Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38199247

ABSTRACT

Changes in expression levels of drug efflux pump genes, mexB and mexY, and porin gene oprD in Pseudomonas aeruginosa were investigated in this study. Fifty-five multidrug-resistant P. aeruginosa (MDRP) strains were compared with 26 drug-sensitive strains and 21 strains resistant to a single antibiotic. The effect of the efflux inhibitor Phe-Arg-ß-naphthylamide on drug susceptibility was determined, and gene expression was quantified using real-time quantitative real-time reverse transcription polymerase chain reaction. In addition, the levels of metallo-ß-lactamase (MBL) and 6'-N-aminoglycoside acetyltransferase [AAC(6')-Iae] were investigated. Efflux pump inhibitor treatment increased the sensitivity to ciprofloxacin, aztreonam, and imipenem in 71%, 73%, and 29% of MDRPs, respectively. MBL and AAC(6')-Iae were detected in 38 (69%) and 34 (62%) MDRP strains, respectively. Meanwhile, 76% of MDRP strains exhibited more than 8-fold higher mexY expression than the reference strain PAO1. Furthermore, 69% of MDRP strains expressed oprD at levels less than 0.01-fold of those in PAO1. These findings indicated that efflux pump inhibitors in combination with ciprofloxacin or aztreonam might aid in treating MDRP infections.


Subject(s)
Aztreonam , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Aztreonam/pharmacology , Ciprofloxacin/pharmacology , Imipenem , Biological Transport
2.
Proc Natl Acad Sci U S A ; 113(5): 1405-10, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787896

ABSTRACT

Efflux pumps of the resistance-nodulation division superfamily, such as AcrB, make a major contribution to multidrug resistance in Gram-negative bacteria. Inhibitors of such pumps would improve the efficacy of antibiotics, and ameliorate the crisis in health care caused by the prevalence of multidrug resistant Gram-negative pathogens. Phenylalanyl-arginine ß-naphthylamide (PAßN), is a well-known inhibitor of AcrB and its homologs. However, its mechanism of inhibition is not clear. Because the hydrolysis of PAßN in Escherichia coli was nearly entirely dependent on an aminopeptidase, PepN, expression of PepN in periplasm allowed us to carry out a quantitative determination of PAßN efflux kinetics through the determination of its periplasmic concentrations by quantitation of the first hydrolysis product, phenylalanine, after a short period of treatment. We found that PAßN is efficiently pumped out by AcrB, with a sigmoidal kinetics. We also examined the behavior of PAßN homologs, Ala ß-naphthylamide, Arg ß-naphthylamide, and Phe ß-naphthylamide, as substrates of AcrB and as modulators of nitrocefin efflux through AcrB. Furthermore, molecular dynamics simulations indicated that the mode of binding of these compounds to AcrB affects the modulatory activity on the efflux of other substrates. These results, and the finding that PAßN changes the nitrocefin kinetics into a sigmoidal one, suggested that PAßN inhibited the efflux of other drugs by binding to the bottom of the distal binding pocket, the so-called hydrophobic trap, and also by interfering with the binding of other drug substrates to the upper part of the binding pocket.


Subject(s)
Escherichia coli Proteins/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Naphthalenes/metabolism , Kinetics , Substrate Specificity
3.
Front Microbiol ; 3: 40, 2012.
Article in English | MEDLINE | ID: mdl-22347225

ABSTRACT

Recently, multidrug-resistant pathogens have disseminated widely owing essentially to their increased multidrug efflux pump activity. Presently, there is a scarcity of new antibacterial agents, and hence, inhibitors of multidrug efflux pumps belonging to the resistance-nodulation-cell division (RND) family appear useful in the treatment of infections by multidrug-resistant pathogens. Moreover, recent progress in microfabrication technologies has expanded the application of nano/micro-devices to the field of human healthcare, such as the detection of infections and diagnosis of diseases. We developed a microfluidic channel device for a simple and rapid evaluation of bacterial drug efflux activity. By combining the microfluidic device with a fluorogenic compound, fluorescein-di-ß-D-galactopyranoside, which is hydrolyzed to a fluorescent dye in the cytoplasm of Escherichia coli, we successfully evaluated the effects of inhibitors on the RND-type multidrug efflux pumps MexAB-OprM and MexXY-OprM from Pseudomonas aeruginosa in E. coli. Our new method successfully detected the MexB-specific inhibitory effect of D13-9001 and revealed an unexpected membrane-permeabilizing effect of Phe-Arg-ß-naphthylamide, which has long been used as an efflux pump inhibitor.

SELECTION OF CITATIONS
SEARCH DETAIL