Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891825

ABSTRACT

This study aimed to investigate the availability of flavonoids, anthocyanins, and phenolic acids in mutant bean seeds, focusing on M7 mutant lines, and their corresponding initial and local cultivars. HPLC-DAD-MS/MS and HPLC-MS/MS were used to analyze twenty-eight genotypes of common bean. The obtained results suggest that the mutations resulted in four newly synthesized anthocyanins in the mutant bean seeds, namely, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, and petunidin 3-O-glucoside, in 20 accessions with colored seed shapes out of the total of 28. Importantly, the initial cultivar with white seeds, as well as the mutant white seeds, did not contain anthocyanins. The mutant lines were classified into groups based on their colors as novel qualitative characteristics. Five phenolic acids were further quantified: ferulic, p-coumaric, caffeic, sinapic, and traces of chlorogenic acids. Flavonoids were represented by epicatechin, quercetin, and luteolin, and their concentrations in the mutant genotypes were several-fold superior compared to those of the initial cultivar. All mutant lines exhibited higher concentrations of phenolic acids and flavonoids. These findings contribute to the understanding of the genetics and biochemistry of phenolic accumulation and anthocyanin production in common bean seeds, which is relevant to health benefits and might have implications for common bean breeding programs and food security efforts.


Subject(s)
Anthocyanins , Mutation , Phaseolus , Polyphenols , Seeds , Seeds/genetics , Seeds/metabolism , Seeds/chemistry , Phaseolus/genetics , Phaseolus/metabolism , Polyphenols/biosynthesis , Anthocyanins/biosynthesis , Flavonoids/biosynthesis , Flavonoids/metabolism , Genotype , Hydroxybenzoates/metabolism , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
2.
BMC Plant Biol ; 24(1): 525, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858659

ABSTRACT

Common bean provides diet rich in vitamins, fiber, minerals, and protein, which could contribute into food security of needy populations in many countries. Developing genotypes that associate favorable agronomic and grain quality traits in the common bean crop could increase the chances of adopting new cultivars black bean. In this context, the present study aimed at selection of superior black bean lines using multi-variate indexes, Smith-Hazel-index, and genotype by yield*trait biplot analysis. These trials were conducted in Campos dos Goytacazes - RJ, in 2020 and 2021. The experimental design used was randomized blocks, with 28 treatments and three replications. The experimental unit consisted of four rows 4.0 m long, spaced at 0.50 m apart, with a sowing density of 15 seeds per meter. The two central rows were used for the evaluations. The selection of superior genotypes was conducted using the multiple trait stability index (MTSI), multi-trait genotype-ideotype distance index (MGIDI), multi-trait index based on factor analysis and genotype-ideotype distance (FAI-BLUP), Smith-Hazel index, and Genotype by Yield*Trait Biplot (GYT). The multivariate indexes efficiently selected the best black bean genotypes, presenting desirable selection gains for most traits. The use of multivariate indexes and GYT enable the selection of early genotypes with higher grain yields. These lines G9, G13, G17, G23, and G27 were selected based on their performance for multiple traits closest to the ideotype and could be recommended as new varieties.


Subject(s)
Genotype , Phaseolus , Phaseolus/genetics , Plant Breeding/methods , Selection, Genetic , Crops, Agricultural/genetics , Phenotype
3.
Food Chem ; 453: 139602, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38795433

ABSTRACT

Milk-type beverages are popular vegan products requiring iron and calcium fortification to improve their nutritional value, as iron deficiency is the world's most prevalent nutritional problem. This research aimed to develop and characterize an extruded common bean (Phaseolus vulgaris L.)-based milk-type beverage added with bean protein isolate and iron. The formulations included flavors (non-flavored, vanilla, and nut) and two iron concentrations (2 and 3 mg FeSO4/100 mL). Extrusion increased the beverages' protein (+17.38 %) and starch digestibility, and reduced their antinutritional compounds (trypsin inhibitors, condensed tannins, and carbonates). Developed beverages' formulations differed from a commercial soybean beverage in their physicochemical properties but were more nutritious (protein: 3.33-3.44 %; fiber: 3.43-4.08 %). Iron-added beverages displayed a medium sensory acceptance (best overall likeness: 5.3-6.2). The developed beverage is a suitable, sensory-accepted, and nutritious bean-based beverage, suggesting novel research lines improving vegan beverage formulations to increase average daily iron intake.


Subject(s)
Beverages , Iron , Nutritive Value , Phaseolus , Taste , Phaseolus/chemistry , Iron/analysis , Iron/chemistry , Humans , Beverages/analysis , Dietary Supplements/analysis , Animals , Female , Adult , Male , Milk/chemistry , Young Adult
4.
Plants (Basel) ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674521

ABSTRACT

The common bean is an important legume valued for its protein-rich seeds and its ability to fix nitrogen, making it a key element of crop rotation. In conventional agriculture, the emphasis is on uniformity and genetic purity to optimize crop performance and maximize yields. This is due to both the legal obligations to register varieties and the challenges of implementing breeding programs to create genetically diverse varieties. This paper focuses on the factors that influence the occurrence of heterogeneous common bean populations. The main factors contributing to this diversity have been described, including local adaptations, variable weather conditions, different pollinator species, and intricate interactions between genes controlling seed coat colour. We also discuss the benefits of intercropping common beans for organic farming systems, highlighting the improvement in resistance to diseases, and adverse environmental conditions. This paper contributes to a better understanding of common bean seed heterogeneity and the legal obligation to use heterogeneous populations.

5.
Antioxidants (Basel) ; 13(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38671907

ABSTRACT

Legumes, one of the first crops of humanity, inherently constitute a staple nutritional source for mankind, attracting significant research attention that has been afforded to the development of numerous cultivars. The study herein concerns the exploitation of the nutritional and bio-functional content of beans harvested from eleven Greek cultivars belonging to five different species, namely Cicer arietinum L., Pisum sativum L., Vicia faba L., Lens culinaris L., and Phaseolus vulgaris L. The final goal is to define their varietal identity and correlate their phytochemical content with their potential utilization as functional foods and/or feed of high nutritional value. In this respect, their extracts were screened against the presence of 27 fatty acids and 19 phenolic compounds, revealing the presence of 22 and 15 molecules, respectively. Specifically, numerous fatty acids were detected in significant amounts in all but C. arietinum extract, while significant polyphenolic content was confirmed only in P. vulgaris. Among individual compounds, linoleic acid was the major fatty acid detected in amounts averaging more than 150 mg/g, followed by oleic acid, which was present as a major compound in all extracts. Among the nine polyphenols detected in P. vulgaris, the molecules of genistein (3.88 mg/g) and coumestrol (0.82 mg/g) were the most abundant. Their antioxidant properties were evaluated through DPPH and FRAP assays, which were highlighted as most potent in both tests of the V. faba extract, while C. arietinum was determined as totally inactive, indicating a potential correlation between the phenolic content of the plant species and antioxidant activity. These results are indicative of the significant advances achieved for the cultivars investigated and reveal their important role as nutritional crops for human and animal consumption.

6.
Heliyon ; 10(5): e27330, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495171

ABSTRACT

The green bean pods of Phaseolus vulgaris L. are traditionally used as a folk remedy for treating calcium oxalate kidney stones. The current research aimed to develop a syrup formulation containing green bean pod extract for anti-urolithiatic activity. The syrup was prepared using a simple blending method and optimized through a central composite design (CCD) with two independent variables: the ratio of pod juice (PJ) to sugar solution (SS) ranging from 1:0.5 to 1:1.5, and the percentage of CMC from 0.2% to 0.4% w/v. These variables were analyzed for their impact on viscosity (CP) and sedimentation percentage, helping to identify the best formulation out of 13 variants. The finalized formulation (F-opt) underwent assessment for physicochemical characteristics such as organoleptic properties, viscosity, density, sedimentation rate, and stability. Additionally, a microbiological assessment was performed utilizing the spread plate method. Further, it was evaluated for in vitro, ex vivo, and in vivo anti-urolithiatic activity in rat models for 28 days and compared with that of the reference standard (Cystone syrup). Additionally, acute toxicity was assessed in albino Swiss mice. Histopathological evaluations were then conducted on the kidneys of the Wistar rats that had been used for the in vivo studies, providing insight into the treatment effects on kidney tissue structure. The optimized formulation (F-opt) was a green, viscous, clear syrup with a pH of 5.8, a viscosity of 256.38 CP, a density of 1.31 g/ml, and a sedimentation rate of 0.69%. The optimized formulation was found to be stable, showing no significant changes in physicochemical and microbiological properties. The results of the in vitro, ex vivo, and in vivo anti-urolithiatic studies indicated that the optimized formulation effectively inhibited the aggregation of calcium oxalate. The acute toxicity studies revealed no mortality or adverse effects for both the optimized formulation and pure bean pod juice at a dose of 2000 mg/kg body weight. Histopathological examination revealed that rats treated with the optimized formulation exhibited a significant reduction in both the number and size of calcium oxalate deposits within various parts of the renal tubules. It can be concluded that the syrupy formulation of Phaseolus vulgaris L. green bean pod extract demonstrated significant anti-urolithiatic activity. This activity could be due to its diuretic properties and its ability to inhibit the formation of calcium oxalate crystals. However, limitations of the study included a lack of elucidation of the mechanism and limited generalizability of the findings.

7.
Plants (Basel) ; 13(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38498547

ABSTRACT

Almond processing generates a high quantity of by-products, presenting the untapped potential for alternative applications and improved sustainability in production. This study aimed to evaluate whether the incorporation of almond by-products (hulls/shells) can improve the biochemical characteristics of green bean pods when used as an alternative to traditional growing media in green bean plants. Four substrates were prepared: the Control substrate (C): 70% peat + 30% perlite; substrate (AS): 70% peat + 30% shells; substrate (AH): 70% peat + 30% perlite + 1 cm hulls as mulch; substrate (MIX): 70% peat + 15% shells + 15% hulls. Plants were grown in each of these substrates and subjected to two irrigation levels, 100% and 50% of their water-holding capacity. Biochemical parameters (photosynthetic pigments, total phenolics, flavonoids, ortho-diphenols, soluble proteins, antioxidant capacity) and color were evaluated in the harvested pods. Results showed that pods from plants growing in AH substrate presented statistically significant higher values in their total phenolic content, while AS and MIX substrates did not reveal significant benefits. Summarily, this study highlights the potential of almond hulls as a promising medium for green bean cultivation, particularly when employed as mulch. Further research is recommended to gain a more comprehensive understanding of the application of almond by-products as natural fertilizers/mulch.

8.
Food Sci Nutr ; 12(2): 997-1005, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370037

ABSTRACT

The lifelong gluten-free diet of celiac patients and gluten-intolerant people prevents their balanced diet mainly due to starch-rich products. The aim of this study is to determine optimum gluten-free cake formulation having kidney bean (Phaseolus vulgaris L.) pod powder as fat replacer of up to 50% and rice flour replacer of up to 30% using multifactorial optimization approach. Central composite design was used to determine optimum formulation. The use of kidney beans in gluten-free cake increased moisture, hardness, chewiness, L*, a*, b*, antioxidant activity, total phenolic content, and sensory evaluation scores (p < .05). The optimum gluten-free cake is rich in protein (5.89%), phenolic compounds (0.51 mg GAE/g), antioxidant activity (1.93 µmol TE/g), and total dietary fiber (4.43%) with improved sensory properties. The optimum gluten-free cake formulation prepared with kidney bean pod powder of 27.88% fat and 13.52% rice flour replacer provides higher specific volume, springiness, total phenolic content, antioxidant activity, and sensory analysis scores, and lower hardness and chewiness conditions. Gluten-free cake containing kidney bean pod powder as fat and rice flour replacer at optimum ratio is a new healthier alternative with reduced fat content and improved nutritional and sensory properties for celiac patients and gluten-intolerant people.

9.
Front Genet ; 15: 1330361, 2024.
Article in English | MEDLINE | ID: mdl-38380426

ABSTRACT

Dry bean is a nutrient-dense food targeted in biofortification programs to increase seed iron and zinc levels. The underlying assumption of breeding for higher mineral content is that enhanced iron and zinc levels will deliver health benefits to the consumers of these biofortified foods. This study characterized a diversity panel of 275 genotypes comprising the Yellow Bean Collection (YBC) for seed Fe and Zn concentration, Fe bioavailability (FeBio), and seed yield across 2 years in two field locations. The genetic architecture of each trait was elucidated via genome-wide association studies (GWAS) and the efficacy of genomic prediction (GP) was assessed. Moreover, 82 yellow breeding lines were evaluated for seed Fe and Zn concentrations as well as seed yield, serving as a prediction set for GP models. Large phenotypic variability was identified in all traits evaluated, and variations of up to 2.8 and 13.7-fold were observed for Fe concentration and FeBio, respectively. Prediction accuracies in the YBC ranged from a low of 0.12 for Fe concentration, to a high of 0.72 for FeBio, and an accuracy improvement of 0.03 was observed when a QTN, identified through GWAS, was used as a fixed effect for FeBio. This study provides evidence of the lack of correlation between FeBio estimated in vitro and Fe concentration and highlights the potential of GP in accurately predicting FeBio in yellow beans, offering a cost-effective alternative to the traditional assessment of using Caco2 cell methodologies.

10.
Plants (Basel) ; 13(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256780

ABSTRACT

The metabolite fingerprinting of four Italian commercial bean seed cultivars, i.e., Phaseolus Cannellino (PCANN), Controne (PCON), Vellutina (PVEL), and Occhio Nero (PON), were investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate data analysis. The hydroalcoholic and organic extract analysis disclosed more than 32 metabolites from various classes, i.e., carbohydrates, amino acids, organic acids, nucleosides, alkaloids, and fatty acids. PVEL, PCON, and PCANN varieties displayed similar chemical profiles, albeit with somewhat different quantitative results. The PON metabolite composition was slightly different from the others; it lacked GABA and pipecolic acid, featured a higher percentage of malic acid than the other samples, and showed quantitative variations of several metabolites. The lipophilic extracts from all four cultivars demonstrated the presence of omega-3 and omega-6 unsaturated fatty acids. After the determination of the total phenolic, flavonoids, and condensed tannins content, in vitro antioxidant activity was then assessed using the DPPH scavenging activity, the ABTS scavenging assay, and ferric-reducing antioxidant power (FRAP). Compared to non-dark seeds (PCON, PCANN), brown seeds (PVEL, PON) featured a higher antioxidant capacity. Lastly, only PON extract showed in vitro antifungal activity against the sclerotia growth of S. rolfsii, by inhibiting halo growth by 75%.

11.
Heliyon ; 10(1): e23030, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169743

ABSTRACT

Sclerotinia sclerotiorum, is a highly destructive pathogen with widespread impact on common bean (Phasaeolus vulgaris L.) worldwide. In this work, we investigated the efficacy of microbial consortia in bolstering host defense against sclerotinia rot. Specifically, we evaluated the performance of a microbial consortia comprising of Trichoderma erinaceum (T51) and Trichoderma viride (T52) (referred to as the T4 treatment) in terms of biochemical parameters, alleviation of the ROS induced cellular toxicity, membrane integrity (measured as MDA content), nutrient profiling, and the host defense-related antioxidative enzyme activities. Our findings demonstrate a notable enhancement in thiamine content, exhibiting 1.887 and 1.513-fold higher in the T4 compared to the un-inoculated control and the T1 treatment (only S. sclerotiorum treated). Similarly, the total proline content exhibited 3.46 and 1.24-fold higher and the total phenol content was 4.083 and 2.625-fold higher in the T4 compared to the un-inoculated control and the T1 treatment, respectively. Likewise, a general trend was found for other antioxidative and non-oxidative enzyme activities. However, results found were approximately similar in T2 treatment (bioprimed with T51) or T3 treatments (bioprimed with T52). Further, host defense attribute (survival rate) under the pathogen challenged condition was maximum in the T4 (15.55 % disease incidence) compared to others. Therefore, bio priming with consortia could be useful in reducing the economic losses incited by S. sclerotiorum in common beans.

12.
Rev. argent. microbiol ; 55(4): 4-4, Dec. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1550711

ABSTRACT

Abstract Chromatin remodeling enzymes are important "writers'', "readers'' and "erasers'' of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspe-cific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolina in vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p <0.05), and the colony morphology was remark-ably affected. Under greenhouse experiments, treatment with TSA reduced (p <0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.


Resumen Las enzimas remodeladoras de la cromatina son «escritores¼, «lectores¼ y «borradores¼ importantes del código epigenético. Estas proteínas son responsables de la localización, el reconocimiento y la remoción de las marcas moleculares sobre las terminaciones de las histonas que desencadenan cambios funcionales y estructurales en la cromatina. Es el caso de las desacetilasas de histonas (HDAC), enzimas que remueven grupos acetilo de las «colas¼ de las histonas, señalizando la formación de heterocromatina. La anterior es una actividad necesaria en los procesos de diferenciación celular de los eucariotas, y se conoce que la patogénesis fúngica en las plantas requiere de adaptaciones diversas para ocasionar enfermedad. Macrophomina phaseolina (Tassi) Goid. es un ascomiceto fitopatógeno, necrótrofo e inespecífico, causante de la pudrición carbonosa. Este es un hongo frecuente y altamente destructivo en cultivos como fríjol común (Phaseolus vulgaris L.), particularmente bajo estrés hídrico y térmico. En este trabajo evaluamos los efectos del inhibidor de HDAC clásicas tricostatina A (TSA) sobre el crecimiento in vitro y la virulencia de M. phaseolina. El TSA redujo el crecimiento de M. phaseolina en medio sólido y el tamano de los microesclerocios (p < 0,05), lo que afectó la morfología colonial. En invernadero, el tratamiento con TSA disminuyó (p<0,05) la gravedad de la infección en la variedad de frijol BAT 477. La expresión de los genes de patogenicidad LIPK, MAC1 y PMK1 durante la interacción del hongo con la planta reveló una desregulación importante. Estos resultados proporcionan evidencia adicional del papel que cumplen las HDAC en la regulación de procesos biológicos fundamentales de M. phaseolina. © 2023 Asociación Argentina de Microbiología. Publicado por Elsevier Espana, S.L.U.

13.
Nutrients ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960212

ABSTRACT

Common beans (Phaseolus vulgaris L.) are widely consumed in diets all over the world and have a significant impact on human health. Proteins, vitamins, minerals, phytochemicals, and other micro- and macronutrients are abundant in these legumes. On the other hand, collagens, the most important constituent of extracellular matrices, account for approximately 25-30 percent of the overall total protein composition within the human body. Hence, the presence of amino acids and other dietary components, including glycine, proline, and lysine, which are constituents of the primary structure of the protein, is required for collagen formation. In this particular context, protein quality is associated with the availability of macronutrients such as the essential amino acid lysine, which can be acquired from meals containing beans. Lysine plays a critical role in the process of post-translational modifications facilitated with enzymes lysyl hydroxylase and lysyl oxidase, which are directly involved in the synthesis and maturation of collagens. Furthermore, collagen biogenesis is influenced by the cellular redox state, which includes important minerals and bioactive chemicals such as iron, copper, and certain quinone cofactors. This study provides a novel perspective on the significant macro- and micronutrients present in Phaseolus vulgaris L., as well as explores the potential application of amino acids and cofactors derived from this legume in the production of collagens and bioavailability. The utilization of macro- and micronutrients obtained from Phaseolus vulgaris L. as a protein source, minerals, and natural bioactive compounds could optimize the capacity to promote the development and durability of collagen macromolecules within the human body.


Subject(s)
Phaseolus , Humans , Phaseolus/chemistry , Amino Acids/metabolism , Lysine/metabolism , Minerals/metabolism , Collagen/metabolism , Micronutrients/metabolism
14.
Plants (Basel) ; 12(22)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005724

ABSTRACT

The use of phosphate-solubilizing bacteria (PSB) can be a sustainable strategy to increase phosphorus availability and promote satisfactory crop yields. The objective of this study was to evaluate whether inoculation with PSB in common bean increases (i) growth, (ii) nutrition, (iii) yield, and (iv) grain quality, and (v) reduces the chemical phosphorus application dose to obtain maximum yields. The experiment was conducted in an Oxisol using a randomized block design in a 4 × 4 factorial scheme, with four replicates, using the cultivar IAC 2051. The first factor was four doses of P2O5 (0, 20, 40 and 60 kg ha-1), and the second factor was four doses of PSB (0, 100, 200 and 300 mL ha-1). For leaf area and leaf chlorophyll content, the association of PSB inoculation with a P2O5 dose of 40 kg ha-1 promoted the best conditions for the common bean. P2O5 application increased yield by 79 kg ha-1 for each 10 kg ha-1 added. PSB inoculation at a dose of 192 mL ha-1 promoted P export of 15.3 kg ha-1, and the PSB dose of 159 mL ha-1 increased yield by 389 kg ha-1 (12%) compared to the control. Grain quality remained within the standards required by the consumer market, being little affected by the treatments. Improvements in common bean growth and nutritional and physiological status promoted by P2O5 application and PSB were essential in increasing yield, so these are sustainable production strategies.

15.
Food Technol Biotechnol ; 61(3): 283-293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38022876

ABSTRACT

Research background: Chilling injury is a major disorder affecting the quality of tropical and subtropical vegetables during low temperature storage. Snap bean (Phaseolus vulgaris L.) is sensitive to chilling injury. The main purpose of the present study is to investigate the alleviating effects of 1-methylcyclopropene (1-MCP) on chilling injury of snap bean. In addition, the related mechanisms were also detected from the perspective of the changes of antioxidant defense system. Experimental approach: Snap beans were exposed to different volume fractions of 1-MCP. After 24 h of treatment, snap beans were stored at 4 °C for up to 14 days. Chilling injury index, electrolyte leakage, titratable acidity and total soluble solids were determined. Contents of chlorophyll, ascorbic acid and malondialdehyde were assessed. The total antioxidant capacity, Fe(II) ion chelating capacity, scavenging capacities on free radicals and activities of antioxidant enzymes were detected. Total phenol content and activities of related metabolic enzymes were also determined. Results and conclusions: 1-MCP treatment reduced chilling injury index, electrolyte leakage rate and malondialdehyde content of snap beans. The amounts of total soluble solids, titratable acid, ascorbic acid and total chlorophyll in 1-MCP-treated snap beans were significantly higher than those of control. The snap beans treated with 1-MCP showed stronger total antioxidant capacity and metal chelating activity. The 1-MCP treatment enhanced scavenging effects of snap beans on superoxide, hydroxyl and 1,1-diphenyl-2-trinitrophenylhydrazine radicals. The activities of peroxidase, ascorbate peroxidase, superoxide dismutase and catalase in 1-MCP-treated group were higher than of control. The treatment also enhanced the accumulation of phenolic compounds in snap beans by regulating the activities of phenol-metabolizing enzymes such as shikimate dehydrogenase, phenylalanine ammonia lyase enzyme, cinnamic acid 4-hydroxylase and polyphenol oxidase. In conclusion, with the mechanism that involves the activation of enzymatic and non-enzymatic antioxidant systems, 1-MCP has the ability to avoid chilling injury of snap bean. Novelty and scientific contribution: This study gives insights into whether 1-MCP can regulate postharvest cold resistance in vegetables by enhancing the enzymatic antioxidant system and inducing the accumulation of non-enzymatic antioxidants. Considering the results, 1-MCP treatment could be an effective method to alleviate postharvest chilling injury of snap beans during low temperature storage.

16.
Front Plant Sci ; 14: 1143873, 2023.
Article in English | MEDLINE | ID: mdl-37780498

ABSTRACT

The common bean (Phaseolus vulgaris L) is the most important legume for human consumption, contributing 30% of the total daily protein intake in developing countries. A major limitation for its cultivation is drought, which causes more than 60% of the annual losses. Among physiological adaptations to drought, delaying senescence and extending the photosynthetic capacity can improve crop productivity. This strategy is known as functional "stay-green" (SG) and has been discussed as a goal in plant breeding to alleviate the loss of yield under water scarcity conditions. The genetic components behind SG traits have been explored specially in cereals, but they are to date poorly studied in the common bean. For this, we screened 71 common bean cultivars belonging to the three most important gene-pools, Mesoamerica, Andes and Europe, selected to cover the natural variation of the species. Phenotyping experiments under terminal drought during long-days in greenhouse conditions, identified six photoperiod insensitive cultivars of European origin with a clear SG phenotype. Using SNP data produced from whole genome re-sequencing data, we obtained 10 variants significantly associated to the SG phenotype on chromosomes 1, 3, 7, 8, 9 and 10 that are in close proximity to gene models with functional annotations related to hormone signaling and anti-oxidant production. Calculating pairwise FST between subgroups of cultivars divided according to their drought response (susceptibility, escape, recovery or SG), we identified up to 29 genomic windows accounting for 1,45Mb that differentiate SG cultivars; these signals were especially strong on chromosomes 1, 5 and 10. Within these windows, we found genes directly involved in photosynthetic processes and trehalose synthesis. Altogether, these signals represent good targets for further characterization and highlight the multigenic nature of the SG response in legumes.

17.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628969

ABSTRACT

Plant volatile organic compounds (VOCs) are an important link that mediates chemical communication between plants and plants, plants and insects, and plants and natural enemies of insect pests. In this study, we tested the response in the selective behavior of western flower thrips, Frankliniella occidentalis, to the VOCs of kidney bean, Phaseolus vulgaris L., to explore their "attraction" or "repellent" effects regarding their application in integrated pest management (i.e., IPM). The results indicated that 12.7 µL/mL (E, E, E, E)-squalene, 3.2 µL/mL dioctyl phthalate, and 82.2 µL/mL ethyl benzene had a significantly attractive effect on the selective behavior of F. occidentalis, while 10.7 µL/mL and 21.4 µL/mL 2,6-ditert-butyl-4-methyl phenol had a significantly repulsive effect on the selective behavior of F. occidentalis, showing that F. occidentalis responds differently to specific concentrations of VOCs from P. vulgaris plant emissions. Interestingly, the three compounds with the specific above concentrations, after being mixed in pairs, significantly attracted F. occidentalis compared to the control treatment; however, the mixture with the three above compounds had no significant different effect on F. occidentalis compared to the control treatment. It can be seen that the effect with the mixtures of three kinds of VOCs had the same function and may not get better. Simultaneously, the reasons for this result from the transcription levels of odorant-binding protein genes (OBPs) were determined. There were differences in the types and transcription levels of OBPs, which played a major role in the host selection behavior of F. occidentalis under the mixed treatment of different VOCs. It is presumed that there are specific VOCs from P. vulgaris plants that have a good repellent or attracting effect on the selective behavior of F. occidentalis, which can be used for the development of plant-derived insect attractants and repellents to serve as IPM in fields. But attention should be paid to the antagonism between plant-derived preparations and VOCs produced by plants themselves after application.


Subject(s)
Insect Repellents , Phaseolus , Thysanoptera , Volatile Organic Compounds , Animals , Volatile Organic Compounds/pharmacology , Vegetables , Flowers
18.
Plants (Basel) ; 12(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570917

ABSTRACT

Knowledge about the genetic diversity of the available common bean germplasm can help breeders properly direct the choice of genetic material in the breeding process. The aim of the present work was to estimate the usefulness of 10 RAPD and 10 SCoT markers in genetic diversity detection among 33 common bean genotypes. Both molecular marker systems were able to generate high levels of polymorphism in the genetic material, which was supported by the relatively high polymorphic information content (PIC) values observed for the used markers. The Diversity Detection Index (DDI) and Marker Index (MI) were used to compare the effectiveness of RAPD and SCoT markers. For both techniques, high values of MI and DDI were calculated, representing their effectivity. The SCoT markers showed higher values of the parameters used (MI = 7.474, DI = 2.265) than the RAPD markers (MI = 5.323, DDI = 1.612), indicating their higher efficiency in the detection of molecular variability. Three constructed dendrograms and PCoA plots were created using RAPD and SCoT, and both methods combined confirmed sufficient separation of the bean genotypes from each other. At the same time, a higher efficiency of SCoT markers compared to RAPD markers in the detection of the genetic diversity of beans was also proven. The results may be of future interest in the choice of genetically distant material for breeding purposes.

19.
Foods ; 12(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569138

ABSTRACT

The paper presents the effect of heat treatment at 80 °C at different times (3, 5, 7, and 9 min) on the structural and functional properties of Phaseolus vulgaris L. protein (PVP, bean protein powder). Surface and structure properties of PVP after heat treatment were analyzed using a Fourier transform infrared spectrometer (FTIR), a fluorescence spectrophotometer, a visible light spectrophotometer, a laser particle size analyzer, and other equipment. The secondary structure and surface hydrophobicity (H0) of PVP changed significantly after heat treatment: the ß-sheet content decreased from 25.32 ± 0.09% to 24.66 ± 0.09%, the random coil content increased from 23.91 ± 0.11% to 25.68 ± 0.08%, and the H0 rose by 28.96-64.99%. In addition, the functional properties of PVP after heat treatment were analyzed. After heat treatment, the emulsifying activity index (EAI) of PVP increased from 78.52 ± 2.01 m2/g to 98.21 ± 1.33 m2/g, the foaming ability (FA) improved from 87.31 ± 2.56% to 95.82 ± 2.96%, and the foam stability (FS) rose from 53.23 ± 1.72% to 58.71 ± 2.18%. Finally, the degree of hydrolysis (DH) of PVP after gastrointestinal simulated digestion in vitro was detected by the Ortho-Phthal (OPA) method. Heat treatment enhanced the DH of PVP from 62.34 ± 0.31% to 73.64 ± 0.53%. It was confirmed that heat treatment changed the structural properties of PVP and improved its foamability, emulsification, and digestibility. It provides ideas for improving PVP's potential and producing new foods with rich nutrition, multiple functions, and easy absorption.

20.
Isotopes Environ Health Stud ; 59(3): 290-296, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37480560

ABSTRACT

BACKGROUND: The use of plant protein intrinsically labelled with stable isotopes provides an innovative solution to assess the efficiency of protein intake by humans. Here, the incorporation of 2H has been applied to intrinsically labelled plant protein in the common bean. This study aimed to evaluate which is the best phenological phase of seed maturation to incorporate the heavy hydrogen isotope 2H into seed amino acids. Common beans (Phaseolus vulgaris L.) were grown in pots, then, after 50 days sowing, 2H2O dissolved in irrigation water was applied, then again at an interval of either 3, 6, 9, and 12 days. RESULTS: Applications of 2H2O at 6, 9, and 12 days after the first application, in the full-flowering stage, were the best treatments for enriching protein-bound amino acids in the bean seed with 2H. CONCLUSION: All treatments resulted in enrichment above 500 ppm, so the treatments (quantity and timing of 2H2O addition) were deemed successful for enriching bean seeds. This makes the intrinsically labelled seeds suitable for preparing test meals to assess the digestion and essential amino acid absorption of common bean amino acids in human subjects.


Subject(s)
Phaseolus , Humans , Plant Proteins , Amino Acids , Amino Acids, Essential , Deuterium
SELECTION OF CITATIONS
SEARCH DETAIL
...