ABSTRACT
Literature reports that ingestion of phytosterols and γ-oryzanol contributes to cholesterol lowering. Despite in vivo observations, thermodynamic phase equilibria could explain phenomena occurring during digestion leading to such effects. To advance the observations made by previous literature, this study was aimed at describing the complete solid-liquid phase equilibrium diagrams of cholesterol + phytosterol and γ-oryzanol systems by DSC, evaluating them by powder X-ray, microscopy, and thermodynamic modeling. Additionally, this study evaluated the phenomena observed by an in vitro digestibility method. Results confirmed the formation of solid solution in the cholesterol + phytosterols system at any concentration and that cholesterol + γ-oryzanol mixtures formed stable liquid crystalline phases with a significant melting temperature depression. The in vitro protocol supported the idea that the same phenomena can occur during digestion in which mechanochemical forces were probably the mechanisms promoting cholesterol solid phase changes in the presence of such phytocompounds. In this case, these changes could alter cholesterol solubility and possibly its absorption in the gastrointestinal lumen.
ABSTRACT
Peptides inhibiting the activity of angiotensin converting enzyme (ACE) were obtained by trypsin-catalyzed hydrolysis of bovine milk casein, performed at 37°C, during 1, 2, 5, 8 and 24h. Results of in vitro inhibitory activity ranged between 13.4% and 78.5%. The highest ACE inhibitory activity was evidenced for hydrolysates obtained after 2h of reaction. Aqueous two-phase systems (ATPS) formed by polyethylene glycol of 1500gmol-1 (PEG 1500)+sodium phosphate or potassium phosphates were produced and evaluated, in terms of partition coefficients (K) and extraction yields (y), to recovery the casein hydrolysates at room temperature. In ATPS containing sodium phosphate, the peptides showed a slightly greater affinity toward the bottom salt-rich phase (0.1≤K≤0.9; 5.7%≤y≤47%). In the case of ATPS containing potassium phosphates, these molecules showed substantially greater affinity toward the top polymer-rich phase (137≤K≤266; y≥99%). These results point out extraction using PEG 1500/potassium phosphate ATPS is an efficient technique to recover casein hydrolysates containing ACE inhibitors peptides. Outlined data will be helpful in integrating such unit operation to larger scale processes.