Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters











Publication year range
1.
Biomater Biosyst ; 15: 100099, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39221155

ABSTRACT

The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n­tert­butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.

2.
Sci Rep ; 14(1): 15505, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969692

ABSTRACT

The progression of optical materials and their associated applications necessitates a profound comprehension of their optical characteristics, with the Judd-Ofelt (JO) theory commonly employed for this purpose. However, the computation of JO parameters (Ω2, Ω4, Ω6) entails wide experimental and theoretical endeavors, rendering traditional calculations often impractical. To address these challenges, the correlations between JO parameters and the bulk matrix composition within a series of Rare-Earth ions doped sulfophosphate glass systems were explored in this research. In this regard, a novel soft computing technique named genetic expression programming (GEP) was employed to derive formulations for JO parameters and bulk matrix composition. The predictor variables integrated into the formulations consist of JO parameters. This investigation demonstrates the potential of GEP as a practical tool for defining functions and classifying important factors to predict JO parameters. Thus, precise characterization of such materials becomes crucial with minimal or no reliance on experimental work.

3.
J Colloid Interface Sci ; 676: 72-79, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39018812

ABSTRACT

Due to the sensitivity to water, the all-inorganic CsPbBr3 nanocrystals have been widely applied in information encryption with spatial dimensions. However, the absence of time-dimension information limits the information capacity for the application of CsPbBr3. In this work, the CsPbBr3 nanocrystal was combined with water-sensitive borophosphate glass, achieving decomposing/recrystallization of CsPbBr3 nanocrystal with multi-dimension. The addition of SiO2 confirms that the collapse of the borophosphate glass network structure causes the exposure of the CsPbBr3 nanocrystals. The decomposition and recrystallization mechanism of CsPbBr3 nanocrystals in glass-ceramics upon encountering water has been verified. Finally, an information encryption strategy, using the mixture of CsPbBr3 glass ceramic and sodium carboxymethylcellulose as ink, is designed via adopting screen-printing technology, which not only provides a new idea for the preparation of CsPbBr3 nanocrystals, but also establish a new avenue for the information encryption technology.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124432, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38733914

ABSTRACT

Iron-phosphate glasses are a wide group of materials with a wide range of applications. Among others, they are promising materials in toxic waste vitrification because of their high chemical durability and relatively low processing temperature and time. They are a novel group of glasses that are considered in the vitrification of radioactive waste, especially those that cannot be treated using conventional borosilicate ones. Since strontium isotopes are one of the main fission products present in the waste, the influence of Sr on the structural properties of the glasses is an important factor. Strontium-containing iron-phosphate glasses were subjected to structural studies using FT-IR and Raman spectroscopies. The obtained spectra were described, and appropriate band assignments were done. Based on the research conducted, the structural features of the phosphate network and their changes were determined. The results obtained showed that strontium in relatively low content up to 20 mol% acts as the glass network charge compensator and can stabilize the network. Above this threshold, SrO can be treated as a pure modifier, leading to gradual depolymerization. Thus, this point may be treated as the maximum waste loading for effective strontium immobilization.

5.
ACS Appl Mater Interfaces ; 16(15): 19094-19102, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38571376

ABSTRACT

Due to the spontaneous transport of small-sized cations and redox reactions under open circuit conditions, the currently reported coloring electrochromic devices (ECDs) may self-bleach easily. The resulting ECDs exhibit poor open-circuit memory, which limits their applications in static display advertisement. By constructing energy barriers to effectively control small-sized cation transport, the redox reaction could be suppressed, thereby inhibiting the self-bleaching of ECDs. In this study, phosphate glass is used as an electrolyte to construct high-energy barriers. Sodium ions in phosphate glass absorb external heat to cross energy barriers and become conductive charge carriers. In this case, the electrochromism of ECDs is allowed. On the contrary, after the absorbed heat energy is released, sodium ions are immediately trapped by oxygen ions in the PO4 unit, becoming frozen ions. At this point, the electrochromization of ECDs is prohibited. Based on the ionic conductive feature of phosphate glass, ECDs absorb heat and are colored by applying an electric field first. Then, ECDs release the thermal energy and the sodium ions transport in the electrolyte is blocked to cut off the self-bleaching pathway. The prepared inorganic all-solid-state ECDs maintained the colored state for several months using the method mentioned above, which solved the problem of the poor open-circuit memory of ECDs.

6.
J Funct Biomater ; 15(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38535272

ABSTRACT

Calcium phosphate (CaP) glass has recently gained popularity as a promising material for a wide range of biomedical applications. Recent developments have seen CaP glasses moving from a passive implant material to an active degradable material, particularly as a major constituent of bioresorbable photonic devices. This holds great promise in advanced biomedical applications, since the main constituents of CaP glasses are present in the human body. In this review, the progressive advancements in the biomedical applications of calcium phosphate glass-based devices over the past 50 years are discussed. An overview of their role as reinforcing agents and the studies on doping their matrices for ion releasing and drug and gene delivery are reviewed. Recent applications of CaP glass and fibers in soft-tissue engineering and their potential for optical quality bioresorbable devices are then discussed along with the current challenges and potential future directions, emphasizing the promising role of CaP glass in the next generation of biomaterials. Considering their progress and potential in performing several biomedical functionalities over time, CaP glass-based devices hold promise for becoming enabling tools as an implantable, bioresorbable, multifunctional class of devices in future biomedicine.

7.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474252

ABSTRACT

Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.


Subject(s)
Niobium , Phosphates , Phosphates/chemistry , Glass/chemistry , Ions , Electron Spin Resonance Spectroscopy , Sodium/chemistry , Ceramics/chemistry
8.
Int J Pharm ; 653: 123919, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38373598

ABSTRACT

Internal radiotherapy delivers radioactive sources inside the body, near to or into malignant tumours, which may be particularly effective when malignancies are not responding to external beam radiotherapy. A pure beta emitter, 90Y, is currently used for internal radiotherapy. However, theranostic radionuclide-doped microspheres can be developed by incorporating 153Sm, which emits therapeutic beta and diagnostic gamma energies. This study investigated the production of high concentrations of samarium-content doped phosphate-based glass microspheres. The glass P60 (i.e. 60P2O5-25CaO-15Na2O) was mixed with Sm2O3 at ratios of 75:25 (G75:Sm25), 50:50 (G50:Sm50) and 25:75 (G25:Sm75) and processed via flame spheroidisation. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) confirmed the microsphere uniformity with significantly high samarium content up to 44 % in G25:Sm75. Via X-ray diffraction (XRD) analysis, samarium-doped microspheres appeared to be glass-ceramic in nature. Mass-loss, size and pH changes were performed over 28 days, revealing a significant increase in samarium microsphere stability. After 15 min of neutron activation (neutron flux 3.01 × 1013 n.cm-2.s-1), the specific activity of the microspheres (G75:Sm25, G50:Sm50 and G25:Sm75) was 0.28, 0.54 and 0.58 GBq.g-1, respectively. Therefore, the samarium microspheres produced in this study provide great potential for improving internal radiotherapy treatment for liver cancer by avoiding complex procedures and using less microspheres with shorter irradiation time.


Subject(s)
Liver Neoplasms , Samarium , Humans , Samarium/chemistry , Phosphates , Microspheres , Glass/chemistry
9.
Materials (Basel) ; 17(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38255474

ABSTRACT

Sodium-phosphate-based glass-ceramics (GCs) are promising materials for a wide range of applications, including solid-state sodium-ion batteries, microelectronic packaging substrates, and humidity sensors. This study investigated the impact of 24 h heat-treatments (HT) at varying temperatures on Na-Ge-P glass, with a focus on (micro)structural, electrical, and dielectric properties of prepared GCs. Various techniques such as powder X-ray diffraction (PXRD), infrared spectroscopy-attenuated total reflection (IR-ATR), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) were employed. With the elevation of HT temperature, crystallinity progressively rose; at 450 °C, the microstructure retained amorphous traits featuring nanometric grains, whereas at 550 °C, HT resulted in fully crystallized structures characterized by square-shaped micron-scale grains of NaPO3. The insight into the evaluation of electrical and dielectric properties was provided by Solid-State Impedance Spectroscopy (SS-IS), revealing a strong correlation with the conditions of controlled crystallization and observed (micro)structure. Compared to the initial glass, which showed DC conductivity (σDC) on the order of magnitude 10-7 Ω-1 cm-1 at 393 K, the obtained GCs exhibited a lower σDC ranging from 10-8 to 10-10 Ω-1 cm-1. With the rise in HT temperature, σDC further decreased due to the crystallization of the NaPO3 phase, depleting the glass matrix of mobile Na+ ions. The prepared GCs showed improved dielectric parameters in comparison to the initial glass, with a noticeable increase in dielectric constant values (~20) followed by a decline in dielectric loss (~10-3) values as the HT temperatures rise. Particularly, the GC obtained at @450 stood out as the optimal sample, showcasing an elevated dielectric constant and low dielectric loss value, along with moderate ionic conductivity. This research uncovers the intricate relationship between heat-treatment conditions and material properties, emphasizing that controlled crystallization allows for precise modifications to microstructure and phase composition within the remaining glassy phase, ultimately facilitating the fine-tuning of material properties.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123757, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38142490

ABSTRACT

A novel Fluro boro-phosphate host matrix doped with the 1 mol% of Dy3+ ions (50B2O3 + 20P2O5 + 10TiO2 + 10SrCO3 + 4BaF2 + 5BaCO3 + 1Dy2O3) was prepared using a conventional melt-quenching mechanism, and its structural characteristics were explored through the Powder-XRD, FT-IR, FT-Raman, EDAX and SEM spectroscopic analysis. The XRD spectrum of the glass confirmed its non-crystalline or amorphous structure. FT-IR and FT-Raman spectrum studies revealed that various borate and phosphate groups present with a variety of stretching and bending vibrations. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray analysis (EDAX) analysis have been used to examine the surface morphology and the presence of elements, respectively in the prepared glass. The optical absorption spectrum was used to explore the electronic band structure through the measurements of optical band-gap energy and Urbach energy. The luminescence spectrum reveals the emission characteristics of Dy3+ ions due to the electric-dipole and magnetic-dipole transitions. It is found that the decay time of the 4F9/2 excited level at a concentration of 1 mol% Dy3+ in the glass matrix is tri-fit non-exponential. The CIE chromaticity coordinates and the concentration influence on Y/B intensity ratios were computed for the creation of white light from the luminescence spectrum. The present work also discusses the findings after figuring out the correlated color temperature associated (CCT) with the color purity (Pe). The Thermoluminescence (TL) characteristics and the kinetic parameters of the glass were studied after the γ-irradiation with a dose of 2 kGy. EPR investigation revealed the paramagnetic characteristics through the hyperfine structure of Dy3+ ions and the electron-hole pair formation upon irradiation in the glass matrix.

11.
Biomater Adv ; 154: 213626, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722164

ABSTRACT

For the treatment of tumor-related bone defects resulting from surgical resection, simultaneous eradication of residual tumor cells and repair of bone defects represent a challenge. To date, photothermal therapy based on photothermal materials is used to remove residual tumor cells under near infrared light. However, most of photothermal materials have no function for bone repair, and even if combined with bioactive materials to enhance osteogenesis, they still cause potential harm to the body due to inability to degrade or poor degradability. Herein, multifunctional bioactive glasses (PGFe5-1100, PGCu5-1100) based on phosphate glass doped with transition metal elements were prepared for photothermal ablation, bone regeneration, and controllable degradation. The glasses exhibited excellent photothermal effect, which was derived from the electron in-band transition after light absorption due to energy level splitting of doped transition metal element and the subsequent electron nonradiative relaxation. The photothermal performance can be controlled by laser power density, element doping content and glass melting temperature. Moreover, the hyperthermia induced by the glasses can effectively kill tumor cells in vitro. In addition, the glasses degraded over time, and the released P, Ca, Na, Fe could promote bone cell proliferation and osteogenic differentiation. Therefore, these results successfully demonstrated that transition metal element-doped phosphate glasses have multifunctional abilities of tumor elimination, bone regeneration, and spontaneous degradation simultaneously with better biosecurity and bioactivity, which is believed to pave the way for the design of novel biomaterials for osteosarcoma treatment.


Subject(s)
Bone Neoplasms , Hyperthermia, Induced , Osteosarcoma , Humans , Osteogenesis , Neoplasm, Residual/therapy , Bone Regeneration , Osteosarcoma/therapy , Bone Neoplasms/therapy , Bone Neoplasms/pathology , Phosphates/pharmacology
12.
ACS Appl Bio Mater ; 6(10): 4138-4145, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37462953

ABSTRACT

In recent years, nucleic acid has emerged as a versatile molecule that has been strategically used in material synthesis and biomedical applications. Keeping in mind the presence of the phosphate group, a glass former in the nucleic acids, we synthesized a transparent glass-like material by the thermal treatment of nucleic acids (DNA and RNA) at 900 °C at atmospheric pressure. Characterization of this material by transmission electron microscopy, X-ray photoelectron spectroscopy, and confocal fluorescence microscopy suggested the presence of in situ-formed nanodiamonds within the phosphate glass matrix. The molecular structure of glass investigated by X-ray photoelectron and infrared spectroscopy indicated a nearly equal proportion of metaphosphates and smaller phosphate units (pyro- and ortho-phosphate) that form the phosphate glass matrix. Thereafter, in vitro biological experiments showed that the nucleic acid-derived glass was non-toxic and cytocompatible, enhanced extracellular matrix secretion, and increased intracellular alkaline phosphatase activity, with potential application in hard tissue engineering. Our work offers insights into nanodiamond synthesis at atmospheric pressure and proves that nucleic acids could be used as a precursor to making an innovative glass-ceramic biomaterial.

13.
Materials (Basel) ; 16(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297033

ABSTRACT

In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens' dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens' shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications.

14.
Molecules ; 28(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049941

ABSTRACT

This study aimed to investigate the antibacterial [minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)] and antibiofilm activity [log10 colony forming unit/mL (CFU/mL) and biofilm disruption] of copper-doped phosphate glass (CDPG) against Streptococcus oralis, Enterococcus faecalis, Lactobacillus casei, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. METHODS: the antibacterial activity was determined using microbroth dilution and time-kill assay. The antibiofilm activity was investigated using crystal violet and confocal laser scanning microscopy. Bacteria growing in absence of CDPG were used as controls. RESULTS: the MIC was ≥125 mg of CPDG/mL; the log10 CFU/mL reduction ranged from 2.66-3.14 to 6.23-9.65 after 4 and 24 h respectively. Generally, no growth was observed after 24 h of treatment with CDPG; the MBC was 250 mg/mL for L. casei and S. oralis while 500 mg/mL for the rest of the bacteria. The highest and lowest antibiofilm activity was observed against S. oralis and E. coli respectively. Three patterns of complete biofilm disruption were seen: (i) large areas with E. fecalis and S. oralis, (ii) medium-size pockets with S. aureus and P. aeruginosa, or (iii) small areas with E. coli and L. casei. CONCLUSION: CDPG can be potentially used as an antibacterial and an antibiofilm agent against oral biofilm-forming bacteria.


Subject(s)
Copper , Staphylococcus aureus , Copper/pharmacology , Escherichia coli , Phosphates/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Biofilms , Microbial Sensitivity Tests , Pseudomonas aeruginosa
15.
Luminescence ; 38(3): 280-290, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693650

ABSTRACT

A thorough analysis of glass containing Eu2 O3 and Dy2 O3 , or Eu2 O3 , Dy2 O3 , and CuO melted together with nanodiamond powder was pursued based on measurements of optical absorption, photoluminescence (PL) emission and excitation spectra, and colorimetry. Nanodiamond facilitated the stabilization of Cu+ and Eu2+ ions with blue-emitting characteristics that, along with yellow-emitting Dy3+ and red-emitting Eu3+ led to the white light-emitting glass. Novel intensity notations implemented in intensity-based spectral ratios, and difference intensity correlation analysis were proposed for the assessment of PL properties. The chromaticity and correlated colour temperature of the emission were ultimately investigated as a two-parametric problem based on: (1) the different ionic components; and (2) the various excitation wavelengths employed. The optical analysis approach adds to the characterization methods to further fundamental understanding and provide helpful analytical tools for designing materials for tunable white light-emitting devices.


Subject(s)
Europium , Nanodiamonds , Colorimetry , Luminescence , Dysprosium , Phosphates
16.
Polymers (Basel) ; 15(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36679178

ABSTRACT

Poly (methyl methacrylate) (PMMA) is a commonly used denture material with poor antimicrobial effects. This study investigated the antimicrobial effects of PMMA-containing silver-phosphate glass. We fabricated a novel material comprising PMMA-containing silver-phosphate glass. Then, microhardness, flexural strength, and gloss unit were analyzed. Antimicrobial activity against Streptococcus mutans and Candida albicans was investigated. Colony-forming units were counted, and antimicrobial rates were measured. Biocompatibility tests were performed using a colorimetric MTT assay for evaluating cell metabolic activity. The microhardness, flexural strength, and gloss unit of the experimental groups (with silver-phosphate glass) were not significantly different from those of the control group (no silver-phosphate glass) (P > 0.05), which showed clinically valid values. With increasing proportions of silver-phosphate glass, the antimicrobial activity against the two microorganisms increased (P < 0.05). Furthermore, S. mutans showed more than 50% antimicrobial activity in 4%, 6%, and 8% experimental groups, C. albicans showed more than 50% antimicrobial activity in 6% and 8% groups, and a statistically significant difference in antimicrobial activity was observed compared to the control (P < 0.05). The cell viability of the experimental groups was not significantly different from that of the control group (P > 0.05). Both control and experimental groups showed approximately 100% cell viability. These results suggest that silver-phosphate glass is a promising antimicrobial material in dentistry.

17.
Luminescence ; 38(1): 71-82, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36511851

ABSTRACT

Eu3+ -doped-bismuth-based phosphate glasses with chemical equation (60 - x)P2 O5 -20Bi2 O3 -10Na2 CO3 -10SrF2 -xEu2 O3 (PBNSEu), (where x = 0, 0.1, 0.5, 1.0, 1.5 and 2 mol%) were fabricated using the melt-quenching method. Obtain X-ray diffraction (XRD), energy-dispersive X-ray (EDAX), and Fourier transform infrared (FTIR) spectra were used to characterize the structure of the prepared PBNSEu glass. The J-O (Judd-Ofelt) intensity parameters (Ω2 , Ω4 ) were estimated using photoluminescence emission spectra. When excited with a xenon lamp at λexc  = 394 nm, the most intense red-emission transition occurred at ~612 nm (5 D0 →7 F2 ). J-O intensity parameters were used to calculate radiative properties, whereas the radiative branching ratio (ßR ), radiative transition probability (AR ), radiative lifetime (τR ), and total radiative transition rate (Aτ ) were calculated for the transitions 5 D0 →7 FJ (where J = 0-4) and were obtained in the emission spectra for europium ion-doped in the current glass. Using the CIE1931 chromaticity coordinates axes, the colours of various concentrations of Eu3+ ion-doped PBNS glass were evaluated using the emission spectra. Temperature-dependent luminescence spectra were recorded for the optimized PBNSEu20 glass to calculate the activation energy. These results strongly suggested red components in w-LEDs and visible display laser applications.


Subject(s)
Bismuth , Light , Bismuth/chemistry , Glass/chemistry , Phosphates/chemistry , Lasers
18.
Biomater Investig Dent ; 10(1): 2284372, 2023.
Article in English | MEDLINE | ID: mdl-38979099

ABSTRACT

Owing to the development of glass 45S5 (Bioglass®) comprising 45 mol% SiO2, 24.5 mol% Na2O, 24.5 mol% CaO, and 6 mol% P2O5, different compositions of silicate glasses have been developed. When these silicate glasses contact an aqueous environment, such as body fluids, they induce apatite layer formation on their surfaces owing to ion exchange. In addition to promoting hard tissue formation, researchers have sought to enhance the antibacterial properties of these glasses, thereby resulting in the development of metal-doped silicate glasses. The addition of antibacterial metals (silver, copper, zinc, and gallium) to silicate glass offers a promising avenue for combating oral pathogens. In recent years, there has been growing interest in metal-doped phosphate glasses. The release of metal ions can be regulated by modifying the dissolution rate of the phosphate glasses. This review summarizes the metal-doped silicate and phosphate glasses that confer antibacterial activity. Future strategies for the development of dental biomaterials that incorporate metal-doped glass and exhibit antibacterial effects are discussed.

19.
Materials (Basel) ; 15(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363195

ABSTRACT

This study focused on the production and characterization of phosphate glass fibers (PGF) for application as composite reinforcement. Phosphate glasses belonging to the system 52P2O524CaO13MgO (11-(X + Y)) K2OXFe2O3YTiO2 (X:1, 3, 5) and (Y:0.5, 1) were elaborated and converted to phosphate glass fibers. First, their mechanical properties and chemical durability were investigated. Then, the optimized PGF compositions were used afterward as reinforcement for thermosetting composite materials. Polyester matrices reinforced with short phosphate glass fibers (sPGF) up to 20 wt % were manufactured by the contact molding process. The mechanical and morphological properties of different sPGF-reinforced polyester systems were evaluated. The choice between the different phosphate-based glass syntheses (PGFs) was determined by their superior mechanical performance, their interesting chemical durability, and their high level of dispersion in the polyester matrix without any ad sizing as proven by SEM morphological analysis. Moreover, the characterization of mechanical properties revealed that the tensile and flexural moduli of the developed polyester-based composites were improved by increasing the sPGF content in the polymer matrix in perfect agreement with Takayanagi model predictions. The present work thus highlights some promising results to obtain high-quality phosphate glass fiber-reinforced polyester parts which can be transposed to other thermosetting or thermoplastic-based composites for high-value applications.

20.
J Mech Behav Biomed Mater ; 136: 105480, 2022 12.
Article in English | MEDLINE | ID: mdl-36183666

ABSTRACT

The levodopa (L-DOPA) has been reported as a promising adhesive for various materials. In this study, we utilized L-DOPA as an interfacial agent for phosphate glass fibre/polycaprolactone (PGF/PCL) composites, with the aim to enhance the interfacial properties between the fibres and polymer matrix. The PGFs were dip-coated in varying concentrations of L-DOPA solution ranging between 5 and 40 g L-1. The fibre strength and interfacial shear strength (IFSS) of the composites were measured via a single fibre tensile test and single fibre fragmentation test, respectively. It was found that the L-DOPA agent (at conc. 10 g L-1) significantly improved the IFSS of the composites up to 27%. Also, the L-DOPA coating (at conc. 40 g L-1) significantly increased the glass fibre strength up to 18%. As a result, an optimum coating level could be tailored depending on application and whether fibre strength or IFSS was of greater importance. In addition, SEM and TGA analyses were used to detect and quantify the coating agents. FTIR and XPS further confirmed presence of the coating and indicated the zwitterionic crystals of L-DOPA and the formation of a melanin-like polymer layer. The spectroscopy data also evidenced that both catechol and amine groups contributed to the interaction between the L-DOPA and the PGF surface.


Subject(s)
Levodopa , Phosphates , Phosphates/chemistry , Biocompatible Materials/chemistry , Polymers/chemistry , Glass/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL