Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Circ Res ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979610

ABSTRACT

BACKGROUND: The long isoform of the Wnk1 (with-no-lysine [K] kinase 1) is a ubiquitous serine/threonine kinase, but its role in vascular smooth muscle cells (VSMCs) pathophysiology remains unknown. METHODS: AngII (angiotensin II) was infused in Apoe-/- to induce experimental aortic aneurysm. Mice carrying an Sm22-Cre allele were cross-bred with mice carrying a floxed Wnk1 allele to specifically investigate the functional role of Wnk1 in VSMCs. RESULTS: Single-cell RNA-sequencing of the aneurysmal abdominal aorta from AngII-infused Apoe-/- mice revealed that VSMCs that did not express Wnk1 showed lower expression of contractile phenotype markers and increased inflammatory activity. Interestingly, WNK1 gene expression in VSMCs was decreased in human abdominal aortic aneurysm. Wnk1-deficient VSMCs lost their contractile function and exhibited a proinflammatory phenotype, characterized by the production of matrix metalloproteases, as well as cytokines and chemokines, which contributed to local accumulation of inflammatory macrophages, Ly6Chi monocytes, and γδ T cells. Sm22Cre+Wnk1lox/lox mice spontaneously developed aortitis in the infrarenal abdominal aorta, which extended to the thoracic area over time without any negative effect on long-term survival. AngII infusion in Sm22Cre+Wnk1lox/lox mice aggravated the aortic disease, with the formation of lethal abdominal aortic aneurysms. Pharmacological blockade of γδ T-cell recruitment using neutralizing anti-CXCL9 antibody treatment, or of monocyte/macrophage using Ki20227, a selective inhibitor of CSF1 receptor, attenuated aortitis. Wnk1 deletion in VSMCs led to aortic wall remodeling with destruction of elastin layers, increased collagen content, and enhanced local TGF-ß (transforming growth factor-beta) 1 expression. Finally, in vivo TGF-ß blockade using neutralizing anti-TGF-ß antibody promoted saccular aneurysm formation and aorta rupture in Sm22 Cre+ Wnk1lox/lox mice but not in control animals. CONCLUSION: Wnk1 is a key regulator of VSMC function. Wnk1 deletion promotes VSMC phenotype switch toward a pathogenic proinflammatory phenotype, orchestrating deleterious vascular remodeling and spontaneous severe aortitis in mice.

2.
Cells ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891091

ABSTRACT

Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.


Subject(s)
Cell Plasticity , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Humans , Cell Plasticity/immunology , Animals , Phenotype , Neoplasms/immunology , Neoplasms/pathology
3.
Int J Biol Sci ; 20(7): 2727-2747, 2024.
Article in English | MEDLINE | ID: mdl-38725857

ABSTRACT

Phenotypic switching (from contractile to synthetic) of vascular smooth muscle cells (VSMCs) is essential in the progression of atherosclerosis. The damaged endothelium in the atherosclerotic artery exposes VSMCs to increased interstitial fluid shear stress (IFSS). However, the precise mechanisms by which increased IFSS influences VSMCs phenotypic switching are unrevealed. Here, we employed advanced numerical simulations to calculate IFSS values accurately based on parameters acquired from patient samples. We then carefully investigated the phenotypic switching and extracellular vesicles (EVs) secretion of VSMCs under various IFSS conditions. By employing a comprehensive set of approaches, we found that VSMCs exhibited synthetic phenotype upon atherosclerotic IFSS. This synthetic phenotype is the upstream regulator for the enhanced secretion of pro-calcified EVs. Mechanistically, as a mechanotransducer, the epidermal growth factor receptor (EGFR) initiates the flow-based mechanical cues to MAPK signaling pathway, facilitating the nuclear accumulation of the transcription factor krüppel-like factor 5 (KLF5). Furthermore, pharmacological inhibiting either EGFR or MAPK signaling pathway blocks the nuclear accumulation of KLF5 and finally results in the maintenance of contractile VSMCs even under increased IFSS stimulation. Collectively, targeting this signaling pathway holds potential as a novel therapeutic strategy to inhibit VSMCs phenotypic switching and mitigate the progression of atherosclerosis.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Kruppel-Like Transcription Factors , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Stress, Mechanical , Extracellular Vesicles/metabolism , ErbB Receptors/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Extracellular Fluid/metabolism , Phenotype , Animals , Atherosclerosis/metabolism , MAP Kinase Signaling System , Signal Transduction
4.
Heliyon ; 10(10): e30708, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803898

ABSTRACT

Objectives: Vascular diseases are often caused by the interaction between macrophages and vascular smooth muscle cells (VSMCs). This study aims to elucidate whether chronotherapy with rosiglitazone (RSG) can regulate the secretion rhythm of macrophages, thereby controlling the phenotypic switch of VSMCs and clarifying the potential molecular mechanisms, providing a chronotherapeutic approach for the treatment of vascular diseases. Methods: RAW264.7 cells and A7r5 cells were synchronized via a 50 % FBS treatment. M1-type macrophages were induced through Lipopolysaccharide (LPS) exposure. Additionally, siRNA and plasmids targeting PPARγ were transfected into macrophages. The assessment encompassed cell viability, migration, inflammatory factor levels, lipid metabolites, clock gene expression, and relative protein expression. Results: We revealed that, in alignment with core clock genes Bmal1 and CLOCK, RSG administration at ZT2 advanced the phase of TNF-α release rhythm, while ZT12 administration shifted it backward. Incubation with TNF-α at ZT2 significantly promoted the phenotype switch of VSMCs. This effect diminished when incubated at ZT12, implicating the involvement of the clock-MAPK pathway in VSMCs. Furthermore, RSG administration at ZT2 advanced the phases of PPARγ and Bmal1 genes, whereas ZT12 administration shifted them backward. Additionally, PPARγ overexpression significantly induced triglyceride (TG) accumulation in macrophages. Exogenous TG upregulated Bmal1 and CLOCK gene expression in macrophages and significantly increased TNF-α release. Conclusion: Chronotherapy involving RSG induces TG accumulation within macrophages, resulting in alterations in circadian gene rhythms. These changes, in turn, modulate the phase of rhythmic TNF-α release and play a regulatory role in VSMCs phenotype switch. Our study establishes a theoretical foundation for chronotherapy of PPARγ agonists.

5.
Front Cell Infect Microbiol ; 14: 1398706, 2024.
Article in English | MEDLINE | ID: mdl-38756231

ABSTRACT

Introduction: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.


Subject(s)
Adaptation, Physiological , Mycoplasma Infections , Mycoplasma hominis , Proteogenomics , Humans , Mycoplasma hominis/genetics , Mycoplasma hominis/metabolism , Mycoplasma Infections/microbiology , Biofilms/growth & development , Genome, Bacterial , Phenotype , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics
6.
Cancers (Basel) ; 16(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38611112

ABSTRACT

TNF-α functions as a master regulator of inflammation, and it plays a prominent role in several immunological diseases. By promoting important cellular mechanisms, such as cell proliferation, migration, and phenotype switch, TNF-α induces its exacerbating effects, which are the underlying cause of many proliferative diseases such as cancer and cardiovascular disease. TNF-α primarily alters the immune component of the disease, which subsequently affects normal functioning of the cells. Monoclonal antibodies and synthetic drugs that can target TNF-α and impair its effects have been developed and are currently used in the treatment of a few select human diseases. Vascular restenosis is a proliferative disorder that is initiated by immunological mechanisms. In this review, the role of TNF-α in exacerbating restenosis resulting from neointimal hyperplasia, as well as molecular mechanisms and cellular processes affected or induced by TNF-α, are discussed. As TNF-α-targeting drugs are currently not approved for the treatment of restenosis, the summation of the topics discussed here is anticipated to provide information that can emphasize on the use of TNF-α-targeting drug candidates to prevent vascular restenosis.

7.
Front Physiol ; 15: 1327794, 2024.
Article in English | MEDLINE | ID: mdl-38638277

ABSTRACT

Redox processes can modulate vascular pathophysiology. The endoplasmic reticulum redox chaperone protein disulfide isomerase A1 (PDIA1) is overexpressed during vascular proliferative diseases, regulating thrombus formation, endoplasmic reticulum stress adaptation, and structural remodeling. However, both protective and deleterious vascular effects have been reported for PDIA1, depending on the cell type and underlying vascular condition. Further understanding of this question is hampered by the poorly studied mechanisms underlying PDIA1 expression regulation. Here, we showed that PDIA1 mRNA and protein levels were upregulated (average 5-fold) in the intima and media/adventitia following partial carotid ligation (PCL). Our search identified that miR-204-5p and miR-211-5p (miR-204/211), two broadly conserved miRNAs, share PDIA1 as a potential target. MiR-204/211 was downregulated in vascular layers following PCL. In isolated endothelial cells, gain-of-function experiments of miR-204 with miR mimic decreased PDIA1 mRNA while having negligible effects on markers of endothelial activation/stress response. Similar effects were observed in vascular smooth muscle cells (VSMCs). Furthermore, PDIA1 downregulation by miR-204 decreased levels of the VSMC contractile differentiation markers. In addition, PDIA1 overexpression prevented VSMC dedifferentiation by miR-204. Collectively, we report a new mechanism for PDIA1 regulation through miR-204 and identify its relevance in a model of vascular disease playing a role in VSMC differentiation. This mechanism may be regulated in distinct stages of atherosclerosis and provide a potential therapeutic target.

8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631411

ABSTRACT

Patients with advanced chronic kidney disease (CKD) have elevated circulating calcium × phosphate product levels and exhibit soft tissue calcification. Besides the cardiovascular system, calcification is commonly observed in the cornea in CKD patients on hemodialysis. Cardiovascular calcification is a cell-mediated, highly regulated process, and we hypothesized that a similar regulatory mechanism is implicated in corneal calcification with the involvement of corneal epithelial cells (CECs). We established a mouse model of CKD-associated corneal calcification by inducing CKD in DBA/2J mice with an adenine and high phosphate diet. CKD was associated with aorta and corneal calcification as detected by OsteoSense staining and corneal Ca measurement (1.67-fold elevation, p < 0.001). In vitro, excess phosphate and Ca induced human CEC calcification in a dose-dependent and synergistic manner, without any influence on cell viability. High phosphate and Ca-containing osteogenic medium (OM; 2.5 mmol/L excess phosphate and 0.6 mmol/L excess Ca over control) increased the protein expression of Runx2 and induced its nuclear translocation. OM increased the expression of the bone-specific Ca-binding protein osteocalcin (130-fold increase, p < 0.001). Silencing of Runx2 attenuated OM-induced CEC calcification. Immunohistology revealed upregulation of Runx2 and overlapping between the Runx2 and the Alizarin red positive areas of calcification in the cornea of CKD mice. This work sheds light on the mechanism of CKD-induced corneal calcification and provides tools to test calcification inhibitors for the prevention of this detrimental process.


Subject(s)
Calcinosis , Calcium , Core Binding Factor Alpha 1 Subunit , Osteoblasts , Phosphates , Renal Insufficiency, Chronic , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Mice , Humans , Osteoblasts/metabolism , Osteoblasts/pathology , Phosphates/metabolism , Calcium/metabolism , Calcinosis/pathology , Calcinosis/metabolism , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Male , Mice, Inbred DBA , Epithelial Cells/metabolism , Epithelial Cells/pathology , Disease Models, Animal , Phenotype
9.
Mol Cell Biochem ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409514

ABSTRACT

This study aimed to decipher the mechanism of circular ribonucleic acids (circRNAs) in lower extremity arteriosclerosis obliterans (LEASO). First, bioinformatics analysis was performed for screening significantly down-regulated cardiac specific circRNA-circHAT1 in LEASO. The expression of circHAT1 in LEASO clinical samples was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of splicing factor arginine/serine-rich 1 (SFRS1), α-smooth muscle actin (α-SMA), Calponin (CNN1), cyclin D1 (CNND1) and smooth muscle myosin heavy chain 11 (SMHC) in vascular smooth muscle cells (VSMCs) was detected by Western blotting. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays were used to evaluate cell proliferation and migration, respectively. RNA immunoprecipitation (RNA-IP) and RNA pulldown verified the interaction between SFRS1 and circHAT1. By reanalyzing the dataset GSE77278, circHAT1 related to VSMC phenotype conversion was screened, and circHAT1 was found to be significantly reduced in peripheral blood mononuclear cells (PBMCs) of LEASO patients compared with healthy controls. Knockdown of circHAT1 significantly promoted the proliferation and migration of VSMC cells and decreased the expression levels of contractile markers. However, overexpression of circHAT1 induced the opposite cell phenotype and promoted the transformation of VSMCs from synthetic to contractile. Besides, overexpression of circHAT1 inhibited platelet-derived growth factor-BB (PDGF-BB)-induced phenotype switch of VSMC cells. Mechanistically, SFRS1 is a direct target of circHAT1 to mediate phenotype switch, proliferation and migration of VSMCs. Overall, circHAT1 regulates SFRS1 to inhibit the cell proliferation, migration and phenotype switch of VSMCs, suggesting that it may be a potential therapeutic target for LEASO.

10.
Biomed Pharmacother ; 172: 116255, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325261

ABSTRACT

Inflammation is one of the main pathogenic factors of atherosclerosis (AS), and the phenotypic transformation of macrophages in human vascular smooth muscle cells (HVSMCs) contributes to the inflammatory injury of blood vessels and the formation of atherosclerotic plaques. Artesunate reportedly exerts anti-inflammatory activity against AS. Herein, we aimed to explore the artesunate-mediated anti-inflammatory and HVSMC phenotypic switch effects against AS and elucidate potential underlying mechanisms. In vitro, artesunate decreased expression of NLRP3, caspase-1, and interleukin (IL)- 1ß. Artesunate significantly inhibited low-density lipoprotein (LDL) expression in HVSMCs and macrophages. In vivo, artesunate reduced atherosclerotic plaque formation in high-fat diet (HFD)-fed ApoE-/- mice, as well as decreased NLRP3 and CD68 expression in atherosclerotic plaques. Artesunate decreased serum levels of triglycerides and increased high-density lipoprotein levels in HFD-med mice; however, serum levels of total cholesterol and LDL were unaltered. Treatment with artesunate substantially increased α-smooth muscle actin expression in aortic tissues while inhibiting expression levels of NLRP3, IL-1ß, heparinase, matrix metalloproteinase 9, and Krüppel-like factor 4 (KLF4). Collectively, our findings suggest that artesunate-mediated effects may involve inhibition of the ERK1/2/NF-κB/IL-1ß pathway in HVSMCs via the downregulation of NLRP3 expression. Thus, artesunate could serve as a novel strategy to treat AS by inhibiting AS plaque formation and suppressing macrophage-like phenotype switching of HVSMCs.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Humans , Mice , Animals , Plaque, Atherosclerotic/pathology , Artesunate/pharmacology , Artesunate/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Muscle, Smooth, Vascular/metabolism , Atherosclerosis/pathology , Macrophages/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Phenotype
11.
J Affect Disord ; 349: 297-309, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38211750

ABSTRACT

BACKGROUND: Postoperative neurocognitive disorder (PND) is a common central nervous system complication after undergoing surgery and anesthesia especially in elderly patients, while the therapeutic options are very limited. This study was carried out to investigate the beneficial effects of transcranial near infrared light (NIRL) which was employed to the treatment of PND and propose the involved mechanisms. METHODS: The PND mice were established through left carotid artery exposure under isoflurane anesthesia and received transcranial NIRL treatment. Behavioral testing was performed to evaluate the cognitive function of PND mice after transcranial NIRL therapy. Changes in the transcriptomic profiles of prefrontal cortex (PFC) and hippocampus (HP) were identified by next generation sequencing (NGS), and the molecular mechanisms involved were examined by both in vivo mouse model and in vitro cell culture studies. RESULTS: We found that transcranial NIRL therapy effectively ameliorated learning and memory deficit induced by anesthesia and surgery in aged mice. Specifically, we identified down-regulation of interferon regulatory factor 7 (IRF7) in the brains of PND mice that was mechanistically associated with increased pro-inflammatory M1 phenotype of microglia and elevated neuroinflammatory. NIRL treatment produced protective effects through the upregulation of IRF7 expression and reversing microglial phenotypes from pro-inflammatory to neuroprotective, resulting in reduced brain damage and improved cognitive function in PND mice. CONCLUSION: Our results indicate that transcranial NIRL is an effective and safe therapy for PND via alleviating neuroinflammation, and IRF7 plays a key transcription factor in regulating the M1-to-M2 switch of microglia.


Subject(s)
Interferon Regulatory Factor-7 , Neuroprotective Agents , Aged , Animals , Humans , Mice , Brain/metabolism , Interferon Regulatory Factor-7/metabolism , Mice, Inbred C57BL , Neurocognitive Disorders , Phototherapy
12.
J Bacteriol ; 206(1): e0004723, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38088582

ABSTRACT

Phenotype switching can be triggered by external stimuli and by intrinsic stochasticity. Here, we focus on the motility-matrix production switch in Bacillus subtilis. We use modeling to describe the SinR-SlrR bistable switch and its regulation by SinI and to distinguish different sources of stochasticity. Our simulations indicate that intrinsic fluctuations in the synthesis of SinI are insufficient to drive spontaneous switching and suggest that switching is triggered by upstream noise from the Spo0A phosphorelay. IMPORTANCE The switch from motility to matrix production is the first step toward biofilm formation and, thus, to multicellular behavior in Bacillus subtilis. The transition is governed by a bistable switch based on the interplay of the regulators SinR and SlrR, while SinI transmits upstream signals to that switch. Quantitative modeling can be used to study the switching dynamics. Here, we build such a model step by step to describe the dynamics of the switch and its regulation and to study how spontaneous switching is triggered by upstream noise from the Spo0A phosphorelay.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacillus subtilis/metabolism , Biofilms , Gene Expression Regulation, Bacterial
13.
J Cell Physiol ; 239(1): 124-134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37942832

ABSTRACT

Studies regarding age-related erectile dysfunction (ED) based on naturally aging models are limited by their high costs, especially for the acquisition of primary cells from the corpus cavernosum. Herein, d-galactose ( d-gal) was employed to accelerate cell senescence, and the underlying mechanism was explored. As predominant functional cells involved in the erectile response, corpus cavernosum smooth muscle cells (CCSMCs) were isolated from 2-month-old rats. Following this, d-gal was introduced to induce cell senescence, which was verified via ß-galactosidase staining. The effects of d-gal on CCSMCs were evaluated by terminal deoxynucleoitidyl transferase dUTP nick-end labeling (TUNEL), immunofluorescence staining, flow cytometry, western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, RNA interference (RNAi) was carried out for rescue experiments. Subsequently, the influence of senescence on the corpus cavernosum was determined via scanning electron microscopy, qRT-PCR, immunohistochemistry, TUNEL, and Masson stainings. The results revealed that the accelerated senescence of CCSMCs was promoted by d-gal. Simultaneously, smooth muscle alpha-actin (alpha-SMA) expression was inhibited, while that of osteopontin (OPN) and Krüppel-like factor 4 (KLF4), as well as fibrotic and apoptotic levels, were elevated. After knocking down KLF4 expression in d-gal-induced CCSMCs by RNAi, the expression level of cellular alpha-SMA increased. Contrastingly, the OPN expression, apoptotic and fibrotic levels declined. In addition, cellular senescence acquired partial remission. Accordingly, in the aged corpus cavernosum, the fibrotic and apoptotic rates were increased, followed by downregulation in the expression of alpha-SMA and the concurrent upregulation in the expression of OPN and KLF4. Overall, our results signaled that d-gal-induced accelerated senescence of CCSMCs could trigger fibrosis, apoptosis and phenotypic switch to the synthetic state, potentially attributed to the upregulation of KLF4 expression, which may be a multipotential therapeutic target of age-related ED.


Subject(s)
Erectile Dysfunction , Galactose , Myocytes, Smooth Muscle , Animals , Male , Rats , Erectile Dysfunction/metabolism , Erectile Dysfunction/therapy , Galactose/pharmacology , Galactose/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Penis , Phenotype , Rats, Sprague-Dawley , Actins
14.
J Cell Physiol ; 239(1): 97-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921259

ABSTRACT

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/-  mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Spectrin , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Liver Neoplasms/metabolism , Macrophages/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/pathology , Humans , Spectrin/metabolism , Chemokine CXCL1
15.
Trends Microbiol ; 32(3): 302-316, 2024 03.
Article in English | MEDLINE | ID: mdl-37778923

ABSTRACT

Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.


Subject(s)
Beauveria , Metarhizium , Mycoses , Animals , Insecta/microbiology , Metarhizium/genetics , Metarhizium/metabolism , Beauveria/genetics , Host Specificity , Fungal Proteins/genetics , Fungal Proteins/metabolism
16.
Genes Dis ; 10(3): 1114-1129, 2023 May.
Article in English | MEDLINE | ID: mdl-37396516

ABSTRACT

Macrophages (Mφs) play a crucial role in the pathological progression of osteoarthritis (OA) by regulating inflammation and tissue repair. Decreasing pro-inflammatory M1-Mφs and increasing anti-inflammatory M2-Mφs can alleviate OA-related inflammation and promote cartilage repair. Apoptosis is a natural process associated with tissue repair. A large number of apoptotic bodies (ABs), a type of extracellular vesicle, are produced during apoptosis, and this is associated with a reduction in inflammation. However, the functions of apoptotic bodies remain largely unknown. In this study, we investigated the role of M2-Mφs-derived apoptotic bodies (M2-ABs) in regulating the M1/M2 balance of macrophages in a mouse model of OA. Our data show that M2-ABs can be targeted for uptake by M1-Mφs, and this reprograms M1-to-M2 phenotypes within 24 h. The M2-ABs significantly ameliorated the severity of OA, alleviated the M1-mediated pro-inflammatory environment, and inhibited chondrocyte apoptosis in mice. RNA-seq revealed that M2-ABs were enriched with miR-21-5p, a microRNA that is negatively correlated with articular cartilage degeneration. Inhibiting the function of miR-21-5p in M1-Mφs significantly reduced M2-ABs-guided M1-to-M2 reprogramming following in vitro cell transfection. Together, these results suggest that M2-derived apoptotic bodies can prevent articular cartilage damage and improve gait abnormalities in OA mice by reversing the inflammatory response caused by M1 macrophages. The mechanism underlying these findings may be related to miR-21-5p-regulated inhibition of inflammatory factors. The application of M2-ABs may represent a novel cell therapy, and could provide a valuable strategy for the treatment of OA and/or chronic inflammation.

17.
Biomolecules ; 13(7)2023 07 04.
Article in English | MEDLINE | ID: mdl-37509110

ABSTRACT

Popliteal artery aneurysm (PAA) is the most frequent peripheral aneurysm, primarily seen in male smokers with a prevalence below 1%. This exploratory study aims to shed light on cellular mechanisms involved in PAA progression. Sixteen human PAA and eight non-aneurysmatic popliteal artery samples, partially from the same patients, were analyzed by immunohistochemistry, fluorescence imaging, Affymetrix mRNA expression profiling, qPCR and OLink proteomics, and compared to atherosclerotic (n = 6) and abdominal aortic aneurysm (AAA) tissue (n = 19). Additionally, primary cell culture of PAA-derived vascular smooth muscle cells (VSMC) was established for modulation and growth analysis. Compared to non-aneurysmatic popliteal arteries, VSMCs lose the contractile phenotype and the cell proliferation rate increases significantly in PAA. Array analysis identified APOE higher expressed in PAA samples, co-localizing with VSMCs. APOE stimulation of primary human PAA VSMCs significantly reduced cell proliferation. Accordingly, contractile VSMC markers were significantly upregulated. A single case of osseous mechanically induced PAA with a non-diseased VSMC profile emphasizes these findings. Carefully concluded, PAA pathogenesis shows similar features to AAA, yet the mechanisms involved might differ. APOE is specifically higher expressed in PAA tissue and could be involved in VSMC phenotype rescue.


Subject(s)
Aortic Aneurysm, Abdominal , Popliteal Artery Aneurysm , Humans , Male , Aortic Aneurysm, Abdominal/metabolism , Phenotype , Myocytes, Smooth Muscle/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins/metabolism
18.
Front Physiol ; 14: 1223278, 2023.
Article in English | MEDLINE | ID: mdl-37324402
19.
Eur J Pharmacol ; 952: 175789, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37244376

ABSTRACT

Thoracic aortic dissection (TAD) is common but lethal cardiovascular disease with high mortality. This study aimed to expound whether and how sGC-PRKG1 signaling pathway might promote the formation of TAD. Our work identified two modules with high relevance to TAD using WGCNA method. Combined with previous studies, we focused on the participation of endothelial NOS (eNOS) in the progression of TAD. Through immunohistochemistry, immunofluorescence and western blot we verified that eNOS expression was elevated in the tissues of patients and mice with aortic dissection, and the phosphorylation Ser1177 of eNOS was activated. In a BAPN-induced TAD mouse model, sGC-PRKG1 signaling pathway promotes TAD formation by inducing vascular smooth muscle cells (VSMCs) phenotype transition, which was demonstrated as a decrease in markers of the contractile phenotype of VSMCs such as αSMA, SM22α, and Calponin. These results were also verified by experiments in vitro. To explore the further mechanism, we conducted immunohistochemistry, western blot and quantitative RT-PCR (qPCR), the results of which indicated that sGC-PRKG1 signaling pathway was activated when TAD occurred. In conclusion, our current study revealed that sGC-PRKG1 signaling pathway could promote TAD formation by accelerating VSMCs phenotype switch.


Subject(s)
Aortic Dissection , Dissection, Thoracic Aorta , Mice , Animals , Muscle, Smooth, Vascular/metabolism , Aortic Dissection/chemically induced , Phenotype , Signal Transduction , Myocytes, Smooth Muscle/metabolism
20.
Transl Stroke Res ; 14(4): 608-623, 2023 08.
Article in English | MEDLINE | ID: mdl-36181627

ABSTRACT

Moyamoya disease (MMD) is characterized by frequent migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in the intima layer of blood vessels. However, the underlying mechanism is unclear. Toll-like receptor (TLR) 7 is abundantly expressed in smooth muscle cells (SMCs) in multiple vascular diseases, which might be linked to the disease-associated vascular remodeling. In the present study, the expression of TLR7 in MMD vessels was examined using the superficial temporal artery (STA) and middle cerebral artery (MCA) from MMD patients. Furthermore, the effect of TLR7 activation on the VSMC phenotype switch in vitro and vascular remodeling in vivo was assessed using a 9.4Tesla MRI. Our results demonstrated that the TLR7 and microRNA Let-7c expression are upregulated in VSMCs and the plasma of MMD patients, respectively. Additionally, TLR7 stimulation by Let-7c or Imiquimod induces a synthetic phenotype switch in VSMCs. Mechanistic studies revealed that Akt/mTOR signaling is responsible for this TLR-induced VSMC phenotypic switch. The Let-7c or Imiquimod treatment also resulted in reduced blood flow of internal carotid arteries (ICAs) in an in vivo model, while TLR7 inhibition attenuated the ICA stenosis. Besides, Let-7c was also found to be elevated in the hypoxic endothelial cells. Taken together, our study demonstrates that Let-7c released by endothelial cells under hypoxic conditions may activate TLR7 on VSMCs, ultimately leading to the phenotype switch and vascular wall remodeling. These findings thus elucidate the putative mechanisms underlying progressive stenosis of blood vessels in MMD and provide prospective therapeutic targets for further exploration.


Subject(s)
Moyamoya Disease , Humans , Moyamoya Disease/genetics , Vascular Remodeling/physiology , Constriction, Pathologic/metabolism , Endothelial Cells/metabolism , Imiquimod/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Myocytes, Smooth Muscle/metabolism , Cell Proliferation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...