Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Int J Parasitol Drugs Drug Resist ; 25: 100554, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941845

ABSTRACT

Leishmania major is responsible for zoonotic cutaneous leishmaniasis. Therapy is mainly based on the use of antimony-based drugs; however, treatment failures and illness relapses were reported. Although studies were developed to understand mechanisms of drug resistance, the interactions of resistant parasites with their reservoir hosts and vectors remain poorly understood. Here we compared the development of two L. major MON-25 trivalent antimony-resistant lines, selected by a stepwise in vitro Sb(III)-drug pressure, to their wild-type parent line in the natural vector Phlebotomus papatasi. The intensity of infection, parasite location and morphological forms were compared by microscopy. Parasite growth curves and IC50 values have been determined before and after the passage in Ph. papatasi. qPCR was used to assess the amplification rates of some antimony-resistance gene markers. In the digestive tract of sand flies, Sb(III)-resistant lines developed similar infection rates as the wild-type lines during the early-stage infections, but significant differences were observed during the late-stage of the infections. Thus, on day 7 p. i., resistant lines showed lower representation of heavy infections with colonization of the stomodeal valve and lower percentage of metacyclic promastigote forms in comparison to wild-type strains. Observed differences between both resistant lines suggest that the level of Sb(III)-resistance negatively correlates with the quality of the development in the vector. Nevertheless, both resistant lines developed mature infections with the presence of infective metacyclic forms in almost half of infected sandflies. The passage of parasites through the sand fly guts does not significantly influence their capacity to multiply in vitro. The IC50 values and molecular analysis of antimony-resistance genes showed that the resistant phenotype of Sb(III)-resistant parasites is maintained after passage through the sand fly. Sb(III)-resistant lines of L. major MON-25 were able to produce mature infections in Ph. papatasi suggesting a possible circulation in the field using this vector.

2.
Insect Mol Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847568

ABSTRACT

In this study, we identified and assembled a strain of American nodavirus (ANV) in the Phlebotomus papatasi-derived PP9ad cell line. This strain most closely resembles Flock House virus and ANV identified in the Drosophila melanogaster S2/S2R cell line. Through small RNA sequencing and analysis, we demonstrate that ANV replication in PP9ad cells is primarily targeted by the exogenous small interfering RNA (exo-siRNA) pathway, with minimal engagement from the PIWI-interacting RNA (piRNA) pathway. In mosquitoes such as Aedes and Culex, the PIWI pathway is expanded and specialised, which actively limits virus replication. This is unlike in Drosophila spp., where the piRNA pathway does not restrict viral replication. In Lutzomyia sandflies (family Psychodidae), close relatives of Phlebotomus species and Drosophila, there appears to be an absence of virus-derived piRNAs. To investigate whether this absence is due to a lack of PIWI pathway proteins, we analysed the piRNA and siRNA diversity and repertoire in PP9ad cells. Previous assemblies of P. papatasi genome (Ppap_1.0) have revealed a patchy repertoire of the siRNA and piRNA pathways. Our analysis of the updated P. papatasi genome (Ppap_2.1) has shown no PIWI protein expansion in sandflies. We found that both siRNA and piRNA pathways are transcriptionally active in PP9ad cells, with genomic mapping of small RNAs generating typical piRNA signatures. Our results suggest that the piRNA pathway may not respond to virus replication in these cells, but an antiviral response is mounted via the exo-siRNA pathway.

3.
BMC Microbiol ; 24(1): 117, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575882

ABSTRACT

BACKGROUND: Leishmaniasis as a neglected tropical disease (NTD) is caused by the inoculation of Leishmania parasites via the bite of phlebotomine sand flies. After an infected bite, a series of innate and adaptive immune responses occurs, among which neutrophils can be mentioned as the initiators. Among the multiple functions of these fighting cells, neutrophil extracellular traps (NETs) were studied in the presence of Leishmania major promastigotes and salivary gland homogenates (SGH) of Phlebotomus papatasi alone, and in combination to mimic natural conditions of transmission. MATERIAL & METHODS: The effect of L. major and SGH on NETs formation was studied in three different groups: neutrophils + SGH (NS), neutrophils + L. major (NL), neutrophils + L. major + SGH (NLS) along with negative and positive controls in 2, 4 and 6 h post-incubation. Different microscopic methods were used to visualize NETs comprising: fluorescence microscopy by Acridine Orange/ Ethidium Bromide staining, optical microscopy by Giemsa staining and scanning electron microscopy. In addition, the expression level of three different genes NE, MPO and MMP9 was evaluated by Real-Time PCR. RESULTS: All three microscopical methods revealed similar results, as in NS group, chromatin extrusion as a sign of NETosis, was not very evident in each three time points; but, in NL and especially NLS group, more NETosis was observed and the interaction between neutrophils and promastigotes in NL and also with saliva in NLS group, gradually increased over times. Real-time reveals that, the expression of MPO, NE and MMP9 genes increased during 2 and 4 h after exposure, and then decreased at 6 h in most groups. CONCLUSION: Hence, it was determined that the simultaneous presence of parasite and saliva in NLS group has a greater impact on the formation of NETs compared to NL and NS groups.


Subject(s)
Extracellular Traps , Leishmania major , Phlebotomus , Animals , Humans , Phlebotomus/genetics , Phlebotomus/parasitology , Matrix Metalloproteinase 9 , Neutrophils , Salivary Glands
4.
Insects ; 15(3)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38535351

ABSTRACT

The sand fly, Phlebotomus papatasi (Scopoli, 1786), is a major vector for Leishmania major in the Middle East, which has impacted human health and US military operations in the area, demonstrating the need to develop effective sand fly control and repellent options. Here, we report the results of spatial repellency and avoidance experiments in a static air olfactometer using the female P. papatasi testing essential oils of Lippia graveolens (Mexican oregano), Pimenta dioica (allspice), Amyris balsamifera (amyris), Nepeta cataria (catnip), Mentha piperita (peppermint), and Melaleuca alternifolia (tea tree); the 9-12 carbon saturated fatty acids (nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid); and the synthetic repellents DEET and IR3535. The materials applied at 1% exhibited varying activity levels but were not significantly different in mean repellency and avoidance from DEET and IR3535, except in regards to nonanoic acid. Some materials, particularly nonanoic and undecanoic acids, produced sand fly mortality. The observed trends in mean repellency over exposure time included the following: (1) P. dioica oil, M. alternifolia oil, decanoic acid, undecanoic acid, DEET, and IR3535 exhibited increasing mean repellency over time; (2) oils of N. cataria, A. balsamifera, M. piperita, and dodecanoic acid exhibited relatively constant mean repellency over time; and (3) L. graveolens oil and nonanoic acid exhibited a general decrease in mean repellent activity over time. These studies identified the essential oils of N. cataria and A. balsamifera as effective spatial repellents at reduced concentrations compared to those of DEET. Additional research is required to elucidate the modes of action and potential synergism of repellents and essential oil components for enhanced repellency activity.

5.
Acta Parasitol ; 69(1): 549-558, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231310

ABSTRACT

PURPOSE: Leishmania major is main causative agent and Phlebotomus papatasi is only proven vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iran. Human leishmaniasis is mostly susceptible to climatic conditions and molecular variations of Leishmania parasites within sandflies. METHODS: L. major was analyzed based on geographical, environmental, climatic changes and haplotype variations within P. papatasi. Molecular tools and different geographical aspects were employed using Arc-GIS software for mapping the geographic distribution of samples and other statistics tests. Fragments of ITS-rDNA, k-DNA, and microsatellite genes of Leishmania were used for PCR, RFLP, sequencing, and phylogenetic analyses. RESULTS: Totally 81 out of 1083 female P. papatasi were detected with Leishmania parasites: 70 and five were L. major and L. turanica, respectively. Golestan and Fars provinces had the highest (13.64%) and lowest (4.55%) infection rates, respectively. The infection rate among female P. papatasi collected from gerbil burrows was significantly higher (15.15%) than animal shelters, yards, and inside houses (4.48%) (P < 0.0%). Microsatellite was more sensitive (22.72%) than k-DNA (18.8%) and ITS-rDNA (7.48%). More molecular variations of L. major were found in Isfahan province. CONCLUSIONS: Arc-GIS software and other statistics tests were employed to find Leishmania positive and haplotype variations among sand flies. Geographical situations, altitude, climate, precipitation, humidity, temperature, urbanization, migrations, regional divergences, deforestation, global warming, genome instability, ecology, and biology of the sand flies intrinsically, and the reservoir hosts and neighboring infected locations could be reasons for increasing or decreasing the rate of Leishmania infection and haplotype variations.


Subject(s)
Haplotypes , Leishmania major , Leishmaniasis, Cutaneous , Phlebotomus , Animals , Leishmania major/genetics , Leishmania major/isolation & purification , Phlebotomus/parasitology , Phlebotomus/genetics , Iran/epidemiology , Female , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/transmission , Phylogeny , Genetic Variation , Microsatellite Repeats , Insect Vectors/parasitology , Insect Vectors/genetics , DNA, Protozoan/genetics , Gerbillinae/parasitology , Humans
8.
Front Cell Infect Microbiol ; 13: 1115542, 2023.
Article in English | MEDLINE | ID: mdl-36779192

ABSTRACT

Clinical features and severity of the leishmaniasis is extremely intricate and depend on several factors, especially sand fly-derived products. Bacteria in the sand fly's gut are a perpetual companion of Leishmania parasites. However, consequences of the concomitance of these bacteria and Leishmania parasite outside the midgut environment have not been investigated in the infection process. Herein, a needle infection model was designed to mimic transmission by sand flies, to examine differences in the onset and progression of L. major infection initiated by inoculation with "low" or "high" doses of Enterobacter cloacae and Bacillus subtilis bacteria. The results showed an alteration in the local expression of pro- and anti-inflammatory cytokines in mice receiving different inoculations of bacteria. Simultaneous injection of two bacteria with Leishmania parasites in the low-dose group caused greater thickness of ear pinna and enhanced tissue chronic inflammatory cells, as well as resulted in multifold increase in the expression of IL-4 and IL-1ß and a decrease in the iNOS expression, without changing the L. major burden. Despite advances in scientific breakthroughs, scant survey has investigated the interaction between micro and macro levels of organization of leishmaniasis that ranges from the cellular to macro ecosystem levels, giving rise to the spread and persistence of the disease in a region. Our findings provide new insight into using the potential of the vector-derived microbiota in modulating the vertebrate immune system for the benefit of the host or recommend the use of appropriate antibiotics along with antileishmanial medicines.


Subject(s)
Coinfection , Leishmania major , Leishmaniasis , Phlebotomus , Psychodidae , Animals , Mice , Bacteria , Mice, Inbred BALB C , Phlebotomus/microbiology , Phlebotomus/parasitology , Psychodidae/parasitology
9.
Parasit Vectors ; 16(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593519

ABSTRACT

BACKGROUND: The saliva of sand flies, vectors of Leishmania parasites, contains several components that exert pharmacological activity facilitating the acquisition of blood by the insect and contributing to the establishment of infection. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and validated its usefulness as a predictive biomarker of disease. PpSP32, whose functions are little known to date, is an intriguing protein due to its involvement in the etiopathogenesis of pemphigus, an auto-immune disease. Herein, we aimed to better decipher its role through the screening of several immunomodulatory activity either on lymphocytes or on monocytes/macrophages. METHODS: Peripheral mononuclear cells from healthy volunteers were stimulated with anti-CD3/anti-CD28 antibodies, phytohemagglutinin, phorbol 12-myristate 13-acetate/ionomycin, or lipopolysaccharide in the presence of increasing doses of PpSP32. Cell proliferation was measured after the addition of tritiated thymidine. Monocyte activation was tested by analyzing the expression of CD86 and HLA-DR molecules by flow cytometry. Cytokine production was analyzed in culture supernatants by ELISA. THP-1-derived macrophages were stimulated with LPS in the presence of increasing doses of PpSP32, and cytokine production was analyzed in culture supernatants by ELISA and multiplex technique. The effect of PpSP32 on NF-kB signaling was tested by Western blot. The anti-inflammatory activity of PpSP32 was assessed in vivo in an experimental inflammatory model of carrageenan-induced paw edema in rats. RESULTS: Our data showed that PpSP32 down-modulated the expression of activation markers in LPS-stimulated monocytes and THP1-derived macrophages. This protein negatively modulated the secretion of Th1 and Th2 cytokines by human lymphocytes as well as pro-inflammatory cytokines by monocytes, and THP1-derived macrophages. PpSP32 treatment led to a dose-dependent reduction of IκB phosphorylation. When PpSP32 was injected into the paw of carrageenan-injected rats, edema was significantly reduced. CONCLUSIONS: Our data indicates that PpSP32 induces a potent immunomodulatory effect on monocytes and THP-1-derived macrophages. This inhibition could be mediated, among others, by the modulation of the NF-kB signaling pathway. The anti-inflammatory activity of PpSP32 was confirmed in vivo in the carrageenan-induced paw edema model in rats.


Subject(s)
Phlebotomus , Humans , Rats , Animals , Phlebotomus/parasitology , Monocytes , NF-kappa B , Carrageenan , Lipopolysaccharides , Lymphocytes , Macrophages , Cytokines , Salivary Proteins and Peptides
10.
J Arthropod Borne Dis ; 17(4): 333-343, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38868678

ABSTRACT

Background: Phlebotomus papatasi (Diptera: Psychodidae) is the main vector of zoonotic cutaneous leishmaniasis (ZCL) in Iran. The nonstandard use of pesticides against pests, particularly in agriculture, indirectly has caused the development of resistance and, consequently, the threat of control measures in ZCL endemic areas. Up to 2023, several reports of resistance in Ph. papatasi have been declared in the Old World. The purpose of this study was to measure the lethal time (LT50 and LT90) of Ph. papatasi sand flies in the ZCL endemic center of Esfahan to DDT and deltamethrin insecticides. Methods: Sand flies were collected in Borkhar and were tested using WHO adult mosquito test kit against DDT 4% and deltamethrin 0.0002%. The sand fly's survival was recorded during exposure time in 225, 450|, 900, 1800, and 3600-seconds' intervals for DDT and Deltamethrin and they were allowed to recover for 24 hours. Then LT50 and LT90 were analyzed using probit software. Phlebotomus papatasi were identified using morphological keys and other sand flies' species were excluded from the analysis. Results: The insecticide against female Ph. papatasi revealed hundred percent mortality when exposed to DDT 4% and deltamethrin 0.0002%. The LT50 and LT90 were 19.32 and 22.74 minutes for DDT 4% and 39.92 and 51.33 minutes for deltamethrin 0.0002% respectively. Conclusion: Results of this study revealed that Ph. papatasi is still susceptible to DDT and deltamethrin. This data provides valuable knowledge to implement effective control strategies against ZCL main vector and help to manage insecticide resistance in the region.

11.
Article in English | MEDLINE | ID: mdl-38223852

ABSTRACT

Visceral and cutaneous leishmaniases are important public health concerns in Cyprus. Although the diseases, historically prevalent on the island, were nearly eradicated by 1996, an increase in frequency and geographical spread has recently been recorded. Upward trends in leishmaniasis prevalence have largely been attributed to environmental changes that amplify the abundance and activity of its vector, the phlebotomine sand flies. Here, we performed an extensive field study across the island to map the sand fly fauna and compared the presence and distribution of the species found with historical records. We mapped the habitat preferences of Phlebotomus papatasi and P. tobbi, two medically important species, and predicted the seasonal abundance of P. papatasi at unprecedented spatiotemporal resolution using a climate-sensitive population dynamics model driven by high-resolution meteorological forecasting. Our compendium holds a record of 18 species and the locations of a subset, including those of potential public and veterinary health concern. We confirmed that P. papatasi is widespread, especially in densely urbanized areas, and predicted that its abundance uniformly peaks across the island at the end of summer. We identified potential hotspots of P. papatasi activity even after this peak. Our results form a foundation to inform public health planning and contribute to the development of effective, efficient, and environmentally sensitive strategies to control sand fly populations and prevent sand fly-borne diseases.

12.
Microorganisms ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36557644

ABSTRACT

BACKGROUND: In North African countries, zoonotic cutaneous leishmaniasis (ZCL) is a seasonal disease linked to Phlebotomus papatasi, Scopoli, 1786, the primary proven vector of L. major dynamics. Even if the disease is of public health importance, studies of P. papatasi seasonal dynamics are often local and dispersed in space and time. Therefore, a detailed picture of the biology and behavior of the vector linked with climatic factors and the framework of ZCL outbreaks is still lacking at the North African countries' level. Our study aims to fill this gap via a systematic review and meta-analysis of the seasonal incidence of ZCL and the activity of P. papatasi in North African countries. We address the relationship between the seasonal number of declared ZCL cases, the seasonal dynamic of P. papatasi, and climatic variables at the North African region scale. METHODS: We selected 585 publications, dissertations, and archives data published from 1990 to July 2022. The monthly incidence data of ZCL were extracted from 15 documents and those on the seasonal dynamic of P. papatasi from 11 publications from four North African countries. RESULTS: Our analysis disclosed that for most studied sites, the highest ZCL incidence is recorded from October to February (the hibernal season of the vector), while the P. papatasi density peaks primarily during the hot season of June to September. Overall, at the North African region scale, two to four months laps are present before the apparition of the scars reminiscent of infection by L. major. CONCLUSIONS: Such analysis is of interest to regional decision-makers for planning control of ZCL in North African countries. They can also be a rationale on which future field studies combining ZCL disease incidence, vector activity, and climatic data can be built.

13.
Pathogens ; 11(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36014976

ABSTRACT

Zoonotic cutaneous leishmaniasis (ZCL) and chronic cutaneous leishmaniasis (CCL) are known to overlap in Central Tunisia. Sandflies were collected using sticky traps and CDC light-traps set in rodent burrows at the ecotones surrounding the village, in houses, and in animal shelters during July-October 2017, 2018, and 2019. A total of 17,175 sandflies were collected during the three sandfly seasons and identified morphologically to species level. Of a total of 18 sandfly species reported in Tunisia, 16 were identified in this mixed focus of ZCL and CCL. Except for the rocky mountainous areas, Phlebotomus papatasi was the most abundant sandfly species in all biotopes. In the mountainous areas, Phlebotomus sergenti is the most abundant sandfly species belonging to the genus Phlebotomus. Female sandflies were tested for the presence of Leishmania species by PCR. The overall infection prevalence of sandflies with Leishmania major and Leishmania tropica was 0.42% and 0.065%, respectively. The sequencing of PCR-amplified ITS1 products showed that L. major is the predominant species in all biotopes and transmitted mostly by P. papaptasi followed by Phlebotomus longicuspis and Sergentomyia species. Leishmania tropica was detected in Phlebotomus sergenti and in Phlebotomus longicuspis collected in bedrooms and in the ecotone of rocky mountainous areas. Our results provided strong evidence that the proximity of human settlements to biotopes of rodent reservoir hosts of L. major and of L. tropica resulted into the cocirculation of both Leishmania species leading to a mixed focus of ZCL and CCL. The epidemiology of leishmaniases in North Africa is highly complex by the high diversity of sandfly vectors and their associated Leishmania species, leading to a mixed form of cutaneous leishmaniasis. It is of major epidemiological importance to point to the risk of spillover from rural to urban areas leading to the anthroponization of cutaneous leishmaniasis. Therefore, efficient control to reduce the indoor abundance of sandfly vectors in order to reduce the incidence of leishmaniases is urgently needed.

14.
J Parasit Dis ; 46(2): 502-510, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35692476

ABSTRACT

Zoonotic cutaneous leishmaniasis (ZCL) caused by Leishmania major is an important endemic disease and a major public health concern in Iran. Following an outbreak of leishmaniasis in 2013 in one of the important foci in Iran, the researchers were prompted to determine the underlying causes of the epidemic. Adult sand flies were collected using sticky traps and aspirating tubes and infection with Leishmania parasites was evaluated. Also, rodents were captured using Sherman live traps and stray dogs were hunted and were tested for the presence of leishmanial infection. Active case detection was also conducted and data related to each household were recorded using a researcher-designed form. Nested PCR and PCR-RLFP techniques were employed to determine Leishmania infection in the samples. Phlebotomus papatasi was the most dominant species among the 7 different species of sand flies collected in this study. Sergentomyia clydei, Sergentomyia theodori, and Sergentomyia grekovi were identified for the first time in the study area. 20% of collected Ph. papatasi species and one Meriones libycus were infected with Leishmania major. Stray dogs demonstrated no lesions on different parts of their body. The relative frequency of active lesions and scars on the dogs were respectively 5.49% and 1.23% in 2013 and 5.82% and 0.56% in 2014. The highest number of ZCL cases due to L. major was recorded in Ardestan city. Phlebotomus papatasi is the main vector and M. libycus seems to be the primary reservoir host of ZCL in the suburbs of this city. Furthermore, due to the low density of rodent reservoir hosts in the study area, we support the hypothesis that humans may have had a role in maintaining the parasite cycle in the population.

15.
J Vector Borne Dis ; 59(1): 63-69, 2022.
Article in English | MEDLINE | ID: mdl-35708406

ABSTRACT

BACKGROUND & OBJECTIVES: Sand fly saliva contains proteins that modulate the host immune system and it plays an important role in both blood feeding and the outcome of Leishmania infections. The profile of the salivary proteins was examined and analyzed from an endemic focus of zoonotic cutaneous leishmaniasis by wild P. papatasi to find local and suitable antigens as potential proteins for developing Leishmania vaccine alongside the development of a new extraction technique. METHODS: Specimens were caught from Bojnord, using funnel and CDC traps. Different methods of protein extraction were employed and a new technique was developed. The proteins were extracted from the salivary glands tissues with a lysis buffer. Purification was performed using RP-HPLC, with a linear gradient protocol from 0-60 % of acetonitrile. PpSP15 was characterized by SDS-PAGE. RESULTS: The concentration of extracted protein content was 0.5 and 0.03 µg/µl in chemical and physical methods, respectively. PpSP15 was isolated at a weight of 15kDa in 80-85 min of run time. SDS-PAGE was able to characterize PpSP15. The crude extract of the chemical method, revealed 15 separated bands, ranging from 11-100 KDa. Tajima D index was positive. INTERPRETATION & CONCLUSION: PpSP15 was characterized from Iranian specimens; it is a very highly hydrophobic protein of salivary glands among SP15- like proteins. The chemical method of extraction was found to be more effective than physical methods (P < 0.05). For developing a vaccine against leishmaniasis, depending on the location, choosing suitable proteins should be considered and an efficient extraction method should be used.


Subject(s)
Leishmaniasis, Cutaneous , Phlebotomus , Psychodidae , Animals , Iran , Salivary Glands
16.
Insect Mol Biol ; 31(4): 417-433, 2022 08.
Article in English | MEDLINE | ID: mdl-35238100

ABSTRACT

Leishmaniasis control often relies upon insecticidal control of phlebotomine sandfly vector populations. Such methods are vulnerable to the evolution of insecticide resistance via a range of molecular mechanisms. There is evidence that two major resistance mechanisms, target site insensitivity and metabolic resistance, have evolved in some sandfly populations and further genetic characterization of resistance would be useful to understand and combat it. To facilitate the study of the mechanisms of metabolic resistance, here we improved the annotation and characterized a major detoxification gene family, the glutathione-s-transferases (GST), in the genomes of two sand fly species: Phlebotomus papatasi and Lutzomyia longipalpis. The compositions of the GST gene family differ markedly from those of Aedes and Anopheles mosquitoes. Most strikingly, the xi (X) class of GSTs appears to have expanded in both sand fly genomes. Our results provide a basis for further studies of metabolic resistance mechanisms in these important disease vector species.


Subject(s)
Phlebotomus , Psychodidae , Animals , Glutathione Transferase/genetics , Insecticide Resistance/genetics , Mosquito Vectors , Phlebotomus/genetics , Psychodidae/genetics
17.
Acta Trop ; 228: 106303, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35021103

ABSTRACT

In the present study, we evaluated the effects of antibodies anti-sandfly saliva on the fecundity of Phlebotomus papatasi, vector of zoonotic cutaneous leishmaniasis in the Old World. Rabbits were repeatedly exposed to sandfly bites. Immune sera showed increased levels of anti-sandfly saliva antibody compared to the pre-exposition period. The analysis of biological parameters revealed no decline on the feeding success of females P. papatasi fed on rabbits repeatedly exposed to sandfly bites. Our results showed that anti-sandfly saliva antibodies of rabbits are not detrimental to the fitness of females P. papatasi. Thus, rabbits did not acquire resistance to sandflies following repeated exposures, and that contribute in maintaining a high density of P. papatasi. To control sandfly infestations and Leishmania transmission, more studies are needed for a better understanding of the mechanisms governing the resistance of hosts to bites of sandflies.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Phlebotomus , Psychodidae , Animals , Antibodies , Female , Rabbits
18.
J Arthropod Borne Dis ; 16(2): 148-158, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37038508

ABSTRACT

Background: Phlebotomus and Sergentomya are distributed in the old-world regions and transmit leishmaniases through mammalian and reptile hosts. Cutaneous leishmaniasis (CL) is one of the most important diseases in Iran. Iranian sand flies belong to three Oriental, Palearctic, and Afrotropical Regions. Fars Province is located in Palearctic, but southern parts are affected Oriental region situations on phglebotomine population variety. Therefore, a comprehensive study was required on the vectors of the disease in this Province. Methods: Regarding the approved role of the environmental factors in creating the fauna and distribution of living creatures, the "de martonne climate method" was used, and the climate was noticed as an important environmental factor for the determination of vector distribution. Accordingly, 14 sampling sites were selected from 10 foci in different climates of Fars Province. 19648 sand flies were collected from the studied areas in this Province during 2016. Results: Phlebotomus papatasi and Se. antennata were the most frequent species, which were caught from in/outdoor areas. Phlebotomus sergenti and Ph. alexandri were caught from both Palearctic and Oriental zones but were more prevalent in the cold semi-arid climate of the Palearctic zone. Moreover, they were not caught from the hot desert and summer Mediterranean climates of the Oriental zone. Conclusions: It seems that Ph. papatasi as the main vector of CL could be well distributed in different climates in Fars. Moreover, some species like Ph. sergenti preferred especial climates in the Palearctic zone. Therefore, these data could be helpful to control leishmaniases more efficiently.

19.
Insects ; 12(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34680640

ABSTRACT

Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host-endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.

20.
Evol Appl ; 14(5): 1248-1262, 2021 May.
Article in English | MEDLINE | ID: mdl-34025765

ABSTRACT

Insecticides can exert strong selection on insect pest species, including those that vector diseases, and have led to rapid evolution of resistance. Despite such rapid evolution, relatively little is known about standing genetic variation for resistance in insecticide-susceptible populations of many species. To help fill this knowledge gap, we generated genotyping-by-sequencing data from insecticide-susceptible Phlebotomus papatasi and Lutzomyia longipalpis sand flies that survived or died from a sub-diagnostic exposure to either permethrin or malathion using a modified version of the Centers for Disease Control and Prevention bottle bioassay. Multi-locus genome-wide association mapping methods were used to quantify standing genetic variation for insecticide resistance in these populations and to identify specific alleles associated with insecticide survival. For each insecticide treatment, we estimated the proportion of the variation in survival explained by the genetic data (i.e., "chip" heritability) and the number and contribution of individual loci with measurable effects. For all treatments, survival to an insecticide exposure was heritable with a polygenic architecture. Both P. papatasi and L. longipalpis had alleles for survival that resided within many genes throughout their genomes. The implications for resistance conferred by many alleles, as well as inferences made about the utility of laboratory insecticide resistance association studies compared to field observations, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...