Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
J Exp Bot ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946283

ABSTRACT

Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilising its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, produced more reproductive stems compared to cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype-by-environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.

2.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895411

ABSTRACT

Populations can adapt to stressful environments through changes in gene expression. However, the role of gene regulation in mediating stress response and adaptation remains largely unexplored. Here, we use an integrative field dataset obtained from 780 plants of Oryza sativa ssp. indica (rice) grown in a field experiment under normal or moderate salt stress conditions to examine selection and evolution of gene expression variation under salinity stress conditions. We find that salinity stress induces increased selective pressure on gene expression. Further, we show that trans-eQTLs rather than cis-eQTLs are primarily associated with rice's gene expression under salinity stress, potentially via a few master-regulators. Importantly, and contrary to the expectations, we find that cis-trans reinforcement is more common than cis-trans compensation which may be reflective of rice diversification subsequent to domestication. We further identify genetic fixation as the likely mechanism underlying this compensation/reinforcement. Additionally, we show that cis- and trans-eQTLs are under different selection regimes, giving us insights into the evolutionary dynamics of gene expression variation. By examining genomic, transcriptomic, and phenotypic variation across a rice population, we gain insights into the molecular and genetic landscape underlying adaptive salinity stress responses, which is relevant for other crops and other stresses.

3.
Trop Anim Health Prod ; 56(5): 172, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771474

ABSTRACT

The increasing global demand for food and the strong effect of climate change have forced animal science to advance regarding new methods of selection in search of more efficient animals in production systems. Feed consumption represents more than 70% of the costs of sheep farms, and more efficient animals can increase the farmers' profitability. One of the main measures of feed efficiency is estimated residual feed intake (RFI), created in 1963 by Robert Koch for estimation in cattle and later adapted for sheep. Animals with negative RFI values (RFI-) are more efficient than animals with positive values (RFI+), with influence on the variables of performance, carcass quality and production of enteric gases. The RFI is the most common and accepted metric of the feed efficiency trait for genetic selection, since it is independent of growth traits, unlike the feed conversion ratio. The purpose of this review article was to present updated literature information on the relationship of RFI estimates with performance measures, molecular markers, greenhouse gas production and feed efficiency, the technical aspects and physiological basis of metabolic in sheep.


Subject(s)
Animal Feed , Animals , Animal Feed/analysis , Animal Husbandry/methods , Eating/physiology , Sheep/physiology , Sheep/growth & development , Sheep, Domestic/physiology , Sheep, Domestic/growth & development , Animal Nutritional Physiological Phenomena , Greenhouse Gases/analysis
4.
New Phytol ; 243(1): 440-450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655668

ABSTRACT

Hybrid zones provide natural experimental settings to test hypotheses about species divergence. We concentrated on a hybrid swarm in which oil-collecting bees and flower-pecking birds act as pollinators of two Calceolaria species. We asked whether both pollinators contributed to flower divergence by differentially promoting prezygotic fitness at the phenotypic extremes that represent parentals. We studied pollinator-mediated selection on phenotypic traits critical in plant-pollinator mechanical interaction, namely plant height, reward-to-stigma distance, and flower shape. We utilised the quantity and quality of pollen deposited as fitness measures and distinguished between the contribution of the two pollinator types. Results showed uni- and bivariate disruptive selection for most traits through pollen grains deposited by both pollinators. Bird-mediated fitness favoured low plants with a long reward-to-stigma distance and a straight corolla, while bee-mediated fitness favoured tall plants with a short reward-to-stigma distance and curved corolla. In addition, stabilising selection at one end of the phenotypic range showed a bird-mediated reproductive asymmetry within the swarm. The disruptive pattern was countered, albeit weakly, by hybrids receiving higher-quality pollen on the stigmas. Results suggest that pollinator-mediated selection promotes divergence of integrated flower phenotypes mechanically adjusted either to bees or birds underscoring the importance of pollinator specialisation in diversification.


Subject(s)
Flowers , Genetic Fitness , Phenotype , Pollination , Selection, Genetic , Pollination/physiology , Animals , Bees/physiology , Flowers/physiology , Flowers/anatomy & histology , Birds/physiology , Pollen/physiology , Hybridization, Genetic , Species Specificity
5.
J Evol Biol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668688

ABSTRACT

Sexual conflict plays a key role in the dynamics of adaptive evolution in sexually reproducing populations, and theory suggests an important role for variance in resource acquisition in generating or masking sexual conflict over fitness and life history traits. Here, I used a quantitative genetic genotype x environment experiment in Drosophila melanogaster, to test the theoretical prediction that variance in resource acquisition mediates variation in sex-specific component fitness. Holding larval conditions constant, I found that adult nutritional environments characterized by high protein content resulted in reduced survival of both sexes compared to an environment of lower protein content, and lower male reproductive success. Despite reduced mean fitness of both sexes in high protein environments, I found a sex*treatment interaction for the relationship between resource acquisition and fitness; estimates of the adaptive landscape indicate males were furthest from their optimum resource acquisition level in high protein environments, and females were furthest in low protein environments. Expression of genetic variance in resource acquisition and survival was highest for each sex in the environment it was best adapted to, although the treatment effects on expression of genetic variance eroded in the path from resource acquisition to total fitness. Cross-sex genetic correlations were strongly positive for resource acquisition, survival, and total fitness, and negative for mating success, although estimation error was high for all. These results demonstrate that environmental effects on resource acquisition can have predictable consequences for the expression of sex-specific genetic variance, but also that these effects of resource acquisition can erode through the life history.

6.
New Phytol ; 242(5): 2223-2236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548693

ABSTRACT

Microbial communities can rapidly respond to stress, meaning plants may encounter altered soil microbial communities in stressful environments. These altered microbial communities may then affect natural selection on plants. Because stress can cause lasting changes to microbial communities, microbes may also cause legacy effects on plant selection that persist even after the stress ceases. To explore how microbial responses to stress and persistent microbial legacy effects of stress affect natural selection, we grew Chamaecrista fasciculata plants in stressful (salt, herbicide, or herbivory) or nonstressful conditions with microbes that had experienced each of these environments in the previous generation. Microbial community responses to stress generally counteracted the effects of stress itself on plant selection, thereby weakening the strength of stress as a selective agent. Microbial legacy effects of stress altered plant selection in nonstressful environments, suggesting that stress-induced changes to microbes may continue to affect selection after stress is lifted. These results suggest that soil microbes may play a cryptic role in plant adaptation to stress, potentially reducing the strength of stress as a selective agent and altering the evolutionary trajectory of plant populations.


Subject(s)
Selection, Genetic , Stress, Physiological , Soil Microbiology , Herbivory , Herbicides/pharmacology
7.
Evol Lett ; 8(1): 114-127, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370552

ABSTRACT

Investigating how climate change alters selection regimes is a crucial step toward understanding the potential of populations to evolve in the face of changing conditions. Previous studies have mainly focused on understanding how changing climate directly influences selection, while the role of species' interactions has received little attention. Here, we used a transplant experiment along an elevation gradient to estimate how climate warming and competitive interactions lead to shifts in directional phenotypic selection on morphology and phenology of four alpine plants. We found that warming generally imposed novel selection, with the largest shifts in regimes acting on specific leaf area and flowering time across species. Competitors instead weakened the selection acting on traits that was imposed directly by warming. Weakened or absent selection in the presence of competitors was largely associated with the suppression of absolute means and variation of fitness. Our results suggest that although climate change can impose strong selection, competitive interactions within communities might act to limit selection and thereby stymie evolutionary responses in alpine plants facing climate change.

8.
BMC Plant Biol ; 24(1): 37, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191282

ABSTRACT

BACKGROUND: Predicting the adaptability of forest tree populations under future climates requires a better knowledge of both the adaptive significance and evolvability of measurable key traits. Phenotypic plasticity, standing genetic variation and degree of phenotypic integration shape the actual and future population genetic structure, but empirical estimations in forest tree species are still extremely scarce. We analysed 11 maritime pine populations covering the distribution range of the species (119 families and 8 trees/family, ca. 1300 trees) in a common garden experiment planted at two sites with contrasting productivity. We used plant height as a surrogate of fitness and measured five traits (mean and plasticity of carbon isotope discrimination, specific leaf area, needle biomass, Phenology growth index) related to four different strategies (acquisitive economics, photosynthetic organ size, growth allocation and avoidance of water stress). RESULTS: Estimated values of additive genetic variation would allow adaptation of the populations to future environmental conditions. Overall phenotypic integration and selection gradients were higher at the high productivity site, while phenotypic integration within populations was higher at the low productivity site. Response to selection was related mainly to photosynthetic organ size and drought-avoidance mechanisms rather than to water use efficiency. Phenotypic plasticity of water use efficiency could be maladaptive, resulting from selection for height growth. CONCLUSIONS: Contrary to the expectations in a drought tolerant species, our study suggests that variation in traits related to photosynthetic organ size and acquisitive investment of resources drive phenotypic selection across and within maritime pine populations. Both genetic variation and evolvability of key adaptive traits were considerably high, including plasticity of water use efficiency. These characteristics would enable a relatively fast micro-evolution of populations in response to the ongoing climate changes. Moreover, differentiation among populations in the studied traits would increase under the expected more productive future Atlantic conditions.


Subject(s)
Adaptation, Physiological , Trees , Humans , Trees/genetics , Biomass , Carbon Isotopes , Climate Change
9.
Oecologia ; 204(1): 173-185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38253704

ABSTRACT

Geographic range limits of species are often a reflection of their ecological niche limits. In many organisms, important niche limits that coincide with distribution limits are warm and warm-dry conditions. We investigated the effects of heat and drought, as they can occur at the warm end of distribution. In a greenhouse experiment, we raised North American Arabidopsis lyrata from the centre of its distribution as well as from low- and high-latitude limits under average and extreme conditions. We assessed plant growth and development, as well as leaf and root functional traits, and tested for a decline in performance and selection acting on growth, leaf, and root traits. Drought and heat, when applied alone, lowered plant performance, while combined stress caused synergistically negative effects. Plants from high latitudes did not survive under combined stress, whereas plants originating from central and low latitudes had low to moderate survival, indicating divergent adaptation. Traits positively associated with survival under drought, with or without heat, were delayed and slowed growth, though plastic responses in these traits were generally antagonistic to the direction of selection. In line, higher tolerance of stress in southern populations did not involve aspects of growth but rather a higher root-to-shoot ratio and thinner leaves. In conclusion, combined heat and drought, as can occur at southern range edges and presumably more so under global change, seriously impede the long-term persistence of A. lyrata, even though they impose selection and populations may adapt, though under likely interference by considerable maladaptive plasticity.


Subject(s)
Arabidopsis , Hot Temperature , Droughts , Plant Leaves/physiology , Phenotype
10.
Ecol Evol ; 13(12): e10794, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38077505

ABSTRACT

The expression of plant resistance traits against arthropod herbivores often comes with costs to other essential plant functions such as growth and fitness. These trade-offs are shaped by the allocation of limited resources. However, plants might also possess the capability to allocate resources to both resistance and growth, thereby ensuring their survival when under herbivore attacks. Additionally, the extent of damage caused by herbivores could vary across different years or seasons, subsequently impacting plant performance. In this study, we aimed to investigate how the annual variations in herbivore abundance and damage levels affect plant performance. We generated F2 progeny through a cross between two populations of the annual herb Datura stramonium (Solanaceae). These populations are known to have differing levels of chemical defense and herbivory. These F2 plants were cultivated in a common natural environment for two consecutive years (2017 and 2018). Our findings reveal that plants with higher resistance, attained higher seed production but this trend was evident only during 2018. This relationship coincided with a five-fold increase in the abundance of Lema daturaphila (Chrysomelidae) larvae in 2018. Indeed, the plants experienced a 13-fold increase in damage during this second year of study. Furthermore, our results indicated that there was no trade-off between resistance, growth, and fitness in either of the 2 years. In contrast, during 2018, when plants faced stronger herbivore pressure, they allocated all available nutritional resources to enhance both resistance and growth. Our study highlights how the selection for plant resistance is dependent upon the inter-annual variation in herbivore abundance.

11.
Ecol Evol ; 13(11): e10706, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37953983

ABSTRACT

Human-mediated environmental change, by reducing mean fitness, is hypothesized to strengthen selection on traits that mediate interactions among species. For example, human-mediated declines in pollinator populations are hypothesized to reduce mean seed production by increasing the magnitude of pollen limitation and thus strengthen pollinator-mediated selection on floral traits that increase pollinator attraction or pollen transfer efficiency. To test this hypothesis, we measured two female fitness components and six floral traits of Lobelia siphilitica plants exposed to supplemental hand-pollination, ambient open-pollination, or reduced open-pollination treatments. The reduced treatment simulated pollinator decline, while the supplemental treatment was used to estimate pollen limitation and pollinator-mediated selection. We found that plants in the reduced pollination treatment were significantly pollen limited, resulting in pollinator-mediated selection for taller inflorescences and more vibrant petals, both traits that could increase pollinator attraction. This contrasts with plants in the ambient pollination treatment, where reproduction was not pollen limited and there was not significant pollinator-mediated selection on any floral trait. Our results support the hypothesis that human-mediated environmental change can strengthen selection on traits of interacting species and suggest that these traits have the potential to evolve in response to changing environments.

12.
AoB Plants ; 15(5): plad061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37899982

ABSTRACT

Understanding whether and how resource limitation alters phenotypic selection on floral traits is key to predict the evolution of plant-pollinator interactions under climate change. Two important resources predicted to decline with our changing climate are pollinators and water in the form of increased droughts. Most work, however, has studied these selective agents separately and in the case of water deficit, studies are rare. Here, we use the common morning glory (Ipomoea purpurea) to investigate the effects of experimental reduction in pollinator access and water availability on floral signals and nectar rewards and their effects on phenotypic selection on these traits. We conducted a manipulative experiment in a common garden, where we grew plants in three treatments: (1) pollinator restriction, (2) water reduction and (3) unmanipulated control. Plants in pollinator restriction and control treatments were well-watered compared to water deficit. We found that in contrast to pollinator restriction, water deficit had strong effects altering floral signals and nectar rewards but also differed in the direction and strength of selection on these traits compared to control plants. Water deficit increased the opportunity for selection, and selection in this treatment favoured lower nectar volumes and larger floral sizes, which might further alter pollinator visitation. In addition, well-watered plants, both in control and pollinator deficit, showed similar patterns of selection to increase nectar volume suggesting non-pollinator-mediated selection on nectar. Our study shows that floral traits may evolve in response to reduction in water access faster than to declines in pollinators and reinforces that abiotic factors can be important agents of selection for floral traits. Although only few experimental selection studies have manipulated access to biotic and abiotic resources, our results suggest that this approach is key for understanding how pollination systems may evolve under climate change.

13.
Front Plant Sci ; 14: 1162440, 2023.
Article in English | MEDLINE | ID: mdl-37484478

ABSTRACT

Introduction: The study of yield and resistance/tolerance to pest are related traits fundamental for maize breeding programs. Genomic selection (GS), which uses all marker information to calculate genomic breeding values, is presented as an emerging alternative to phenotypic and marker-assisted selections for improving complex traits controlled by many genes with small effects. Therefore, although phenotypic selection (PS) has been effective for increasing resistance and yield under high infestation with maize stem borers, higher genetic gains are expected to be obtained through GS based on the complex architecture of both traits. Our objective was to test whether GS is more effective than PS for improving resistance and/or tolerance to maize stem borers and grain yield. Methods: For this, we compared different selection programs based on phenotype and genotypic value for a single trait, resistance or yield, and for both traits together. Results and discussion: We obtained that GS achieved the highest genetic gain for yield, meanwhile phenotypic selection for yield was the program that achieved the highest reduction of tunnel length, but was ineffective for increasing yield. However, phenotypic or genomic selection for increased resistance may be more effective in improving both traits together; although the gains per cycle would be small for both traits.

14.
Ecology ; 104(10): e4121, 2023 10.
Article in English | MEDLINE | ID: mdl-37309069

ABSTRACT

Phenotypic plasticity might increase fitness if the conditions under which it evolved remain unaltered, but becomes maladaptive if the environment no longer provides reliable cues for subsequent conditions. In seasonal environments, timing of reproduction can respond plastically to spring temperature, maximizing the benefits of a long season while minimizing the exposure to unfavorable cold temperatures. However, if the relationship between early spring temperatures and later conditions changes, the optimal response might change. In geothermally heated ecosystems, the plastic response of flowering time to springtime soil temperature that has evolved in unheated areas is likely to be non-optimal, because soil temperatures are higher and decoupled from air temperatures in heated areas. We therefore expect natural selection to favor a lower plasticity and a delayed flowering in these areas. Using observational data along a natural geothermal warming gradient, we tested the hypothesis that selection on flowering time depends on soil temperature and favors later flowering on warmer soils in the perennial Cerastium fontanum. In both study years, plants growing in warmer soils began flowering earlier than plants growing in colder soils, suggesting that first flowering date (FFD) responds plastically to soil temperature. In one of the two study years, selection favored earlier flowering in colder soils but later flowering in warmer soils, suggesting that the current level of plastic advance of FFD on warmer soils may be maladaptive in some years. Our results illustrate the advantages of using natural experiments, such as geothermal ecosystems, to examine selection in environments that recently have undergone major changes. Such knowledge is essential to understand and predict both ecological and evolutionary responses to climate warming.


Subject(s)
Ecosystem , Heating , Climate Change , Flowers/physiology , Temperature , Seasons , Soil , Reproduction
15.
New Phytol ; 239(3): 830-838, 2023 08.
Article in English | MEDLINE | ID: mdl-37219920

ABSTRACT

The periodic production of large seed crops, or masting, is a widespread phenomenon in perennial plants. This behavior can enhance the reproductive efficiency of plants, leading to increased fitness, and produce ripple effects on food webs. While variability from year to year is a defining characteristic of masting, the methods used to quantify this variability are highly debated. The commonly used coefficient of variation lacks the ability to account for the serial dependence in mast data and can be influenced by zeros, making it a less suitable choice for various applications based on individual-level observations, such as phenotypic selection, heritability, and climate change studies, which rely on individual-plant-level datasets that often contain numerous zeros. To address these limitations, we present three case studies and introduce volatility and periodicity, which account for the variance in the frequency domain by emphasizing the significance of long intervals in masting. By utilizing examples of Sorbus aucuparia, Pinus pinea, Quercus robur, Quercus pubescens, and Fagus sylvatica, we demonstrate how volatility captures the effects of variance at both high and low frequencies, even in the presence of zeros, leading to improved ecological interpretations of the results. The growing availability of long-term, individual-plant datasets promises significant advancements in the field, but requires appropriate tools for analysis, which the new metrics provide.


Subject(s)
Fagus , Pinus , Quercus , Reproduction , Seeds
16.
Front Microbiol ; 14: 1110084, 2023.
Article in English | MEDLINE | ID: mdl-36937269

ABSTRACT

Deinococcus radiopugnans DY59 (formerly Deinococcus swuensis DY59) is a radiation-resistant bacterium isolated from soil. From the 3.5 Mb genomic DNA sequence of strain DY59 (December 2014), 31 insertion sequence (IS) elements of six IS families including IS1, IS4, IS5, IS66, IS630, and IS701 and five unclassified IS elements were detected. Upon induction of oxidative stress with 80 and 100 mM H2O2, the unique ISs of the IS4 family member were actively translocated into a carotenoid biosynthesis gene phytoene desaturase (QR90_10400), resulting in non-pigment phenotypic selection. Therefore, these active transpositions of a specific IS family member were induced by oxidative stress at 80 and 100 mM H2O2. Furthermore, D. radiopugnans DY59 exhibited extremely higher MIC values against H2O2 treatment. To explain this phenomenon, qRT-PCR was conducted to assess the expression levels of catalase and three LysR family regulators. Our findings indicated that the ISDrpg2 and ISDrpg3 elements of the IS4 family were actively transposed into the phytoene desaturase gene by H2O2 treatment via replicative transposition. However, high H2O2 resistance did not originate from H2O2-induced expression of catalase and LysR family regulators.

17.
Am J Bot ; 110(6): e16128, 2023 06.
Article in English | MEDLINE | ID: mdl-36655508

ABSTRACT

PREMISE: The role of pollinators in evolutionary floral divergence has spurred substantial effort into measuring pollinator-mediated phenotypic selection and its variation in space and time. For such estimates, the fitness consequences of pollination processes must be separated from other factors affecting fitness. METHODS: We built a fitness function linking phenotypic traits of food-deceptive orchids to female reproductive success by including pollinator visitation and pollen deposition as intermediate performance components and used the fitness function to estimate the strength of pollinator-mediated selection through female reproductive success. We also quantified male performance as pollinarium removal and assessed similarity in trait effects on male and female performance. RESULTS: The proportion of plants visited at least once by an effective pollinator was moderate to high, ranging from 53.7% to 85.1%. Tall, many-flowered plants were often more likely to be visited and pollinated. Given effective pollination, pollen deposition onto stigmas tended to be more likely for taller plants. Pollen deposition further depended on traits affecting the physical fit of pollinators to flowers (flower size, spur length), though the exact relationships varied in time and space. Using the fitness function to assess pollinator-mediated selection through female reproductive success acting on multiple traits, we found that selection varied detectably among taxa after accounting for sampling uncertainty. Across taxa, selection on most traits was stronger on average and more variable when pollination was less reliable. CONCLUSIONS: These results support pollination-related trait-performance-fitness relationships and thus pollinator-mediated selection on traits functionally involved in the pollination process.


Subject(s)
Orchidaceae , Pollination , Reproduction , Pollen , Phenotype
18.
Am J Bot ; 110(1): e16106, 2023 01.
Article in English | MEDLINE | ID: mdl-36401558

ABSTRACT

PREMISE: Pollinator decline, by reducing seed production, is predicted to strengthen natural selection on floral traits. However, the effect of pollinator decline on gender dimorphic species (such as gynodioecious species, where plants produce female or hermaphrodite flowers) may differ between the sex morphs: if pollinator decline reduces the seed production of females more than hermaphrodites, then it should also have a larger effect on selection on floral traits in females than in hermaphrodites. METHODS: To simulate pollinator decline, we experimentally reduced pollinator access to female and hermaphrodite Lobelia siphilitica plants. We compared the seed production of plants in the reduced pollination treatment to plants that were exposed to ambient pollination conditions. Within each treatment, we also measured directional selection on four floral traits of females and hermaphrodites. RESULTS: Experimentally reducing pollination decreased seed production of both females and hermaphrodites by ~21%. Reducing pollination also strengthened selection on floral traits, but this effect was not larger in females than in hermaphrodites. Instead, reducing pollination intensified selection for taller inflorescences in hermaphrodites, but did not intensify selection on any floral trait in females. CONCLUSIONS: Our results suggest that pollinator decline will not have a larger effect on either seed production or selection on floral traits of female plants. As such, any effect of pollinator decline on seed production may be similar for gender dimorphic and monomorphic species. However, the potential for floral traits of females (and thus of gender dimorphic species) to evolve in response to pollinator decline may be limited.


Subject(s)
Disorders of Sex Development , Lobelia , Reproduction/physiology , Lobelia/physiology , Pollination/physiology , Seeds , Flowers/physiology
19.
BAG, J. basic appl. genet. (Online) ; 33(2): 45-53, Dec. 2022. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1420296

ABSTRACT

RESUMEN La displasia de cadera canina o displasia coxo-femoral (DCF) es un desorden progresivo e incapacitante en perros de razas grandes, como el Ovejero Alemán. La selección de reproductores libres de displasia es la única forma de reducir su incidencia. Se han desarrollado varios métodos de diagnóstico basados en el examen radiográfico, en base a los cuales se seleccionan los reproductores para la cría. La DCF tiene una base hereditaria poligénica e influencia ambiental, con una heredabilidad media a baja (alrededor de 0,20 a 0,40), por lo que el progreso de la selección fenotípica ha sido lento. En Argentina la prevalencia de la displasia en la raza sigue siendo alta (>25%) y es imposible prever su incidencia en la progenie del plantel de cría. Algunos países han implementado la selección basada en el valor estimado de cría, obteniendo un importante avance. Los estudios de asociación del genoma completo han revelado numerosos marcadores asociados a la DCF y se han encontrado varios genes candidatos que señalan la posibilidad de implementar una selección genómica en un futuro cercano.


ABSTRACT Canine hip dysplasia (CHD) is a progressive and disabling disorder in large dog breeds, such as the German Shepherd dog. Breeding sires and dams free of dysplasia is the only way to reduce its incidence. Several diagnostic methods have been developed based on radiographic examination, on the basis of which dogs are selected for breeding. CHD has a polygenic hereditary basis and environmental influence, with a median to low heritability (ca. 0,20 to 0,40), so the progress in phenotypic selection has been slow. In Argentina, the prevalence of dysplasia in German Shepherd dogs remains high (> 25%) and it is impossible to predict its incidence in the offspring of the breeding stock. Some countries have implemented a selection based on the estimated breeding value, obtaining an important advance. Genomewide association studies have revealed numerous CHD-associated markers and several candidate genes have been found that point to the possibility of implementing genomic selection in the near future.

20.
Am J Bot ; 109(11): 1673-1682, 2022 11.
Article in English | MEDLINE | ID: mdl-36416487

ABSTRACT

Wild plant species provide excellent examples of qualitative traits that evolve in response to environmental challenges (e.g., flower color, heavy metal tolerance, cyanogenesis, and male sterility). In addition to such discrete characters, a dazzling array of continuously distributed, quantitative traits are expressed at every phase of the life cycle. These traits are known or suspected to have evolved by natural selection because they are heritable, differ among populations or closely related taxa occupying distinct habitats, and have individual phenotypes associated with survival and reproductive success. This special issue [American Journal of Botany 109(11)] focuses on the tools and approaches for detecting or inferring the ecological and genetic factors contributing to changes in genetically based variation of quantitative traits within or among populations, or causing their divergence among taxa. The assembled articles use one or more of three primary approaches to detect the process or outcome of natural selection on morphological, life history, reproductive, chemical, and physiological quantitative traits: the analysis of phenotypic or artificially imposed selection to detect direct and indirect selection on traits whose function is well-understood; common garden experiments, including reciprocal transplants and "resurrection" experiments; and quantitative genetic analyses designed to detect and to estimate the environmental and genetic sources of phenotypic variation or to forecast short-term evolutionary change. Together, these articles examine and reveal the adaptive capacity of quantitative traits and the genetically based constraints that may limit their directional evolutionary change, thereby informing and testing inferences, hypotheses, and predictions concerning the evolutionary trajectories of wild plant species.


Subject(s)
Biological Evolution , Botany , Phenotype , Reproduction/genetics , Flowers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...