Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Food Chem ; 439: 138074, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38091791

ABSTRACT

A Pickering water-in-oil-in-water nanoemulsion co-encapsulating lysozyme (LYS) and Perilla leaf oil (PO) was prepared using whey protein isolate-tannin acid conjugated nanoparticles (WPI-TA NPs) as emulsifiers, called LYS-PO-NE, and subsequently analyzed. The nano size and multiple phases was confirmed based on the results of confocal laser scanning microscope, scanning electron microscope, and droplet size analysis. LYS-PO-NE had high encapsulation efficiencies of 89.36 % (PO) and 43.91 % (LYS) and both could be released at a slow and continuous rate. The PO addition increased the droplet size, and the LYS addition delayed the release of PO. LYS-PO-NE also showed good storage, pH, thermal, and salt stability, and an effective combined bactericidal activity of LYS and PO against spoilage bacteria. Furthermore, the results of chilled salmon storage experiments indicated that LYS-PO-NE could extend the shelf life of chilled salmon to at least 6 days, demonstrating the potential in the shelf life for fish products.


Subject(s)
Muramidase , Perilla , Animals , Emulsions/chemistry , Fish Products , Water/chemistry
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958616

ABSTRACT

Breast cancer is a common type of cancer characterized by high mortality rates. However, chemotherapy is not selective and often leads to side-effects. Therefore, there is a need for the development of highly efficient drugs. Recent studies have shown that some extracellular vesicles (EVs) derived from cell cultures possess anti-cancer activity and hold great potential as cancer therapeutics. However, the use of mammalian cell cultures for EV production results in low productivity and high costs. To address this issue, extracellular vesicles derived from perilla leaves (Perex) were isolated and investigated for their anti-cancer activity in various cancer cells. Initially, a high concentration of Perex with a low level of impurities was successfully purified through a combination of ultrafiltration and size-exclusion chromatography. Perex exhibited potent anti-cancer activities, inhibiting the proliferation, migration, and invasion of MDA-MB-231 cancer cells, which have high levels of caveolin-1 compared to other cancer and normal cells. This selective attack on cancer cells with high levels of caveolin-1 reduces unwanted side-effects on normal cells. Considering its high productivity, low production cost, selective anti-cancer activity, and minimal side-effects, Perex represents a promising candidate for the therapeutic treatment of breast cancer.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Caveolin 1/metabolism , Extracellular Vesicles/metabolism , Cell Culture Techniques , Cell Proliferation , Cell Line, Tumor , Mammals/metabolism
3.
Molecules ; 28(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38005276

ABSTRACT

The development of natural antioxidants to replace synthetic compounds is attractive. Perilla frutescens leaves were proven to be rich in antioxidants. The extraction of antioxidants from Perilla leaves via ultrasonic-assisted extraction (UAE) based on choline chloride-based deep eutectic solvents (DESs) was studied. Firstly, several DESs were prepared, and their extraction effects were compared. Secondly, the extraction process was optimized by single-factor experiments and response surface methodology (RSM). Finally, the optimization results were verified and compared with the results of traditional solvent-based UAE. The effects of solvents on the surface cell morphology of Perilla frutescens leaves were characterized by scanning electron microscopy (SEM). Choline chloride-acetic acid-based DES (ChCl-AcA) extract showed a relatively high ferric-reducing antioxidant activity (FRAP) and 2,2-diphenyl-1-picrylhyldrazyl radical scavenging rate (DPPH). Under the optimal operating conditions (temperature 41 °C, liquid-solid ratio 33:1, ultrasonic time 30 min, water content 25%, ultrasonic power 219 W), the experimental results are as follows: DPPH64.40% and FRAP0.40 mM Fe(II)SE/g DW. The experimental and predicted results were highly consistent with a low error (<3.38%). The values of the DPPH and FRAP were significantly higher than that for the water, ethanol, and butanol-based UAE. SEM analysis confirmed that ChCl-AcA enhanced the destruction of the cell wall, so that more antioxidants were released. This study provides an eco-friendly technology for the efficient extraction of antioxidants from Perilla frutescens leaves. The cytotoxicity and biodegradability of the extract will be further verified in a future work.


Subject(s)
Antioxidants , Perilla frutescens , Antioxidants/pharmacology , Antioxidants/chemistry , Deep Eutectic Solvents , Ultrasonics/methods , Solvents/chemistry , Water/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Choline
4.
Food Chem ; 427: 136688, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37385065

ABSTRACT

A novel absorbent pad based on polyvinyl alcohol (PVA)/gellan gum/citric acid (CA) composite with incorporated Perilla leaf oil (PO) nanoemulsion was prepared and characterized. The esterification between PVA and CA and strong hydrogen bonds were detected. The PVA improved the tensile strength and elongation at break by 110% and 73%, respectively, whereas PO concentration ≤ 1.5 % (w/v) had little effect on the material properties. The CA and PO nanoemulsion loaded in the pads showed good antioxidant activity, and the pads with PO concentration ≥ 1.5 % (w/v) had effective antimicrobial activity against Escherichia coli and Staphylococcus aureus. The results of chilled chicken storage experiments indicated that the pad with 1.5% (w/v) PO nanoemulsion extended the shelf life of chicken to at least 9 days, demonstrating that the developed absorbent pads are potential materials for chilled chicken storage packing.


Subject(s)
Chickens , Perilla , Animals , Polyvinyl Alcohol/chemistry , Citric Acid , Absorbent Pads , Food Packaging/methods , Anti-Bacterial Agents/chemistry
5.
Front Plant Sci ; 13: 989755, 2022.
Article in English | MEDLINE | ID: mdl-36531401

ABSTRACT

Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were applied to analyze metabolites in perilla leaves (PLs) during its developmental process. In total, 118 metabolites were identified, including volatile and non-volatile compounds, such as terpenoids, sugars, amino acids, organic acids, fatty acids, phenolic acids, flavonoids, and others. Principal component analysis (PCA) indicated great variations of metabolites during PLs development. Clustering analysis (CA) clarified the dynamic patterns of the metabolites. The heatmap of CA showed that most of the detected metabolites were significantly accumulated at stage 4 which is the pre anthesis period, and declined afterwards. The results of the present study provide a comprehensive overview of the metabolic dynamics of developing PLs which suggested that pre anthesis period is the best harvest time for PLs.

6.
Molecules ; 27(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296382

ABSTRACT

Perillae Folium (PF), the leaf of Perilla frutescens (L.) Britt, is extensively used as culinary vegetable in many countries. It can be divided into two major varietal forms based on leaf color variation, including purple PF (Perilla frutescens var. arguta) and green PF (P. frutescens var. frutescens). The aroma of purple and green PF is discrepant. To figure out the divergence of chemical composition in purple and green PF, gas chromatography-tandem mass spectrometry (GC-MS) was applied to analyze compounds in purple and green PF. A total of 54 compounds were identified and relatively quantified. Multivariate statistical methods, including principal component analysis (PCA), orthogonal partial least-squares discrimination analysis (OPLS-DA) and clustering analysis (CA), were used to screen the chemical markers for discrimination of purple and green PF. Seven compounds that accumulated discrepantly in green and purple PF were characterized as chemical markers for the discrimination of the purple and green PF. Among these 7 marker compounds, limonene, shisool and perillaldehyde that from the same branch of the terpenoid biosynthetic pathway were with relatively higher contents in purple PF, while perilla ketone, isoegomaketone, tocopheryl and squalene on other branch pathways were higher in green PF. The results of the present study are expected to provide theoretical support for the development and utilization of PF resources.


Subject(s)
Perilla frutescens , Squalene , Gas Chromatography-Mass Spectrometry , Limonene/analysis , Squalene/analysis , Perilla frutescens/chemistry , Plant Leaves/chemistry
7.
J Food Prot ; 84(6): 1069-1079, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33508089

ABSTRACT

ABSTRACT: Potato, the third most important food crop worldwide, is rich in nutrients but low in protein. In contrast, milk is rich in protein. Yogurt produced through the cofermentation of potatoes and milk is a highly nutritious food. The quality and shelf life of yogurt are important topics in the dairy industry. The objective of this study was to explore the effect of the addition of essential oil (EO) on the shelf life and quality of potato yogurt. The antimicrobial effects of several EOs, the effect of perilla leaf EO (PLEO) concentration on potato yogurt, and the volatile flavor components of PLEO and PLEO potato yogurt were evaluated. The effects of storage time and temperature on the pH, microbial counts, and sensory characteristics of PLEO potato yogurt also were analyzed to establish a shelf-life model. PLEO had an antimicrobial effect and was the appropriate EO for use in the potato yogurt. A total of 69 compounds were detected in PLEO, and limonene was the main compound. PLEO had an effect on the pH, sensory characteristics, and viable bacterial counts of potato yogurt during storage. The optimal concentration of added PLEO was 0.04%. PLEO had considerable influence on volatile flavor components, and the consumer acceptance of 0.04% PLEO potato yogurt was higher than that of potato yogurt without PLEO in the later stage of storage. The shelf life of potato yogurt with PLEO was 6 days longer than that of the control yogurt. PLEO also improved the concentrations of active terpene substances in potato yogurt. The prediction models based on pH and sensory scores at 5°C were established as A = A0e0.00323t and A = A0e0.00355t, respectively. Comparison of the accuracy factor and the deviation factor of the models revealed that the sensory prediction model was more accurate than the pH prediction model. The results of this study provide theoretical and data support for the industrial development of yogurt with EOs, including extension and prediction of its shelf life.


Subject(s)
Oils, Volatile , Solanum tuberosum , Flavoring Agents , Taste , Yogurt
8.
J Microbiol Biotechnol ; 30(7): 1051-1059, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32238779

ABSTRACT

Overproduction and accumulation of melanin in the skin will darken the skin and cause skin disorders. So far, components that can inhibit tyrosinase, a melanin synthase of melanocytes, have been developed and used as ingredients of cosmetics or pharmaceutical products. However, most of existing substances can only inhibit the biosynthesis of melanin while melanin that is already synthesized and deposited is not directly decomposed. Thus, their effects in decreasing melanin concentration in the skin are weak. To overcome the limitation of existing therapeutic agents, we started to develop a substance that could directly biodegrade melanin. We screened traditional fermented food microorganisms for their abilities to direct biodegrade melanin. As a result, we found that a kimchi-derived Pediococcus acidilactici PMC48 had a direct melanin-degrading effect. This PMC48 strain is a new strain, different from P. acidilactici strains reported so far. It not only directly degrades melanin, but also has tyrosinase-inhibiting effect. It has a direct melanindecomposition effect. It exceeds existing melanin synthesis-inhibiting technology. It is expected to be of high value as a raw material for melanin degradation drugs and cosmetics.


Subject(s)
Fermented Foods/microbiology , Melanins/biosynthesis , Pediococcus acidilactici/isolation & purification , Pediococcus acidilactici/metabolism , Perilla/microbiology , Plant Leaves/microbiology , Cell Survival/drug effects , Melanocytes/drug effects , Monophenol Monooxygenase , Pediococcus acidilactici/genetics , Phylogeny , RNA, Ribosomal, 16S , Republic of Korea
9.
Food Sci Nutr ; 7(6): 2083-2090, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31289656

ABSTRACT

The effects of Perilla frutescens leaf extract (PLE) on the quality of surimi fish balls were investigated in the present study. Firstly, the extract was prepared by solvent extraction using 95% ethanol. Then, the phenolics in the extract were analyzed by instrumental analysis. The total phenolic content in the PLE was found to be 14.51 mg gallic acid equivalent (GAE)/g dry weight (DW). The amount of caffeic acid, ferulic acid, rosmarinic acid, quercetin, and apigenin, determined by high-performance liquid chromatography (HPLC), was 4.80, 5.10, 2.95, 6.46, and 3.93 mg/g DW, respectively. Furthermore, the PLE was found to show high free radical scavenging activity toward DPPH and ABTS radicals with IC50 values of 12.15 and 7.26 µg/ml, respectively. When PLE was fortified into surimi fish balls at 0.03% and stored at 4°C, it was found to slow down lipid and protein oxidation during storage of surimi fish balls as evidenced by the significant reduction in TBARS values and protein carbonyl contents (p < 0.05). PLE (0.03%) also decreased the formation of total volatile basic nitrogen (TVB-N) and inhibited the growth of E. coli compared with the control group (p < 0.05). In addition, the overall acceptability of PLE-added (0.03%) samples was higher than control samples during the storage process (p < 0.05) by sensory analysis. Overall, PLE have the potential to be used as a natural food additive to improve the shelf life and sensorial qualities of surimi fish ball.

10.
Arch Biochem Biophys ; 643: 32-41, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29454864

ABSTRACT

This study focused on sterilization methods for the reduction of microorganisms on perilla leaves by cylinder type Dielectric Barrier Discharge (DBD) plasma with underwater bubbler treatment. S. aureus and E. coli in a suspension were reduced to less than 3.4 and 0.5 log CFU/ml after the plasma treatment for 3 min, respectively. On the perilla leaves, they were also reduced to 4.8 and 1.6 log CFU/ml after the plasma treatment, respectively. The S. aureus and E. coli bacterial cell wall was damaged by the plasma treatment evident by scanning electron microscopic analysis. The observed infrared bands of the FTIR spectra demonstrated changes in protein, lipid, polysaccharide, polyphosphate group and other carbohydrate functionalities of plasma treated bacteria and untreated bacterial cell membranes. The degradation of the constituent bonds of the bacterial cell membrane by RONS generated from plasma destroys the DNA, RNA, and proteins within the cell, and may eventually cause cell death. In this study, H2O2 (13.68 µM) and NO3 (138 µM), which are the main factors generated by plasma, proved to have a bactericidal effect by inducing lipid peroxidation of bacterial cell membranes. In conclusion, cylinder type DBD plasma with underwater bubbler can be used as an environmentally friendly food disinfection device in cleaning processes of the food industry.


Subject(s)
Disinfection/methods , Escherichia coli O157/drug effects , Microbial Viability/drug effects , Perilla/microbiology , Plant Leaves/microbiology , Plasma Gases/pharmacology , Staphylococcus aureus/drug effects , Electric Impedance , Escherichia coli O157/cytology , Escherichia coli O157/physiology , Food Contamination , Plasma Gases/chemistry , Staphylococcus aureus/cytology , Staphylococcus aureus/physiology
11.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1823-1834, 2016 May.
Article in Chinese | MEDLINE | ID: mdl-28895328

ABSTRACT

This study, based on the findings for Perilla resources, aimed to describe the species, distribution, importance, features, utilization and status of quantitative Perilla resources in China. This not only helps people to know well about the existing resources and researching development, but also indicates the overall distribution, selection and rational use of Perilla resource in the future. According to the output types, Perilla resources are divided into two categories: wild resources and cultivated resources; and based on its common uses, the cultivated resources are further divided into medicine resources, seed-used resources and export resources. The distribution areas of wild resources include Henan, Sichuan, Anhui, Jiangxi, Guangxi, Hunan, Jiangsu and Zhejiang. The distribution areas of medicine resources are concentrated in Hebei, Anhui, Chongqing, Guangxi and Guangdong. Seed-used resources are mainly distributed in Gansu, Heilongjiang, Jilin, Chongqing and Yunnan. Export resource areas are mainly concentrated in coastal cities, such as Zhejiang, Jiangsu, Shandong and Zhejiang. For the further study, the essential oil of leaf samples from different areas were extracted by the steam distillation method and analyzed by GC-MS. The differences in essential oil chemotypes among different Perilla leaves were compared by analyzing their chemical constituents. The main 31 constituents of all samples included: perillaketone (0.93%-96.55%), perillaldehyde (0.10%-61.24%), perillene (52.15%), caryophyllene (3.22%-26.67%), and α-farnesene (2.10%-21.54%). These samples can be classified into following five chemotypes based on the synthesis pathways: PK-type, PA-type, PL-type, PP-type and EK-type. The chemotypes of wild resources included PK-type and PA-type, with PK-type as the majority. All of the five chemotypes are included in cultivated resources, with PA-type as the majority. Seed-used resources are all PK-type, and export resources are all PA-type. The P. frutescens var. frutescens include five chemotypes, with PK-type as the majority. The PK-type leaves of P. frutescens var. acuta are green, while the PA-type leaves are reddish purple. The P. fruteseens var. crispa was mainly PA type with reddish purple leaves. The differences of the main chemotypes provide a scientific basis for distinguishing between Zisu and Baisu in previous literatures. Based on the lung toxicity of PK and the traditional use of Perilla, the testing standard of essential oil and Perilla herb shall be built, and PA type is recommended to be used in traditional Chinese medicine.


Subject(s)
Oils, Volatile/chemistry , Perilla frutescens/chemistry , China , Perilla frutescens/classification , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/classification
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-250482

ABSTRACT

This study, based on the findings for Perilla resources, aimed to describe the species, distribution, importance, features, utilization and status of quantitative Perilla resources in China. This not only helps people to know well about the existing resources and researching development, but also indicates the overall distribution, selection and rational use of Perilla resource in the future. According to the output types, Perilla resources are divided into two categories: wild resources and cultivated resources; and based on its common uses, the cultivated resources are further divided into medicine resources, seed-used resources and export resources. The distribution areas of wild resources include Henan, Sichuan, Anhui, Jiangxi, Guangxi, Hunan, Jiangsu and Zhejiang. The distribution areas of medicine resources are concentrated in Hebei, Anhui, Chongqing, Guangxi and Guangdong. Seed-used resources are mainly distributed in Gansu, Heilongjiang, Jilin, Chongqing and Yunnan. Export resource areas are mainly concentrated in coastal cities, such as Zhejiang, Jiangsu, Shandong and Zhejiang. For the further study, the essential oil of leaf samples from different areas were extracted by the steam distillation method and analyzed by GC-MS. The differences in essential oil chemotypes among different Perilla leaves were compared by analyzing their chemical constituents. The main 31 constituents of all samples included: perillaketone (0.93%-96.55%), perillaldehyde (0.10%-61.24%), perillene (52.15%), caryophyllene (3.22%-26.67%), and α-farnesene (2.10%-21.54%). These samples can be classified into following five chemotypes based on the synthesis pathways: PK-type, PA-type, PL-type, PP-type and EK-type. The chemotypes of wild resources included PK-type and PA-type, with PK-type as the majority. All of the five chemotypes are included in cultivated resources, with PA-type as the majority. Seed-used resources are all PK-type, and export resources are all PA-type. The P. frutescens var. frutescens include five chemotypes, with PK-type as the majority. The PK-type leaves of P. frutescens var. acuta are green, while the PA-type leaves are reddish purple. The P. fruteseens var. crispa was mainly PA type with reddish purple leaves. The differences of the main chemotypes provide a scientific basis for distinguishing between Zisu and Baisu in previous literatures. Based on the lung toxicity of PK and the traditional use of Perilla, the testing standard of essential oil and Perilla herb shall be built, and PA type is recommended to be used in traditional Chinese medicine.

13.
Biomed Chromatogr ; 29(12): 1932-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26032066

ABSTRACT

Perilla leaves contain many interfering substances; thus, it is difficult to protect the analytes during identification and integration. Furthermore, increasing the amount of sample to lower the detection limit worsens the situation. To overcome this problem, we established a new method using a combination of solid-phase extraction and dispersive solid-phase extraction to analyze pyraclostrobin in perilla leaves by liquid chromatography with ultraviolet absorbance detection. The target compound was quantitated by external calibration with a good determination coefficient (R(2) = 0.997). The method was validated (in triplicate) with three fortification levels, and 79.06- 89.10% of the target compound was recovered with a relative standard deviation <4. The limits of detection and quantification were 0.0033 and 0.01 mg/kg, respectively. The method was successfully applied to field samples collected from two different areas at Gwangju and Muan. The decline in the resiudue concentrations was best ascribed to a first-order kinetic model with half-lives of 5.7 and 4.6 days. The variation between the patterns was attributed to humidity.


Subject(s)
Carbamates/analysis , Chromatography, Liquid/methods , Perilla/chemistry , Plant Leaves/chemistry , Pyrazoles/analysis , Solid Phase Extraction/methods , Limit of Detection , Linear Models , Reproducibility of Results , Strobilurins
14.
Nutr Res Pract ; 9(1): 11-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25671062

ABSTRACT

BACKGROUND/OBJECTIVES: Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS: Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS: Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS: These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.

15.
Article in English | WPRIM (Western Pacific) | ID: wpr-105460

ABSTRACT

BACKGROUND/OBJECTIVES: Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS: Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS: Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 microg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 microg/ml). Treatment with PLE at the 350 microg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 microg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS: These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.


Subject(s)
Humans , Agar , Apoptosis , Asian People , Cell Adhesion , Cell Cycle , Cell Line , Cell Movement , Colon , Colorectal Neoplasms , Ethanol , Korea , Lung , Lung Neoplasms , Neoplasm Metastasis , Perilla , Perilla frutescens , Vegetables , Wound Healing
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-845845

ABSTRACT

Objective To obtain a clear and qualified oral liquid preparation of Huoxiangzhengqi by improving the addition methods of patchouli oil and perilla leaf oil. Methods Palvis Talci was used to improve the solubility of patchouli oil and perilla leaf oil. Firstly, the two kinds of oil were mixed with Palvis Talci and triturated sufficiently. Then, the mixture was mixed with the physic liquor and agitated sufficiently. At last, the clear preparation was obtained after filtration. Results The preparation was clear, well-tasted and qualified. Conclusion The improved method is feasible, simple, stabilized and economical.

17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-456374

ABSTRACT

Objective To obtain a clear and qualified oral liquid preparation of Huoxiangzhengqi by improving the addition methods of patchouli oil and perilla leaf oil. Methods Pulvis Talci was used to improve the solubility of patchouli oil and perilla leaf oil. Firstly, the two kinds of oil were mixed with Pulvis Talci and triturated sufficiently. Then, the mixture was mixed with the physic liquor and agitated sufficiently. At last, the clear preparation was obtained after filtration. Results The preparation was clear, well-tasted and qualified. Conclusion The improved method is feasible, simple, stabilized and economical.

SELECTION OF CITATIONS
SEARCH DETAIL
...