isolated from the alga-derived fungus Penicillium sclerotiorum. The structures of isolated azaphilones (1-7) were elucidated by spectrometric identification, especially HRESIMS, CD, and NMR data analyses. Concerning bioactivity, cytotoxic, anti-inflammatory, and anti-fibrosis activities of those isolates were evaluated. As a result, compound 1 showed selective toxicity toward neuroblastoma cell line SH-SY5Y among seven cancer and one fibroblast cell lines. 20 µM of compounds 1, 3, and 7 inhibited the TNF-α-induced NFκB phosphorylation but did not change the NFκB activity. Compounds 2 and 6 respectively promoted and inhibited SMAD-mediated transcriptional activities stimulated by TGF-ß.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Microalgae , Penicillium , Pigments, Biological/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Aquatic Organisms , Benzopyrans/chemistry , Benzopyrans/therapeutic use , Cell Line, Tumor/drug effects , Fibroblasts/drug effects , Functional Food , Neuroblastoma/drug therapy , Pigments, Biological/chemistry , Pigments, Biological/therapeutic use , Structure-Activity Relationship
13.
Metabolites ; 11(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34357338

ABSTRACT

Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).

14.
Mar Drugs ; 17(5)2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31052279

ABSTRACT

Four new azaphilones, sclerotiorins A-D (1-4), as well as the dimeric sclerotiorin E (5) of which we first determined its absolute configuration, and 12 known analogues (5-16) were isolated from the fermentation broth of Penicillium sclerotiorum OUCMDZ-3839 associated with a marine sponge Paratetilla sp.. The new structures, including absolute configurations, were elucidated by spectroscopic analyses, optical rotation, ECD spectra, X-ray single-crystal diffraction, and chemical transformations. Compounds 11 and 14 displayed significant inhibitory activity against α-glycosidase, with IC50 values of 17.3 and 166.1 µM, respectively. In addition, compounds 5, 7, 10, 12-14, and 16 showed moderate bioactivity against H1N1 virus.


Subject(s)
Benzopyrans/pharmacology , Penicillium/chemistry , Pigments, Biological/pharmacology , Animals , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Fungi , Glycoside Hydrolases/drug effects , Influenza A Virus, H1N1 Subtype/drug effects , Molecular Structure , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Porifera
15.
J Agric Food Chem ; 67(8): 2175-2182, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30702881

ABSTRACT

Nine new azaphilone alkaloids, penazaphilones A-I (1-9), were isolated from the solid fermented rice culture of Penicillium sclerotiorum cib-411. The structures of compounds 1-9 were elucidated based on HRESIMS, NMR, and CD spectroscopic data. The structures of 5 and 8 were confirmed by X-ray crystallographic analyses. Biological evaluation showed that compounds 1, 5, 6, and 8 inhibited the production of nitric oxide (NO) on RAW 264.7 cells stimulated by lipopolysaccharide with IC50 values of 15.29, 9.34, 9.50, and 7.05 µM, respectively. Meanwhile, they did not exhibit obvious cytotoxicity at a concentration of 50.0 µM.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Benzopyrans/pharmacology , Penicillium/chemistry , Pigments, Biological/pharmacology , Alkaloids/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Benzopyrans/chemistry , Macrophages/drug effects , Macrophages/immunology , Mice , Molecular Structure , Pigments, Biological/chemistry , RAW 264.7 Cells
16.
Biomed Pharmacother ; 105: 1062-1071, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30021342

ABSTRACT

Seventeen endophytic fungi were isolated from various tissues of Cassia fistula and the ethyl acetate extracts obtained from 21-day cultures of all the endophytic fungal isolates were initially screened for their cytotoxicity against HeLa (human cervical carcinoma) cells using MTT assay. Of these, Penicillium sclerotiorum extract (PSE), significantly affected the viability of HeLa cells in a dose-dependent manner. The extract of P. Sclerotiorum was further analyzed by GC-MS, which showed three compounds, hexadecanoic acid, oleic acid and benzoic acid to be the major active principles in the extracts.The extract was further tested for invitro cytotoxicity against five cancer cell lines. Of the cell lines tested, HeLa cells showed maximum sensitivity followed by A549, while A431 and U251 were moderately sensitive and MCF-7 was insensitive to the treatment. In addition, normal human embryonic kidney cells, HEK293 remained insensitive to the treatment. Furthermore, the mechanism of cytotoxic activity exhibited by PSE was investigated by evaluating cell cycle progression and apoptotic induction in HeLa cells. Cell cycle analysis revealed that the PSE arrested cells at S and G2/M phase of the cell cycle in a dose-dependent manner. Annexin V- Propidium iodide double staining showed that, the extract potentiates apoptosis rather than necrosis in cells. This was supported by the down regulation in the proapoptotic protein BCL2 and up regulation of BAX (BCL2 Associated X), tumor suppressor protein, p53 and Apaf-1 [Apoptotic Peptidase Activating Factor 1]. Loss of mitochondrial membrane potential and a distinct DNA fragmentation pattern observed following the treatment, suggest that the PSE treatment leads to activation of mitochondrial pathway of apoptosis. Further, the extract also exhibited both antioxidant and anti-angiogenic properties. These results indicate that endophytic fungi isolated from medicinal plants may serve as potential sources of the anti-cancerous compounds.


Subject(s)
Apoptosis/drug effects , Cassia , Cell Cycle Checkpoints/drug effects , Endophytes/drug effects , Mitochondrial Membranes/drug effects , Penicillium , Uterine Cervical Neoplasms/metabolism , A549 Cells , Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Dose-Response Relationship, Drug , Endophytes/physiology , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Mitochondrial Membranes/physiology , Penicillium/isolation & purification , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Uterine Cervical Neoplasms/drug therapy
17.
Lett Appl Microbiol ; 66(3): 222-230, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29285768

ABSTRACT

The aim of this study was to optimize the culture conditions of a marine-derived fungus Penicillium sclerotiorum M-22 for the production of penicilazaphilone C (PAC), a novel azaphilonidal derivative exhibiting broad cytotoxic and antibacterial effects. By single factor experiments, the effects to the production of PAC of aged seawater concentration, initial pH values, fermentation time, carbon sources, nitrogen sources and inorganic salt sources were investigated individually. Response surface methodology (RSM) analysis was adopted to investigate the interactions between variables and determine the optimal values for maximum PAC production. Evaluation of the experimental results signified that the optimum conditions for maximum production of PAC (19·85 mg l-1 ) in 250 ml Erlenmeyer flask were fermentation time 24·83 days, pH of 7·00, corn meal concentration of 10·72 g l-1 , yeast extract concentration of 4·58 g l-1 , crude sea salt concentration of 20·59 g l-1 . Production under optimized conditions increased to 1·344-fold comparing to its production prior to optimization. The higher PAC production and the penicilazaphilone C -producing marine fungus would be provide a promising alterative approach for industrial and commercial applications. SIGNIFICANCE AND IMPACT OF THE STUDY: Penicilazaphilone C (PAC) was a novel azaphilonidal derivative which had exhibited selective cytotoxicity and antibacterial activity. To further enhance production of PAC by optimizing fermentation conditions of Penicillium sclerotiorum M-22 would provide a promising alterative approach for industrial and commercial applications. We used the single factor test to determine the key factors which influence the PAC production. Then through the Response surface methodology and Box-Behnken design to determine the best fermentation condition for maximum production of PAC. Through these experimental designs and analysis will help us improve experimental efficiency and save time and materials.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Benzopyrans/metabolism , Culture Media/chemistry , Penicillium/growth & development , Penicillium/metabolism , Carbon/analysis , Fermentation , Hydrogen-Ion Concentration , Nitrogen/analysis , Polyketides/metabolism
18.
Arch Pharm Res ; 39(12): 1621-1627, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27605109

ABSTRACT

Two azaphilonidal derivatives [penicilazaphilones B (1) and C (2)], have been isolated from the fermented products of marine fungus strain Penicillium sclerotiorum M-22, penicilazaphilones C was a new compound. The compound's structures were identified by the analysis of spectroscopic data including 1D and 2D NMR techniques (1H-NMR, 13C-NMR, COSY, HMQC, and HMBC). Biological evaluation revealed that penicilazaphilones B and C showed selective cytotoxicity against melanoma cells B-16 and human gastric cancer cells SGC-7901 with IC50 values of 0.291, 0.449 and 0.065, 0.720 mM, respectively, while exhibiting no significant toxicity to normal mammary epithelial cells M10 at the same concentration. Moreover, penicilazaphilones C also exhibited strong antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli with MIC values 0.037-0.150 mM, while penicilazaphilones B's bacteriostatic action was weaker.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Penicillium , Pigments, Biological/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Fungi , Humans , Melanoma, Experimental , Mice , Microbial Sensitivity Tests/methods , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification
19.
J Asian Nat Prod Res ; 16(5): 542-8, 2014.
Article in English | MEDLINE | ID: mdl-24773150

ABSTRACT

One new naturally occurring 7-membered 2,5-dioxopiperazine alkaloid named (+)-cyclopenol (1), along with nine known compounds including viridicatol (2), 3-(dimethylaminomethyl)-1-(1,1-dimethyl-2-propenyl)indole (3), anacine (4), aurantiomide C (5), viridicatin (6), 3-O-methylviridicatin (7), verrucosidin (8), ergosterol (9), and ergosterol peroxide (10), was isolated from the EtOAc extract of fungus Penicillium sclerotiorum, an endophytic fungal strain isolated from Chinese mangrove Bruguiera gymnorrhiza. The chemical structure of the new compound 1 was elucidated on the basis of detailed spectroscopic analysis. The absolute configuration of 1 was determined by single-crystal X-ray analysis with Cu Kα radiation (λ = 1.54178 Å). To our knowledge, (+)-cyclopenol (1) represents the first example of 7-membered 2,5-dioxopiperazine isolated from mangrove endophytic fungus.


Subject(s)
Alkaloids/isolation & purification , Benzodiazepinones/isolation & purification , Penicillium/chemistry , Rhizophoraceae/microbiology , Alkaloids/chemistry , Benzodiazepinones/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
20.
Braz. j. microbiol ; 38(4): 785-789, Oct.-Dec. 2007. ilus, tab
Article in English | LILACS | ID: lil-473499

ABSTRACT

As a part of a research program that aims to identify antibacterial and antifungal substances from fungus specimen of Brazilian's cerrado soil samples, Penicillium sclerotiorum was identified as a source of secondary metabolites possessing antibiotic activities. This microorganism was cultured in a liquid medium rich in glucose for fifteen days. The resulting ethyl acetate extract was chemically fractionated leading to the isolation of three metabolites pencolide, sclerotiorin and isochromophilone VI. The antimicrobial disc assay activity of these substances towards Candida albicans, Streptomyces pyogenes, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli was performed. Minimum inhibitory concentration (MIC) of the compounds was determined. All compounds showed distinguished antimicrobial activities.


Como parte de um programa de pesquisa visando a identificação de substâncias antibacterianas e antifúngicas a partir de espécies fúngicas isoladas de solo do cerrado, foi estudado o fungo Penicillium sclerotiorum van Beyma. Este microrganismo foi cultivado em meio líquido rico em glicose e, após extração com acetato de etila, este foi quimicamente fracionado levando ao isolamento de três metabólitos pencolídeo, esclerotiorina e isocromofilona VI. A atividade destas três substâncias, por meio de teste de difusão em discos, contra Candida albicans, Streptomyces pyogenes, Staphylococcus aureus, Salmonella typhimurium e Escherichia coli foi avaliada. A concentração inibitória mínina das substâncias ativas foi determinada.

SELECTION OF CITATIONS
SEARCH DETAIL
...