Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
J Epilepsy Res ; 14(1): 21-28, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978532

ABSTRACT

Background and Purpose: Epilepsy is a common and heterogenous neurological disorder characterized by recurrent spontaneous seizures. Animal models like rats play a crucial role in finding of mechanism of epilepsy in different brain regions. i.e., cerebral cortex, cerebellum, hippocampus, and pons medulla. Glutamate is an important excitatory neurotransmitter in the central nervous system and also glutamate plays a vital role in neuronal development and memory. The process of neuronal death evolved by glutamate receptor activation, has been hypothesized in both acute and chronic degenerative disorders including epilepsy. Considering the multifactorial neurochemical and neurophysiological malfunctions consequent to epileptic seizures, a few antiepileptic drugs are designed, to mitigate the debilitating aspects of epilepsy. Methods: Rat model, pentylenetetrazole (PTZ), an anticonvulsant drug, was selected for the present study. Induction of epilepsy/convulsions was induced by an intraperitoneal injection of PTZ (60 mg/kg body weight) in saline. Biochemical assays performed through spectrophotometer. Results: Glutamine and Glutamine synthetase levels were decreased in the epileptic rats brain regions i.e., hippocampus, cerebellum, cerebral cortex, and pons medulla; glutamate dehydrogenase and glutaminase levels were increased in all the regions of epilepsy induced rats. Highest values are recorded in hippocampus when compared to other brain regions. Conclusion: PTZ suppresses the function of Glutamine and Glutamine synthetase activities in selected brain regions of rat and enhances the activities of the glutaminase and glutamate dehydrogenase when compared to control rats.

2.
J Epilepsy Res ; 14(1): 9-16, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978533

ABSTRACT

Background and Purpose: Sumatriptan protects the brain from damage and enhance the anti-seizure effect of morphine. There is evidence that nitric oxide (NO) may mediate these effects of both drugs. In the present study, we investigated the effects of sumatriptan (0.1-20 mg/kg, intraperitoneal [i.p.]) and morphine (0.1-20 mg/kg, i.p.) alone or in combination on seizure thresholds in an in vivo model of seizure in mice. Using various NO synthase inhibitors as well as the NO precursor, we assessed possible involvement of NO signaling in these effects. Methods: Clonic seizures were induced in male Naval Medical Research Institute mice by intravenous administration of pentylenetetrazol (PTZ). Results: Acute sumatriptan administration exerted anti-convulsive effects at 0.5 (p<0.01) and 1 mg/kg (p<0.05), but pro-convulsive effects at 20 mg/kg (p<0.05). Morphine had anti-convulsive effects at 0.5 (p<0.05) and 1 mg/kg (p<0.001), but exerted pro-convulsive effect at 20 mg/kg (p<0.05). Combination treatment with sub-effective doses of sumatriptan (0.1 mg/kg) and morphine (0.1 mg/kg) significantly (p<0.05) exerted an anti-convulsive effect. Co-administration of the NO precursor L-arginine (60 mg/kg) with sub-effective doses of sumatriptan and morphine significantly (p<0.05) increased seizure threshold compared with sumatriptan alone, but not sumatriptan+morphine group. While concomitant administration of either the non-selective NO synthase (NOS) inhibitor L-NG-nitroarginine methyl ester (5 mg/kg) or the selective inducible NOS inhibitor aminoguanidine (50 mg/kg) with combined sub-effective doses of morphine and sumatriptan produced significant anticonvulsive effects, concomitant administration with the selective neuronal NOS inhibitor 7-nitroindazole (30 mg/kg) inhibited this effect. Conclusions: Our data suggest a possible role for the NO signaling in the anticonvulsive effects of combined sumatriptan and morphine on the PTZ-induced clonic seizures in mice.

3.
Inflammation ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044002

ABSTRACT

Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.

4.
Epilepsy Behav ; 158: 109898, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39002273

ABSTRACT

GABA modulators such as phenobarbital (PB) and sodium channel blockers such as phenytoin (PHT) have long been the mainstay of pharmacotherapy for the epilepsies. In the context of neonatal seizures, both PB and PHT display incomplete clinical efficacy. Moreover, in animal models, neonatal exposure to these medications result in neurodegeneration raising concerns about safety. Cenobamate, a more recently approved medication, displays unique pharmacology as it is both a positive allosteric modulator of GABA-A receptors, and a voltage-gated sodium channel blocker. While cenobamate is approved for adult use, its efficacy and safety profile against neonatal seizures is poorly understood. To address this gap, we assessed the efficacy and safety of cenobamate in immature rodents. Postnatal day (P)7 rat pups were pretreated with cenobamate and challenged with the chemoconvulsant pentylenetetrazole (PTZ) to screen for anti-seizure effects. In a separate experiment, P7 rats were treated with cenobamate, and brains were processed to assess induction of cell death. Cenobamate displays dose-dependent anti-seizure efficacy in neonatal rats. Unlike PHB and PHT, it does not induce neurotoxicity in P7 rats. Thus, cenobamate may be effective at treating neonatal seizures while avoiding unwanted neurotoxic side effects such as cell death.

5.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38830458

ABSTRACT

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Subject(s)
Anticonvulsants , Neuroprotective Agents , Peptides , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Scorpion Venoms , Seizures , Animals , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Rats , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Seizures/drug therapy , Seizures/prevention & control , Peptides/pharmacology , Peptides/therapeutic use , Peptides/chemistry , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/chemistry , Pentylenetetrazole , p38 Mitogen-Activated Protein Kinases/metabolism , Hot Temperature , Epilepsy/drug therapy , Epilepsy/chemically induced , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Disease Models, Animal
6.
Arch Pharm (Weinheim) ; : e2400357, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943436

ABSTRACT

Anticonvulsant drug discovery has achieved significant progress; however, pharmacotherapy of epilepsy continues to be a challenge for modern medicine and pharmacy. To expand the chemical space of heterocycles as potential antiepileptic agents, herein we report on the synthesis and evaluation of anticonvulsant properties of a series of thiopyrano[2,3-d]thiazoles. The studied heterocycles are characterized by satisfactory drug-likeness and pharmacokinetics properties, calculated in silico using SwissADME. The anticonvulsant activity of thiopyrano[2,3-d]thiazole derivatives was evaluated in vivo using the subcutaneous pentylenetetrazole test. Three hits, that is, compounds 12, 14, and 16, that caused a pronounced anticonvulsant effect were identified. Derivatives 12, 14, and 16 positively affected the latent period of onset of clonic seizures, number of seizures, mortality rate, and duration of the seizure period of animals under experimental conditions. The anticonvulsant properties of compound 14 were equivalent to the effect of the reference drug, sodium valproate. All hit compounds are characterized by satisfying toxicity properties in the human lymphocytes and HEK293 cell line. The most active hit 14 possesses a potential affinity with the GABAA receptor in the molecular docking study and forms a stable complex in the molecular dynamics experiments equal to diazepam. Preliminary SAR results were obtained and discussed based on screening data.

7.
Epilepsy Behav ; 157: 109866, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820680

ABSTRACT

Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.


Subject(s)
Calcium , Flavonoids , Larva , Neurons , Pentylenetetrazole , Seizures , Zebrafish , Animals , Flavonoids/pharmacology , Seizures/drug therapy , Seizures/chemically induced , Larva/drug effects , Calcium/metabolism , Neurons/drug effects , Disease Models, Animal , Anticonvulsants/pharmacology , Dose-Response Relationship, Drug , Convulsants/toxicity , Locomotion/drug effects , Motor Activity/drug effects
8.
Anat Sci Int ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782867

ABSTRACT

Epilepsy is a common neurological disorder that significantly affects the quality of life of patients. In this study, we aim to evaluate the effectiveness of dental pulp stem cell (DPSC) transplantation in decreasing inflammation and cell death in brain cells, thus reducing seizure damage. We induced seizures in rats using intraperitoneal injections of pentylenetetrazole (PTZ). In the PTZ + DPSC group, we conducted bilateral hippocampal transplantation of DPSCs in PTZ-lesioned rat models. After 1 month, we performed post-graft analysis and measured some behavioral factors, such as working memory and long-term memory, using a T-maze test and passive avoidance test, respectively. We investigated the immunohistopathology and distribution of astrocyte cells through light microscopy and Sholl analysis. Additionally, we employed the Voronoi tessellation method to estimate the spatial distribution of the cells in the hippocampus. Compared to the control group, we observed a reduction in astrogliosis, astrocyte process length, the number of branches, and intersections distal to the soma in the hippocampus of the PTZ + DPSC group. Further analysis indicated that the grafted DPSCs decreased the expression of caspase-3 in the hippocampus of rats with induced seizures. Moreover, the DPSCs transplant protected hippocampal pyramidal neurons against PTZ toxicity and improved the spatial distribution of the hippocampal neurons. Our findings suggest that DPSCs transplant can be an effective modifier of astrocyte reactivation and inflammatory responses.

9.
Neurol Res ; 46(8): 717-726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679045

ABSTRACT

Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.


Subject(s)
Anticonvulsants , Disease Models, Animal , Kindling, Neurologic , Piroxicam , Rats, Wistar , Animals , Piroxicam/pharmacology , Male , Kindling, Neurologic/drug effects , Anticonvulsants/pharmacology , Rats , Pentylenetetrazole , Seizures/drug therapy , Cytokines/metabolism , Diazepam/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dose-Response Relationship, Drug , Epilepsy/drug therapy
10.
Pharmacol Biochem Behav ; 239: 173755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527654

ABSTRACT

INTRODUCTION: One of the mechanisms of epileptgenesis is impairment of inhibitory neural circuits. Several studies have compared neural changes among subtypes of gamma-aminobutyric acid-related (GABAergic) neurons after acquired epileptic seizure. However, it is unclear that GABAergic neural modifications that occur during acquisition process of epileptic seizure. METHODS: Male rats were injected with pentylenetetrazole (PTZ kindling: n = 30) or saline (control: n = 15) every other day to observe the development of epileptic seizure stages. Two time points were identified: the point at which seizures were most difficult to induce, and the point at which seizures were most easy to induce. The expression of GABAergic neuron-related proteins in the hippocampus was immunohistochemically compared among GABAergic subtypes at each of these time points. RESULTS: Bimodal changes in seizure stages were observed in response to PTZ kindling. The increase of seizure stage was transiently suppressed after 8 or 10 injections, and then progressed again by the 16th injection. Based on these results, we defined 10 injections as a short-term injection period during which seizures are less likely to occur, and 20 injections as a long-term injection period during which continuous seizures are likely to occur. The immunohistochemical analysis showed that hippocampal glutamic acid decarboxylase 65 (GAD65) expression was increased after short-term kindling but unchanged after long-term kindling. Increased GAD65 expression was limited to somatostatin-positive (SOM+) cells among several GABAergic subtypes. By contrast, GAD, GABA, GABAAR α1, GABABR1, and VGAT cells showed no change following short- or long-term PTZ kindling. CONCLUSION: PTZ kindling induces bimodal changes in the epileptic seizure stage. Seizure stage is transiently suppressed after short-term PTZ injection with GAD65 upregulation in SOM+ cells. The seizure stage is progressed again after long-term PTZ injection with GAD65 reduction to baseline level.


Subject(s)
Glutamate Decarboxylase , Hippocampus , Interneurons , Kindling, Neurologic , Pentylenetetrazole , Somatostatin , Animals , Male , Glutamate Decarboxylase/metabolism , Kindling, Neurologic/drug effects , Kindling, Neurologic/metabolism , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Interneurons/metabolism , Somatostatin/metabolism , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/metabolism
11.
Chem Biodivers ; 21(5): e202400056, 2024 May.
Article in English | MEDLINE | ID: mdl-38472742

ABSTRACT

N-Arylenaminones are highly versatile compounds which can be synthesized in relatively simple ways. In this work we explored the synthesis of the four monosubstituted N-(4-R-phenyl)enaminones 3 a (R=NO2), 3 b (R=F), 3 c (R=H), and 3 d (R=OMe) with the goal of determining the influence of the substituents' electronic effects on tautomer stability and biological activity. These compounds were analyzed by means of Density Functional Theory calculations (DFT), to evaluate the relative stability of the possible tautomers. We found that the enaminone structure is the most stable with respect to the ketoimine and iminoenol forms. In addition, all four compounds display anticonvulsant activity, with 3 d being the one that mostly increased latency and mostly decreased the number of convulsions with respect to the control group. The suggested mechanism of action involves blockage of the voltage-dependent Na+ channels, considering that these molecules meet the structural characteristics needed to block the receptor, as is the case of the positive control molecules phenytoin (PHT) and valproic acid (VPA).


Subject(s)
Anticonvulsants , Density Functional Theory , Anticonvulsants/pharmacology , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Animals , Seizures/drug therapy , Structure-Activity Relationship , Mice , Molecular Structure
12.
Epilepsy Res ; 199: 107276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091904

ABSTRACT

Targeted intracerebral drug delivery is an attractive experimental approach for the treatment of drug-resistant epilepsies. In this regard, the subthalamic nucleus (STN) represents a focus-independent target involved in the remote modulation and propagation of seizure activity. Indeed, acute and chronic pharmacological inhibition of the STN with vigabatrin (VGB), an irreversible inhibitor of GABA transaminase, has been shown to produce antiseizure effects. This effect, however, is lost over time as tolerance develops with chronic, continuous intracerebral pharmacotherapy. Here we investigated the antiseizure effects of chronic intermittent intra-STN convection-enhanced delivery of VGB in an acute rat seizure model focusing on circumventing tolerance development and preventing adverse effects. Timed intravenous pentylenetetrazol (PTZ) seizure threshold testing was conducted before and after implantation of subcutaneous drug pumps and bilateral intra-STN cannulas. Drug pumps infused vehicle or VGB twice daily (0.4 µg) or once weekly (2.5 µg, 5 µg) over three weeks. Putative adverse effects were evaluated and found to be prevented by intermittent compared to previous continuous VGB delivery. Clonic seizure thresholds were more clearly raised by intra-STN VGB compared to myoclonic twitch. Both twice daily and once weekly intra-STN VGB significantly elevated clonic seizure thresholds depending on dose and time point, with responder rates of up to 100% observed at tolerable doses. However, tolerance could not be completely avoided, as tolerance rates of 40-75% were observed with chronic VGB treatment. Results indicate that the extent of tolerance development after intermittent intra-STN VGB delivery varies depending on infusion dose and regimen.


Subject(s)
Subthalamic Nucleus , Vigabatrin , Rats , Animals , Vigabatrin/therapeutic use , Vigabatrin/pharmacology , Anticonvulsants/pharmacology , Convection , Seizures/drug therapy , Seizures/chemically induced
13.
Toxicon ; 237: 107538, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030096

ABSTRACT

Epilepsy affects around 50 million people worldwide and 30% of patients have difficulty controlling the disease. The search for substances that can fill the existing gaps in the treatment of epilepsy is of great importance. Arthropod venoms are promising sources for this purpose due to the presence of small peptides that modulate the activity of ion channels and neuron receptors. The aim of this study was to investigate dinoponeratoxins from the Dinoponera quadriceps ant venom (M-PONTX-Dq3a, M-PONTX-Dq3b and M-PONTX-Dq3c) as potential anticonvulsants. We evaluated them in a seizure model induced by pentylenetetrazole (PTZ) in male swiss mice. Interestingly, intraperitoneal treatment with each peptide increased the time until the first seizure and the percentage of survival, with M-PONTX-Dq3b showing the best results. M-PONTX-Dq3a was discarded due to the appearance of some signs of toxicity with the increase in malondialdehyde (MDA) levels in the striatum. Both, M-PONTX-Dq3b and M-PONTX-Dq3c decreased iNOS and TNF-α in the hippocampus. Notably, M-PONTX-Dq3c treatment decreased the levels of MDA and nitrite in the cortex and hippocampus. Our results indicate that, M-PONTX-Dq3b and M-PONTX-Dq3c have anticonvulsant activity and exhibit anti-inflammatory effects in epilepsy, offering new perspectives for biopharmaceutical development.


Subject(s)
Ants , Epilepsy , Humans , Mice , Animals , Male , Antimicrobial Peptides , Pentylenetetrazole/toxicity , Venoms/toxicity , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Peptides/chemistry
14.
Biomed Pharmacother ; 170: 115935, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101280

ABSTRACT

Chemical kindling is broadly used experimental model to investigate novel treatments on the process of epileptogenesis and coexisting behavioral comorbidities. The current study aimed to investigate the low dose perampanel (PER) (0.125 and 0.5 mg/kg) and pregabalin (PG) (15 mg/kg) as standalone treatments and in combination on kindling-induced seizure progression with concurrent electroencephalographic alterations. Mice were subjected to pentylenetetrazole (PTZ)-induced kindling followed by neurobehavioral assessment for anxiety-like activity and cognitive deficit through behavioral experiments. The monotherapy with PER at 0.5 mg/kg and PG at 15 mg/kg delayed the kindling process but PRP+PG yielded pronounced benefits and hindered the development of seizures of higher severity. PER+PG combination relieved the animals from anxiety-like behavior in various employed anxiogenic tests. Furthermore, the kindling-associated cognitive deficit was protected by PER+PG combination as increased alteration behavior, discrimination index and latencies to enter the dark zone were noted in y-maze, object recognition and passive avoidance tests, respectively while shorter escape latencies were noted in water maze. The brain samples of kindled mice had elevated malondialdehyde and reduced catalase, superoxide dismutase and glutathione peroxidase enzymes while treatment with PER and PG combination shielded the mice from heightened kindling-associated oxidative stress. Overall, the findings of the present study illustrate that concurrent administration of PER and PG effectively hindered the process of epileptogenesis by protecting neuronal excitability and brain oxidative stress. The results predict the dominance of PER and PG combination over monotherapy which might serve as an effective novel combination to combat drug resistance and behavioral disorders in epileptic patients.


Subject(s)
Epilepsy , Kindling, Neurologic , Humans , Mice , Animals , Pentylenetetrazole/pharmacology , Pregabalin/adverse effects , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/drug therapy , Oxidative Stress , Anticonvulsants/adverse effects
15.
Iran J Med Sci ; 48(3): 329-340, 2023 05.
Article in English | MEDLINE | ID: mdl-37791336

ABSTRACT

Background: Edaravone is an anti-stroke medication that may have nitric oxide (NO) modulating properties. This study evaluated the role of NO in the acute and sub-chronic anticonvulsant effects of edaravone in murine models of seizures induced by intraperitoneal (IP) or intravenous (IV) injections of pentylenetetrazole (PTZ) or electroshock (maximal electroshock seizure [MES]). Methods: 132 male albino mice were randomly divided into 22 groups (n=6) and given IP injections of vehicle or edaravone either acutely or for eight days (sub-chronically). The seizure was induced by electroshock or PTZ (IP or IV). The following edaravone doses were used: 7.5, 10, 12.5 (acute); 5, 7.5, 10 (sub-chronic) in IP PTZ model; 5, 7.5, 10 in IV PTZ model; and 5, 10 mg/Kg in the MES. To evaluate NO involvement, 216 mice were randomly divided into 36 groups (n=6) and pretreated with vehicle, edaravone, a non-specific nitric oxide synthase (NOS) inhibitor: N(ω)-nitro-L-arginine methyl ester (L-NAME) (5 mg/Kg), a specific nNOS inhibitor: 7-nitroindazole (7-NI) (60 mg/Kg), or a combination of edaravone plus L-NAME or 7-NI, either acutely or for eight days before seizure induction. Doses of edaravone were as follows: in IP PTZ model: 12.5 (acute) and 10 (sub-chronic); in IV PTZ model: 10; and in the MES: 5 mg/Kg. Data were analyzed using the one-way analysis of variance (ANOVA) followed by Tukey's test (SPSS 18). P≤0.05 was considered statistically significant. Results: In the IP PTZ model, edaravone increased time latencies to seizures (P<0.001), prevented tonic seizures, and death. Edaravone increased the seizure threshold (P<0.001) in the IV PTZ model and shortened the duration of tonic hind-limb extension (THE) in the MES model (P<0.001). In comparison to mice treated with edaravone alone, adding L-NAME or 7-NI reduced seizure time latencies (P<0.001), reduced seizure threshold (P<0.001), and increased THE duration (P<0.001). Conclusion: Edaravone (acute or sub-chronic) could prevent seizures by modulating NO signaling pathways.


Subject(s)
Anticonvulsants , Pentylenetetrazole , Male , Mice , Animals , Pentylenetetrazole/adverse effects , Anticonvulsants/adverse effects , Edaravone/adverse effects , Nitric Oxide/adverse effects , Nitric Oxide/metabolism , NG-Nitroarginine Methyl Ester/adverse effects , Electroshock/adverse effects , Seizures/etiology , Seizures/chemically induced , Enzyme Inhibitors/adverse effects
16.
Ceska Slov Farm ; 72(4): 172-183, 2023.
Article in English | MEDLINE | ID: mdl-37805263

ABSTRACT

Neuroinflammation plays an important role in the pathogenesis of epilepsy, so it is necessary to clarify the influence of standard antiepileptic drugs as well as adjuvant agents (e.g., cardiac glycoside digoxin, which previously showed a clear anticonvulsant potential) on cyclooxygenase pathway and neuron-specific enolase under the conditions of chronic epileptogenesis. The aim of the article is to determine the effect of digoxin, sodium valproate, and celecoxib per se, as well as the combination of digoxin with sodium valproate on the content of cyclooxygenase 1 and 2 types, prostaglandins E2, F2α, I2, thromboxane B2, 8-isoprostane and neuron-specific enolase in the brain of mice in the pentylenetetrazole-induced kindling model. It was found that only the combination of sodium valproate with digoxin provides a complete protective effect (absence of seizures) and shows the clearest influence on neuroinflammation markers and neuronal damage than monotherapy with each of these drugs and celecoxib, which appeared to be an ineffective anticonvulsant. The obtained results indicate that digoxin is a promising adjuvant drug to classical antiepileptic drugs (mostly sodium valproate) in epilepsy treatment.c.


Subject(s)
Epilepsy , Valproic Acid , Rats , Mice , Animals , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Pentylenetetrazole/pharmacology , Pentylenetetrazole/therapeutic use , Celecoxib/pharmacology , Celecoxib/therapeutic use , Prostaglandin-Endoperoxide Synthases/therapeutic use , Digoxin/therapeutic use , Neuroinflammatory Diseases , Rats, Wistar , Epilepsy/chemically induced , Epilepsy/drug therapy , Phosphopyruvate Hydratase/therapeutic use
17.
Pharmacol Rep ; 75(6): 1544-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37814098

ABSTRACT

BACKGROUND: Epilepsy is a prevalent neurological disease, affecting approximately 1-2% of the global population. The hallmark of epilepsy is the occurrence of epileptic seizures, which are characterized by predictable behavioral changes reflecting the underlying neural mechanisms of the disease. Unfortunately, around 30% of patients do not respond to current pharmacological treatments. Consequently, exploring alternative therapeutic options for managing this condition is crucial. Two potential candidates for attenuating seizures are N-acetylcysteine (NAC) and Acetyl-L-carnitine (ALC), as they have shown promising neuroprotective effects through the modulation of glutamatergic neurotransmission. METHODS: This study aimed to assess the effects of varying concentrations (0.1, 1.0, and 10 mg/L) of NAC and ALC on acute PTZ-induced seizures in zebrafish in both adult and larval stages. The evaluation of behavioral parameters such as seizure intensity and latency to the crisis can provide insights into the efficacy of these substances. RESULTS: Our results indicate that both drugs at any of the tested concentrations were not able to reduce PTZ-induced epileptic seizures. On the other hand, the administration of diazepam demonstrated a notable reduction in seizure intensity and increased latencies to higher scores of epileptic seizures. CONCLUSION: Consequently, we conclude that, under the conditions employed in this study, NAC and ALC do not exhibit any significant effects on acute seizures in zebrafish.


Subject(s)
Epilepsy , Zebrafish , Animals , Humans , Adult , Acetylcysteine/therapeutic use , Acetylcarnitine/adverse effects , Larva , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/drug therapy , Epilepsy/drug therapy , Anticonvulsants/therapeutic use , Disease Models, Animal
18.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37765031

ABSTRACT

The ameliorative effect of ethanolic extract of M. oleifera (MOEE) leaves in combination with curcumin against seizures, cognitive impairment, and oxidative stress in the molecular docking of PTZ-induced kindled rats was performed to predict the potential phytochemical effects of MOEE and curcumin against epilepsy. The effect of pretreatment with leaves of M. oleifera ethanolic extracts (MOEE) (250 mg/kg and 500 mg/kg, orally), curcumin (200 mg/kg and 300 mg/kg, orally), valproic acid used as a standard (100 mg/kg), and the combined effect of MOEE (250 mg/kg) and curcumin (200 mg/kg) at a low dose on Pentylenetetrazole was used for (PTZ)-induced kindling For the development of kindling, individual Wistar rats (male) were injected with pentyletetrazole (40 mg/kg, i.p.) on every alternate day. Molecular docking was performed by the Auto Dock 4.2 tool to merge the ligand orientations in the binding cavity. From the RCSB website, the crystal structure of human glutathione reductase (PDB ID: 3DK9) was obtained. Curcumin and M. oleifera ethanolic extracts (MOEE) showed dose-dependent effects. The combined effects of MOEE and curcumin leaves significantly improved the seizure score and decreased the number of myoclonic jerks compared with a standard dose of valproic acid. PTZ kindling induced significant oxidative stress and cognitive impairment, which was reversed by pretreatment with MOEE and curcumin. Glutathione reductase (GR) is an enzyme that plays a key role in the cellular control of reactive oxygen species (ROS). Therefore, activating GR can uplift antioxidant properties, which leads to the inhibition of ROS-induced cell death in the brain. The combination of the ethanolic extract of M. oleifera (MOEE) leaves and curcumin has shown better results than any other combination for antiepileptic effects by virtue of antioxidant effects. As per the docking study, chlorogenic acid and quercetin treated with acombination of curcumin have much more potential.

19.
Neurosci Insights ; 18: 26331055231198013, 2023.
Article in English | MEDLINE | ID: mdl-37720697

ABSTRACT

Epilepsy is one of the most common neurological diseases, which is caused by abnormal brain activity. A wide variety of studies have shown the importance of the phosphatidylinositol-3-kinase (PI3K) signaling pathway in epilepsy pathogenesis. Duvelisib (DUV) is a selective inhibitor of PI3K. The present study investigated the anticonvulsant potential of DUV in a rat model of pentylenetetrazole (PTZ)-induced convulsions. Male Wistar rats (200-250 g, 8 weeks old) were injected intraperitoneally (IP) with DUV at different doses of 5 and 10 mg/kg, or vehicle 30 minutes prior to PTZ (70 mg/kg, IP) treatment. Based on Racine's scale, behavioral seizures were assessed. The results showed that pretreatment with DUV prolonged the seizure stages according to the Racine scale, significantly decreased the duration of general tonic-clonic seizure and reduced the number of myoclonic jerks (P < .05). In conclusion, we found that PI3K antagonist DUV significantly reduced PTZ-induced seizures, indicating that DUV exerts an anticonvulsant effect by inhibiting PI3K signaling pathway.

20.
Rep Biochem Mol Biol ; 12(1): 147-158, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37724149

ABSTRACT

Background: To examine the impact of aging on the response of rats to pentylenetetrazole (PTZ)-induction of epilepsy and the possible role of oxidative stress and nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathway in this response. Methods: Forty male albino rats were equally allocated into 4 groups; 1) Young control (YC) group, aged 8-12 weeks, 2) Old control (OC) group, aged 24 months, 3) PTZ-Young group: young rats received PTZ (50 mg/Kg, i.p. every other day) for 2 weeks and 4) PTZ-Old group: as group 3 but rats were old. The seizure score stage and latency to the first jerk were recorded in rats. Redox state markers in brain tissues including malondialdehyde (MDA), catalase and total antioxidant capacity (TAC) were evaluated. Also, the expression of Nrf2 and HO-1 genes were measured in the brain tissues. Results: Old rats showed an early and a significant rise in the seizure score with PTZ administration and a significant drop in the seizure latency compared to young rats (P <0.01). Also, old rats showed a significantly higher MDA concentration and a significantly lower TAC and catalase activity than young rats (P <0.01). Moreover, the expression of Nrf2 and HO-1 was significantly lowered in old rats compared to young rats with PTZ administration (P < 0.01). Conclusion: Aging increases the vulnerability of rats to PTZ-induced epilepsy. An effect might come down to the up-regulation of oxidative stress and the down regulation of antioxidant pathways including Nrf2 and HO-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...