Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 333
Filter
1.
Mar Drugs ; 22(9)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39330267

ABSTRACT

Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.


Subject(s)
Diatoms , Haptophyta , Microalgae , Nutritive Value , Xanthophylls , Microalgae/metabolism , Diatoms/metabolism , Diatoms/chemistry , Haptophyta/metabolism
2.
Ecotoxicol Environ Saf ; 284: 117021, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39265266

ABSTRACT

Benzophenone-4 (BP-4), a widely utilized organic ultraviolet (UV) filter, is recognized as a pseudo-persistent contaminant in aquatic environments. To elucidate the effects and mechanisms of BP-4 on marine diatoms, an investigation was conducted on the growth rate, photosynthetic pigment content, photosynthetic parameters, antioxidant enzyme activity, malondialdehyde (MDA) levels, cellular structure, and transcriptome profile of the model species, Phaeodactylum tricornutum. The results showed a pronounced inhibition of algal growth upon exposure to BP-4, with a 144 h-EC50 value of 201 mg·L-1. In addition, BP-4 exposure resulted in a significant reduction in biomass, disruption of cell membrane integrity, and increased MDA accumulation, with levels escalating 3.57-fold at 125 mg·L-1 of BP-4. In the BP-4-treated samples, 1556 differentially expressed genes (DEGs) were identified, of which 985 were upregulated and 571 were downregulated. Gene ontology and KEGG pathway enrichment analysis revealed that the carbon fixation and carbon metabolism processes in P. tricornatum were disrupted in response to BP-4 exposure, along with excessive reactive oxygen species (ROS) production. The upregulation of genes associated with photosynthetic pigment (chlorophyll and carotenoids) synthesis, phospholipid synthesis, ribosome biogenesis, and translation-related pathways may be regarded as a component of P. tricornatum's tolerance mechanism towards BP-4. These results provide preliminary insights into the toxicity and tolerance mechanisms of BP-4 on P. tricornatum. They will contribute to a better understanding of the ecotoxicological impacts of BP-4 on the marine ecosystem and provide valuable information for elimination of BP-4 in aquatic environment by bioremediation.


Subject(s)
Benzophenones , Diatoms , Photosynthesis , Water Pollutants, Chemical , Diatoms/drug effects , Benzophenones/toxicity , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Malondialdehyde/metabolism , Transcriptome/drug effects
3.
Mar Drugs ; 22(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39195485

ABSTRACT

Dengue, caused by the dengue virus (DENV), is a global health threat transmitted by Aedes mosquitoes, resulting in 400 million cases annually. The disease ranges from mild to severe, with potential progression to hemorrhagic dengue. Current research is focused on natural antivirals due to challenges in vector control. This study evaluates the antiviral potential of peptides derived from the microalgae Phaeodactylum tricornutum, known for its bioactive compounds. Microalgae were cultivated under controlled conditions, followed by protein extraction and hydrolysis to produce four peptide fractions. These fractions were assessed for cytotoxicity via the MTT assay and antiviral activity against DENV serotype 2 using flow cytometry and plaque formation assays. The 10-30 kDa peptide fraction, at 150 and 300 µg/mL concentrations, demonstrated no cytotoxicity and significantly reduced the percentage of infected cells and viral titers. These findings suggest that peptides derived from Phaeodactylum tricornutum exhibit promising antiviral activity against dengue virus serotype 2, potentially contributing to developing new therapeutic approaches for dengue.


Subject(s)
Antiviral Agents , Dengue Virus , Microalgae , Dengue Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Dengue/drug therapy , Dengue/virology , Peptides/pharmacology , Peptides/chemistry , Serogroup , Chlorocebus aethiops , Humans , Aedes/drug effects , Vero Cells
4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125941

ABSTRACT

Marine water temperatures are increasing due to anthropogenic climate change, constituting a major threat to marine ecosystems. Diatoms are major marine primary producers, and as such, they are subjected to marine heat waves and rising ocean temperatures. Additionally, under low tide, diatoms are regularly exposed to high temperatures. However, physiological and epigenetic responses to long-term exposure to heat stress remain largely unknown in the diatom Phaeodactylum tricornutum. In this study, we investigated changes in cell morphology, photosynthesis, and H3K27me3 abundance (an epigenetic mark consisting of the tri-methylation of lysine 27 on histone H3) after moderate and elevated heat stresses. Mutants impaired in PtEZH-the enzyme depositing H3K27me3-presented reduced growth and moderate changes in their PSII quantum capacities. We observed shape changes for the three morphotypes of P. tricornutum (fusiform, oval, and triradiate) in response to heat stress. These changes were found to be under the control of PtEZH. Additionally, both moderate and elevated heat stresses modulated the expression of genes encoding proteins involved in photosynthesis. Finally, heat stress elicited a reduction of genome-wide H3K27me3 levels in the various morphotypes. Hence, we provided direct evidence of epigenetic control of the H3K27me3 mark in the responses of Phaeodactylum tricornutum to heat stress.


Subject(s)
Diatoms , Epigenesis, Genetic , Heat-Shock Response , Histones , Photosynthesis , Diatoms/metabolism , Diatoms/genetics , Diatoms/growth & development , Histones/metabolism , Methylation
5.
Molecules ; 29(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38999090

ABSTRACT

Phaeodactylum tricornutum is identified by its capacity for rapid growth, reproduction, and in vitro cultivation, as well as the presence of a range of high-value active compounds, including proteins, with potential food applications. The objective of this study was to investigate the effects of pH shift treatments (pH of 3, 5, 7, 9, and 11) on the structural and functional properties of the Phaeodactylum tricornutum protein (PTP). The molecular weight of the PTP was predominantly distributed within the following ranges: below 5 kDa, 5-100 kDa, and above 100 kDa. Compared to the acidic environment, the PTP demonstrated higher solubility and greater free sulfhydryl group content in the alkaline environment. Additionally, PTP had a smaller particle size and higher thermal stability in alkaline environments. The PTP exhibited superior foaming ability (135%), emulsification activity index (3.72 m2/g), and emulsion stability index (137.71 min) in alkaline environments. The results of this investigation provide a foundation for the future development and application of the PTP in the food industry.


Subject(s)
Diatoms , Hydrogen-Ion Concentration , Diatoms/chemistry , Solubility , Molecular Weight , Particle Size
6.
Biomolecules ; 14(7)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062536

ABSTRACT

The diatom Phaeodactylum tricornutum, known for its high triacylglycerol (TAG) content and significant levels of n-3 long chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA), has a limited ability to utilize exogenous organic matter. This study investigates the enhancement of acetate utilization in P. tricornutum by introducing an exogenous acetate transport protein. The acetate transporter gene ADY2 from Saccharomyces cerevisiae endowed the organism with the capability to assimilate acetate and accelerating its growth. The transformants exhibited superior growth rates at an optimal NaAc concentration of 0.01 M, with a 1.7- to 2.0-fold increase compared to the wild-type. The analysis of pigments and photosynthetic activities demonstrated a decline in photosynthetic efficiency and maximum electron transport rate. This decline is speculated to result from the over-reduction of the electron transport components between photosystems due to acetate utilization. Furthermore, the study assessed the impact of acetate on the crude lipid content and fatty acid composition, revealing an increase in the crude lipid content and alterations in fatty acid profiles, particularly an increase in C16:1n-7 at the expense of EPA and a decrease in the unsaturation index. The findings provide insights into guiding the biomass and biologically active products production of P. tricornutum through metabolic engineering.


Subject(s)
Acetates , Diatoms , Photosynthesis , Diatoms/metabolism , Diatoms/genetics , Acetates/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Fatty Acids/metabolism , Electron Transport , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
7.
Mar Environ Res ; 199: 106625, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959781

ABSTRACT

Diatom has evolved response mechanisms to cope with multiple environmental stresses. Heat shock protein 40 (HSP40) plays a key role in these response mechanisms. HSP40 gene family in higher plants has been well-studied. However, the HSP40 gene family has not been systematically investigated in marine diatom. In this study, the bioinformatic characteristics, phylogenetic relationship, conserved motifs, gene structure, chromosome distribution and the transcriptional response of PtHSP40 to different environmental stresses were analyzed in the diatom Phaeodactylum tricornutum, and quantitative real-time PCR was conducted. Totally, 55 putative PtHSP40 genes are distributed to 21 chromosomes. All PtHSP40 proteins can be divided into four groups based on their evolutionary relationship, and 54 of them contain a conserved HPD (histidine-proline-aspartic acid tripeptide) motif. Additionally, six, eleven, ten and four PtHSP40 genes were significantly upregulated under the treatments of nitrogen starvation, phosphorus deprivation, 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47) and ocean acidification, respectively. More interestingly, the expression level of 9 PtHSP40 genes was obviously upregulated in response to nickel stress, suggesting the sensitive to metal stress. The different expression models of PtHSP40 genes to environmental stresses imply the specificity of PtHSP40 proteins under different stresses. This study provides a systematic understanding of the PtHSP40 gene family in P. tricornutum and a comprehensive cognition in its functions and response mechanisms to environmental stresses.


Subject(s)
Diatoms , Diatoms/genetics , Diatoms/drug effects , Multigene Family , Phylogeny , Stress, Physiological/genetics
8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892435

ABSTRACT

Acute liver failure is an infrequent yet fatal condition marked by rapid liver function decline, leading to abnormalities in blood clotting and cognitive impairment among individuals without prior liver ailments. The primary reasons for liver failure are infection with hepatitis virus or overdose of certain medicines, such as acetaminophen. Phaeodactylum tricornutum (PT), a type of microalgae known as a diatom species, has been reported to contain an active ingredient with anti-inflammatory and anti-obesity effects. In this study, we evaluated the preventive and therapeutic activities of PT extract in acute liver failure. To achieve our purpose, we used two different acute liver failure models: acetaminophen- and D-GalN/LPS-induced acute liver failure. PT extract showed protective activity against acetaminophen-induced acute liver failure through attenuation of the inflammatory response. However, we failed to demonstrate the protective effects of PT against acute liver injury in the D-GalN/LPS model. Although the PT extract did not show protective activity against two different acute liver failure animal models, this study clearly demonstrates the importance of considering the differences among animal models when selecting an acute liver failure model for evaluation.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Disease Models, Animal , Microalgae , Animals , Acetaminophen/adverse effects , Mice , Chemical and Drug Induced Liver Injury/drug therapy , Microalgae/chemistry , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Male , Protective Agents/pharmacology , Protective Agents/therapeutic use , Ethanol/adverse effects , Diatoms , Liver/drug effects , Liver/pathology , Liver/metabolism , Lipopolysaccharides/adverse effects
9.
Appl Environ Microbiol ; 90(6): e0206823, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38786362

ABSTRACT

Phaeodactylum tricornutum a prominent source of industrial fucoxanthin production, faces challenges in its application due to its tolerance to high-temperature environments. This study investigates the physiological responses of P. tricornutum to high-temperature stress and its impact on fucoxanthin content, with a specific focus on the role of cis-zeatin. The results reveal that high-temperature stress inhibits P. tricornutum's growth and photosynthetic activity, leading to a decrease in fucoxanthin content. Transcriptome analysis shows that high temperature suppresses the expression of genes related to photosynthesis (e.g., psbO, psbQ, and OEC) and fucoxanthin biosynthesis (e.g., PYS, PDS1, and PSD2), underscoring the negative effects of high temperature on P. tricornutum. Interestingly, genes associated with cis-zeatin biosynthesis and cytokinesis signaling pathways exhibited increased expression under high-temperature conditions, indicating a potential role of cis-zeatin signaling in response to elevated temperatures. Content measurements confirm that high temperature enhances cis-zeatin content. Furthermore, the exogenous addition of cytokinesis mimetics or inhibitors significantly affected P. tricornutum's high-temperature resistance. Overexpression of the cis-zeatin biosynthetic enzyme gene tRNA DMATase enhanced P. tricornutum's resistance to high-temperature stress, while genetic knockout of tRNA DMATase reduced its resistance to high temperatures. Therefore, this research not only uncovers a novel mechanism for high-temperature resistance in P. tricornutum but also offers a possible alga species that can withstand high temperatures for the industrial production of fucoxanthin, offering valuable insights for practical utilization.IMPORTANCEThis study delves into Phaeodactylum tricornutum's response to high-temperature stress, specifically focusing on cis-zeatin. We uncover inhibited growth, reduced fucoxanthin, and significant cis-zeatin-related gene expression under high temperatures, highlighting potential signaling mechanisms. Crucially, genetic engineering and exogenous addition experiments confirm that the change in cis-zeatin levels could influence P. tricornutum's resistance to high-temperature stress. This breakthrough deepens our understanding of microalgae adaptation to high temperatures and offers an innovative angle for industrial fucoxanthin production. This research is a pivotal step toward developing heat-resistant microalgae for industrial use.


Subject(s)
Diatoms , Hot Temperature , Xanthophylls , Xanthophylls/metabolism , Diatoms/metabolism , Diatoms/genetics , Diatoms/growth & development , Photosynthesis
10.
Plant Physiol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796833

ABSTRACT

Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, CRISPR/Cas9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22°C), and were more sensitive to elevated temperature (28°C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.

11.
Food Res Int ; 187: 114354, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763639

ABSTRACT

Carotenoids, versatile natural pigments with numerous health benefits, face environmental concerns associated with conventional petrochemical-based extraction methods and limitations of their synthetic equivalents. In this context, this study aims to introduce eco-friendly approaches using ultrasound-based strategies (probe and bath) for the extraction of carotenoids from microalgae, initially focusing on Microchloropsis gaditana and subsequently evaluating the versatility of the method by applying it to other microalgae species of interest (Tisochrysis lutea, Porphyridium cruentum, and Phaeodactylum tricornutum) and defatted microalgal residues. Among the approaches evaluated, the 5-min ultrasonic probe system with ethanol showed comparable carotenoid recovery efficiency to the reference method (agitation, 24 h, acetone) (9.4 ± 2.5 and 9.6 ± 3.2 mg g-1 carotenoids per dry biomass, for the green and the reference method, respectively). Moreover, the method's sustainability was demonstrated using the AGREEprep™ software (scored 0.62 out of 1), compared to the traditional method (0.22 out of 1). The developed method yielded high carotenoid contents across species with diverse cell wall compositions (3.1 ± 0.2, 2.1 ± 0.3, and 4.1 ± 0.1 mg g-1 carotenoid per dry biomass for T. lutea, P. cruentum, and P. tricornutum, respectively). Moreover, the application of the method to defatted biomass showed potential for microalgal valorization with carotenoid recovery rates of 41 %, 60 %, 61 %, and 100 % for M.gaditana, P. tricornutum, T. lutea, and P. cruentum, compared to the original biomass, respectively. Furthermore, by using high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-resolution mass spectrometry (HRMS), we reported the carotenoid and chlorophyll profiles of the different microalgae and evaluated the impact of the eco-friendly methods. The carotenoid and chlorophyll profiles varied depending on the species, biomass, and method used. In summary, this study advances a green extraction method with improved environmental sustainability and shorter extraction time, underscoring the potential of this approach as a valuable alternative for the extraction of microalgal pigments.


Subject(s)
Carotenoids , Microalgae , Carotenoids/analysis , Carotenoids/isolation & purification , Microalgae/chemistry , Mass Spectrometry , Ultrasonics/methods , Biomass , Green Chemistry Technology
12.
BMC Plant Biol ; 24(1): 309, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649801

ABSTRACT

BACKGROUND: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), belonging to ω-3 long-chain polyunsaturated fatty acids (ω3-LC-PUFAs), are essential components of human diet. They are mainly supplemented by marine fish consumption, although their native producers are oleaginous microalgae. Currently, increasing demand for fish oils is insufficient to meet the entire global needs, which puts pressure on searching for the alternative solutions. One possibility may be metabolic engineering of plants with an introduced enzymatic pathway producing ω3-LC-PUFAs. RESULT: In this study we focused on the acyl-CoA:diacylglycerol acyltransferase2b (PtDGAT2b) from the diatom Phaeodactylum tricornutum, an enzyme responsible for triacylglycerol (TAG) biosynthesis via acyl-CoA-dependent pathway. Gene encoding PtDGAT2b, incorporated into TAG-deficient yeast strain H1246, was used to confirm its activity and conduct biochemical characterization. PtDGAT2b exhibited a broad acyl-CoA preference with both di-16:0-DAG and di-18:1-DAG, whereas di-18:1-DAG was favored. The highest preference for acyl donors was observed for 16:1-, 10:0- and 12:0-CoA. PtDGAT2b also very efficiently utilized CoA-conjugated ω-3 LC-PUFAs (stearidonic acid, eicosatetraenoic acid and EPA). Additionally, verification of the potential role of PtDGAT2b in planta, through its transient expression in tobacco leaves, indicated increased TAG production with its relative amount increasing to 8%. Its co-expression with the gene combinations aimed at EPA biosynthesis led to, beside elevated TAG accumulation, efficient accumulation of EPA which constituted even 25.1% of synthesized non-native fatty acids (9.2% of all fatty acids in TAG pool). CONCLUSIONS: This set of experiments provides a comprehensive biochemical characterization of DGAT enzyme from marine microalgae. Additionally, this study elucidates that PtDGAT2b can be used successfully in metabolic engineering of plants designed to obtain a boosted TAG level, enriched not only in ω-3 LC-PUFAs but also in medium-chain and ω-7 fatty acids.


Subject(s)
Diacylglycerol O-Acyltransferase , Diatoms , Nicotiana , Diatoms/genetics , Diatoms/enzymology , Diatoms/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Nicotiana/genetics , Nicotiana/enzymology , Nicotiana/metabolism , Acyl Coenzyme A/metabolism , Plants, Genetically Modified , Triglycerides/biosynthesis , Triglycerides/metabolism , Eicosapentaenoic Acid/biosynthesis , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/biosynthesis , Fatty Acids, Omega-3/metabolism , Metabolic Engineering
13.
Mar Drugs ; 22(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667802

ABSTRACT

Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.


Subject(s)
Diatoms , Oxidoreductases , Xanthophylls , Diatoms/genetics , Xanthophylls/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques/methods , Carotenoids/metabolism , Microalgae/genetics , Mutation
14.
Bioresour Technol ; 401: 130708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636878

ABSTRACT

In this study, the biochemical response of Phaeodactylum tricornutum to varying concentrations of inorganic selenium (Se) was investigated. It was observed that, when combined with fulvic acid, P. tricornutum exhibited enhanced uptake and biotransformation of inorganic Se, as well as increased microalgal lipid biosynthesis. Notably, when subjected to moderate (5 and 10 mg/L) and high (20 and 40 mg/L) concentrations of selenite under fulvic acid treatment, there was a discernible redirection of carbon flux towards lipogenesis and protein biosynthesis from carbohydrates. In addition, the key parameters of microalgae-based biofuels aligned with the necessary criteria outlined in biofuel regulations. Furthermore, the Se removal capabilities of P. tricornutum, assisted by fulvic acid, were coupled with the accumulation of substantial amounts of organic Se, specifically SeCys. These findings present a viable and successful approach to establish a microalgae-based system for Se uptake and biotransformation.


Subject(s)
Benzopyrans , Biofuels , Biotransformation , Diatoms , Diatoms/metabolism , Benzopyrans/metabolism , Selenious Acid/metabolism , Microalgae/metabolism
15.
Biotechnol Biofuels Bioprod ; 17(1): 49, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566219

ABSTRACT

BACKGROUND: Fucoxanthin has been widely investigated owing to its beneficial biological properties, and the model diatom Phaeodactylum tricornutum, possessing fucoxanthin (Fux) chlorophyll proteins as light-harvesting systems, is considered to have the potential to become a commercial cell factory for the pigment production. RESULTS: Here, we compared the pigment contents in 10 different P. tricornutum strains from the globe, and found that strain CCMP631 (Pt6) exhibited the highest Fux content but with a low biomass. Comparison of mRNA levels revealed that higher Fux content in Pt6 was related with the higher expression of gene violaxanthin de-epoxidase-like (VDL) protein 1 (VDL1), which encodes the enzyme catalyzing the tautomerization of violaxanthin to neoxanthin in Fux biosynthesis pathway. Single nucleotide variants of VDL1 gene and allele-specific expression in strains Pt1 (the whole genome sequenced strain CCMP632) and Pt6 were analyzed, and overexpressing of each of the 4 VDL1 alleles, two from Pt1 and two from Pt6, in strain Pt1 leads to an increase in downstream product diadinoxanthin and channels the pigments towards Fux biosynthesis. All the 8 VDL1 overexpression (OE) lines showed significant increases by 8.2 to 41.7% in Fux content without compromising growth, and VDL1 Allele 2 OE lines even exhibited the higher cell density on day 8, with an increase by 24.2-28.7% in two Pt1VDL1-allele 2 OE lines and 7.1-11.1% in two Pt6VDL1-allele 2 OE lines, respectively. CONCLUSIONS: The results reveal VDL1, localized in the plastid stroma, plays a key role in Fux over-accumulation in P. tricornutum. Overexpressing VDL1, especially allele 2, improved both the Fux content and growth rate, which provides a new strategy for the manipulation of Fux production in the future.

16.
Plant J ; 118(6): 2085-2093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38525917

ABSTRACT

With global climate change, the high-temperature environment has severely impacted the community structure and phenotype of marine diatoms. Phaeodactylum tricornutum, a model species of marine diatom, is sensitive to high temperature, which grow slowly under high temperature. However, the regulatory mechanism of P. tricornutum in response to high-temperature is still unclear. In this study, we found that the expression level of the HSP70A in the wild type (WT) increased 28 times when exposed to high temperature (26°C) for 1 h, indicating that HSP70A plays a role in high temperature in P. tricornutum. Furthermore, overexpression and interference of HSP70A have great impact on the exponential growth phase of P. tricornutum under 26°C. Moreover, the results of Co-immunoprecipitation (Co-IP) suggested that HSP70A potentially involved in the correct folding of the photosynthetic system-related proteins (D1/D2), preventing aggregation. The photosynthetic activity results demonstrated that overexpression of HSP70A improves non-photochemical quenching (NPQ) activity under high-temperature stress. These results reveal that HSP70A regulates the photosynthetic activity of P. tricornutum under high temperatures. This study not only helps us to understand the photosynthetic activity of marine diatoms to high temperature but also provides a molecular mechanism for HSP70A in P. tricornutum under high-temperature stress.


Subject(s)
Diatoms , HSP70 Heat-Shock Proteins , Photosynthesis , Diatoms/metabolism , Diatoms/physiology , Diatoms/genetics , Hot Temperature , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Photosynthesis/physiology
17.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38457651

ABSTRACT

Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.


Subject(s)
Diatoms , Diatoms/metabolism , Calcium/metabolism , Signal Transduction , Chlorophyll/metabolism , Cell Count
18.
Bio Protoc ; 14(5): e4945, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38464938

ABSTRACT

Diatoms serve as a source for a variety of compounds with particular biotechnological interest. Therefore, redirecting the flow to a specific pathway requires the elucidation of the gene's specific function. The most commonly used method in diatoms is biolistic transformation, which is a very expensive and time-consuming method. The use of episomes that are maintained as closed circles at a copy number equivalent to native chromosomes has become a useful genetic system for protein expression that avoids multiple insertions, position-specific effects on expression, and potential knockout of non-targeted genes. These episomes can be introduced from bacteria into diatoms via conjugation. Here, we describe a detailed protocol for gene expression that includes 1) the gateway cloning strategy and 2) the conjugation protocol for the mobilization of plasmids from bacteria to diatoms.

19.
Methods Mol Biol ; 2776: 177-183, 2024.
Article in English | MEDLINE | ID: mdl-38502504

ABSTRACT

Phaeodactylum tricornutum, a model pennate diatom, carries a secondary plastid surrounded by four membranes. Its biological function remains mysterious, supposed to combine features of the primary chloroplast and the endomembrane system. Isolation of high-quality plastid from the diatom enables a more conclusive understanding of the special structure and metabolic pathways in the plastid. Due to the direct continuity between the chloroplast endoplasmic reticulum membrane (cERM) and the outer nuclear envelope together with the integration of cERM into the cellular endoplasmic reticulum (ER) system, the plastid isolation is still challenging. In this study, highly purified P. tricornutum plastids with the four-layered membrane are obtained by Percoll density gradient centrifugation. The isolated plastids are unlikely to contain any residue of nuclear and coatomer compartments, and they might contain a relatively small contamination of mitochondrion and ER debris.


Subject(s)
Diatoms , Diatoms/metabolism , Plastids/metabolism , Endoplasmic Reticulum/metabolism , Chloroplasts
20.
Methods Mol Biol ; 2776: 185-196, 2024.
Article in English | MEDLINE | ID: mdl-38502505

ABSTRACT

Diatoms such as Phaeodactylum tricornutum arose through a process termed secondary endosymbiosis, in which red alga-derived plastids are surrounded by a complicated membrane system. Subcellular marker proteins provide defined localizations on the compartmental and even sub-compartmental levels in the complex plastids of diatoms. Here we introduce how to use subcellular marker proteins and in vivo co-localization in the diatom P. tricornutum by presenting a step-by-step method allowing the determination of subcellular localization of proteins in different membranes of the secondary plastid. This chapter describes the materials required and the procedures of transformation and microscopic observation.


Subject(s)
Diatoms , Diatoms/metabolism , Proteins/metabolism , Membranes , Symbiosis , Plastids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL