Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 761
Filter
1.
Biochem Biophys Res Commun ; 734: 150465, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39088980

ABSTRACT

Redox regulations and antioxidant defence play a central role in the acclimation of plants to their environment. Glutathione represents an essential component of the cellular antioxidant defence system, which keeps levels of reactive oxygen species (ROS) under control. High-performance liquid chromatography (HPLC) separation with fluorescence detection is a sensitive method that enables analysis of reduced and oxidised glutathione levels in small samples of plant tissues or plant cell culture. We aimed to optimise the method to obtain more accurate information about the total level of glutathione and the proportion of the reduced form (GSH) by choosing the most suitable reduction reagent and the conditions under which the reduction occurs. The applicability of the developed method was verified by analysing tobacco cells treated with hydrogen peroxide, which caused a decrease in the GSH/total glutathione ratio. Significant changes in the level of glutathione as well as in the GSH/total glutathione ratio were also observed during tobacco cell culture development.

2.
Angew Chem Int Ed Engl ; : e202412084, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087346

ABSTRACT

Broadening the scope of functionalities that can be covalently bound to single-walled carbon nanotubes (SWCNTs) is crucial for enhancing the versatility of this promising nanomaterial class in applied settings. Here we report the covalent linkage of triphenylphosphine oxide [Ph3P(O)] to SWCNTs, a hitherto overlooked surface functionality. We detail the synthesis and structural characterization of a new family of phosphine oxide-functionalized diaryliodonium salts that can facilitate direct Ph3P(O) transfer and afford novel SWCNTs with tunable Ph3P(O) content (SWCNT-P). The molecularly-distributed and robust nature of the covalent Ph3P(O) attachment in SWCNT-P was supported by a combination of characterization methods including Raman, infrared, UV-Vis-NIR and X-ray photoelectron spectroscopies coupled with thermogravimetric analysis. Electron microscopy further revealed the effectiveness of the Ph3P(O) moiety for de-bundling SWCNTs to yield SWCNT-P with superior dispersibility and processability. Finally, electrochemical studies established that SWCNT-P is sensitive to the presence of Li+, Na+ and K+ wherein the Gutmann-Beckett Lewis acidity parameters of the ions were quantitatively transduced by Ph3P(O) to electrochemical responses. This work hence presents a synthetic, structural, spectroscopic and electrochemical foundation for a new phosphorus-enriched responsive nanomaterial platform featuring the Ph3P(O) functionality.

3.
J Biol Inorg Chem ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066798

ABSTRACT

The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.

4.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062981

ABSTRACT

Gastric cancer prognosis is still notably poor despite efforts made to improve diagnosis and treatment of the disease. Chemotherapy based on platinum agents is generally used, regardless of the fact that drug toxicity leads to limited clinical efficacy. In order to overcome these problems, our group has been working on the synthesis and study of trans platinum (II) complexes. Here, we explore the potential use of two phosphine-based agents with the general formula trans-[Pt(amine)Cl2(PPh3)], called P1 and P2 (with dimethylamine or isopropylamine, respectively). A cytotoxicity analysis showed that P1 and especially P2 decrease cell viability. Specifically, P2 exhibits higher activity than cisplatin in gastric cancer cells while its toxicity in healthy cells is slightly lower. Both complexes generate Reactive Oxygen Species, produce DNA damage and mitochondrial membrane depolarization, and finally lead to induced apoptosis. Thus, an intrinsic apoptotic pathway emerges as the main type of cell death through the activation of BAX/BAK and BIM and the degradation of MCL1. Additionally, we demonstrate here that P2 produces endoplasmic reticulum stress and activates the Unfolded Protein Response, which also relates to the impairment observed in autophagy markers such as p62 and LC3. Although further studies in other biological models are needed, these results report the biomolecular mechanism of action of these Pt(II)-phosphine prototypes, thus highlighting their potential as novel and effective therapies.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Mitochondria , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum Stress/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Membrane Potential, Mitochondrial/drug effects , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/chemistry , DNA Damage/drug effects , Phosphines/pharmacology , Phosphines/chemistry , Unfolded Protein Response/drug effects
5.
Nano Lett ; 24(29): 8894-8901, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990690

ABSTRACT

Environmentally friendly InP-based quantum dots (QDs) are promising for light-emitting diodes (LEDs) and display applications. So far, the synthesis of highly emitting InP-based QDs via safe and economically viable amine-phosphine remains a challenge. Herein, we report the synthesis of amine-phosphine based InP/ZnSe/ZnS QDs by introducing an alloyed oxidation-free In-ZnSe transition layer (TL) at the core-shell interface. The TL not only has the essential function of preventing oxidation of the core and relieving interfacial strain but also results in oriented epitaxial growth of shell. The alloyed TL significantly mitigates the nonradiative recombination at core-shell interfacial trap states, thereby boosting the photoluminescence (PL) efficiency of the QDs up to 98%. Also, the Auger recombination is suppressed, extending the biexciton lifetime from 60 to 100 ps. The electroluminescence device based on the InP-based QDs shows a high external quantum efficiency over 10%, further demonstrating high quality QDs synthesized by this process.

6.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000025

ABSTRACT

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Subject(s)
Imines , Maleimides , Phosphines , Succinimides , Maleimides/chemistry , Maleimides/chemical synthesis , Phosphines/chemistry , Catalysis , Imines/chemistry , Succinimides/chemistry , Stereoisomerism , Molecular Structure , Isomerism
7.
Chemistry ; : e202401816, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989823

ABSTRACT

N-Heterocyclic carbene (NHC)-derived selenoureas comprise a fundamentally important class of NHC derivatives, with key applications in coordination chemistry and the determination of NHC electronic properties. Considering the broad reactivity of chalcogen-containing compounds, it is surprising to note that the use of NHC-derived selenoureas as organic synthons remains essentially unexplored. The present contribution introduces a novel, straightforward transformation leading to azines bearing a guanidine moiety, through the reaction of a wide range of NHC-derived selenoureas with commercially available diazo compounds, in the presence of triphenylphosphine. This transformation offers a new approach to such products, having biological, materials chemistry, and organic synthesis applications. The guanidine-bearing azines are obtained in excellent yields, with all manipulations taking place in air. A reaction mechanism is proposed, based on both experimental mechanistic findings and density functional theory (DFT) calculations. A one-pot, multicomponent transesterification reaction between selenoureas, α-diazoesters, alcohols, and triphenylphosphine was also developed, providing highly functionalized azines.

8.
Chemistry ; : e202402552, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981861

ABSTRACT

While remarkable progress has been made in the development of peptide medicines, many problems related to peptide synthesis remain unresolved. Previously, we reported electrochemical peptide synthesis using a phosphine as a potentially recyclable coupling reagent. However, there was room for improvement from the point of view of reaction efficiency, especially in the carboxylic acid activation step and the peptide bond formation step. To overcome these challenges, we searched for the optimal phosphine. Among phosphines with various electronic properties, we found that electron-rich triaryl phosphines improved the reaction efficiency. Consequently, we successfully performed electrochemical peptide synthesis on sterically hindered and valuable amino acids. We also synthesized oligopeptides that were challenging with our previous method. Finally, we examined the effect of substituents on the phosphine cations, and gained some insights into reactivity, which will aid researchers designing reactions involving phosphine cations.

9.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 746-750, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38974146

ABSTRACT

The mol-ecular structure of tricarbon-yl[η4-6-exo-(tri-phenyl-phosphino)cyclo-hepta-2,4-dien-1-one]iron(0) tetra-fluoro-borate di-chloro-methane hemisolvate, [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2, as determined by single-crystal X-ray diffraction is reported. The two independent tricarbon-yl[η4-6-exo-(tri-phenyl-phosphino)cyclo-hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure parallel to the (100) plane. Solid-state stability within that asymmetric unit as well as between neighboring dimeric units is afforded by C-H⋯O and C-H⋯F hydrogen bonds and C-H⋯π and Y-X⋯π (Y = B, C; X = F, O) inter-actions, which yield diperiodic sheets and a three-dimensional extended network.

10.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 755-758, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38974148

ABSTRACT

The title compound, C8H11PS, which melts below room temperature, was crystallized at low temperature. The P-S bond length is 1.9623 (5) Šand the major contributors to the Hirshfeld surface are H⋯H (58.1%), S⋯H/H⋯S (13.4%) and C⋯H/H⋯C contacts (11.7%).

11.
Insects ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057210

ABSTRACT

Phosphine (PH3) has been widely used as a fumigant in food storage, but increasing PH3 resistance in major pests makes finding alternative fumigants urgent. Methyl benzoate (MBe), a volatile organic compound regarded to be a food-safe natural product, has recently demonstrated significant toxicity against a variety of insect pests. This study is the first evaluation of the fumigation toxicity of three benzoate compounds, MBe, vinyl benzoate, and ethyl benzoate, against PH3-susceptible and PH3-resistant strains of Rhyzopertha dominica and Sitophilus oryzae. All strains were exposed to the compounds at concentrations up to 20 µL/1.5 L air for 24 h. Compared to vinyl benzoate and ethyl benzoate, MBe induced higher mortality rates in all strains at all concentrations. When food was made available, the lethal median concentration for MBe was 10-17-fold higher than when tested without food. Moreover, no significant differences were observed between the responses of the PH3-susceptible and PH3-resistant strains to the compounds. Notably, S. oryzae was more susceptible to MBe. In laboratory settings, MBe successfully controlled PH3-resistant strains of R. dominica and S. oryzae, making it a viable option for PH3-resistance management. Thus, MBe might be suitable for food security programs as an environmentally benign alternative fumigant.

12.
Angew Chem Int Ed Engl ; : e202409387, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925605

ABSTRACT

Phosphine-ligated transition metal complexes play a pivotal role in modern catalysis, but our understanding of the impact of ligand counts on the catalysis performance of the metal center is limited. Here we report the synthesis of a low-coordinate mono(phosphine)-Rh catalyst on a metal-organic layer (MOL), P-MOL • Rh, and its applications in the hydrogenation of mono-, di-, and tri-substituted alkenes as well as aryl nitriles with turnover numbers (TONs) of up to 390000. Mechanistic investigations and density functional theory calculations revealed the lowering of reaction energy barriers by the low steric hindrance of site-isolated mono(phosphine)-Rh sites on the MOL to provide superior catalytic activity over homogeneous Rh catalysts. The MOL also prevents catalyst deactivation to enable recycle and reuse of P-MOL • Rh in catalytic hydrogenation reactions.

13.
Hemodial Int ; 28(3): 351-357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38937150

ABSTRACT

BACKGROUND: Phosphide metal poisoning results in tens of thousands of fatalities per year worldwide. The mortality in critically ill patients often exceeds 50%. The available treatment is supportive and there is no antidote. Dialysis is recommended to treat advanced complications but has not been prescribed early in the process. In this study we report our experience in using dialysis in the early hours of presentation of the patients and suggest it can favorably improve the prognosis. We also draw attention to the risk of suicide under conditions of chronic conflict such as those in northwestern Syria, and to the lack of necessary mental health support for patients after suicide attempts. METHODS: Retrospective review of records of patients poisoned with aluminum phosphide and admitted to critical care facilities in northwestern Syria between July 2022 and June 2023. RESULTS: During the observation period 16 cases were encountered. Suicide was the reason of the poisoning in 15 patients, the median patient age was 18 years and over two thirds of the patients were female. Early dialysis was used in 11 patients who were critically ill and their mortality rate was 18%. CONCLUSIONS: Phosphide metal poisoning is common in the disasters stricken area of northwestern Syria. Most cases are suicidal and impact young females. Early dialytic interventions may favorably impact the outcomes.


Subject(s)
Phosphines , Renal Dialysis , Humans , Female , Male , Phosphines/poisoning , Renal Dialysis/methods , Adult , Retrospective Studies , Adolescent , Young Adult , Aluminum Compounds/poisoning , Syria , Child , Middle Aged , Poisoning/therapy , Disasters , Suicide, Attempted
14.
Micromachines (Basel) ; 15(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930769

ABSTRACT

The surface morphology of perovskite films significantly influences the performance of perovskite light-emitting diodes (PeLEDs). However, the thin perovskite thickness (~10 nm) results in low surface coverage on the substrate, limiting the improvement of photoelectric performance. Here, we propose a molecular additive strategy that employs pentafluorophenyl diphenylphosphinate (FDPP) molecules as additives. P=O and Pentafluorophenyl (5F) on FDPP can coordinate with Pb2+ to slow the crystallization process of perovskite and enhance surface coverage. Moreover, FDPP reduces the defect density of perovskite and enhances the crystalline quality. The maximum brightness, power efficiency (PE), and external quantum efficiency (EQE) of the optimal device reached 24,230 cd m-2, 82.73 lm W-1, and 21.06%, respectively. The device maintains an EQE of 19.79% at 1000 cd m-2 and the stability is further enhanced. This study further extends the applicability of P=O-based additives.

15.
J Pept Sci ; : e3630, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943521

ABSTRACT

Self-assembled peptides are used for diverse applications in the biomedical and technological fields. The morphology and function of the assembled systems are dictated by the peptide sequence and length. In this work, a supramolecular catalyst was obtained upon self-assembly of the diphenylalanine peptide conjugated to a triphenylphosphine Au(I) complex in acetonitrile. The assembled molecules were characterized by spectroscopic techniques and by scanning electron microscopy. The activity of the catalyst was tested on two substrates in cyclization reactions. The morphology and the dimensions of the assembled systems vary depending on the presence of a carboxyl versus an amide C-terminal end. The catalyst efficiently promotes intramolecular cyclization reactions. Results obtained encourage the use of self-assembled peptides for the obtainment of new and efficient catalysts.

16.
Angew Chem Int Ed Engl ; : e202408947, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899792

ABSTRACT

Palladium-catalyzed coupling reactions of small nucleophiles are of great interest, but challenging due to difficulties in selectivity control. Herein, we report the development of a new platform of P,N-ligands consisting of ylide-functionalized phosphines with aminophosphonium groups (NYPhos) to address this challenge. These phosphine ligands are easily accessible in a wide structural diversity with highly modular electronic and steric properties. Based on a family of 14 ligands the selective monoarylation of acetone as well as other challenging ketones and amides was accomplished with record-setting activities even for aryl chlorides at room temperature including late-stage functionalizations of drug molecules. Moreover, ammonia and other small primary amines could be coupled at mild conditions. Isolation and structure analyses of palladium complexes within the catalytic cycle confirmed that the P,N-coordination mode is necessary to achieve the observed selectivities. It also demonstrated the facile adjustability of the N-donor strength, which is beneficial for the targeted design of tailored P,N-ligands for future applications.

17.
Chemistry ; : e202401077, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845585

ABSTRACT

P-chiral supramolecular phosphine ligands are crucial for asymmetric transformations, but their synthesis is tedious. We report a one-step synthesis of thermally stable P-chiral supramolecular phosphines and their performance in the asymmetric hydrogenation of functionalized alkenes. A rational designing and synthesis of (R, R)-QuinoxP* ligated palladium complex (Pd-2) in excellent yield is reported. This Pd-2 catalyzed a direct P-C coupling of 2,3-dihydro-1-H-phosphindole (A1)/1,2,3,4-tetrahydrophosphindoline (A2) with 1-(3-iodophenyl)urea (B1)/2-iodo /6-hydroxy pyridine (B2) and,produced corresponding ligands L1-L3. The P-C coupling between A1 and B2 produced 6-(2,3-dihydro-1H-phosphindol-1-yl)pyridine-2(1H)-one (L2) with an excellent enantiomeric excess of up to 99 %. L2 was found to be remarkably stable even at 150 °C and did not oxidize/hydrolyze for at least 24 hours in open air. Such thermal stability and an impediment to oxidation are unprecedented. L2 self-assembled and produced L2-C1 (Pt), L2-C2(Pd), and L2-C3(Rh) assemblies. The utility of the self-assembled P-chiral ligand was demonstrated in the Rh-catalyzed asymmetric hydrogenation (AH) of functionalized olefins. The L2-C3 catalyzed AH of functionalized alkenes and delivered chiral products with excellent enantioselectivity of >99 %. A small library of 16 substrates was subjected to AH using L2-C3 to produce chiral compounds with excellent conversion and ee.

18.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893468

ABSTRACT

In this paper, an interesting γ'-carbon 1,6-conjugate addition for phosphine-catalyzed α-succinimide substituted allenoates has been disclosed. A wide array of substrates was found to participate in the reaction, resulting in the production of diverse 4-diarylmethylated 3,4-disubstituted maleimides with satisfactory to outstanding yields. Furthermore, a plausible mechanism for the reaction was proposed by the investigators.

19.
Food Chem ; 455: 139908, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850971

ABSTRACT

Chitosan quaternary phosphine salts (NPCS) were synthesized with enhanced antimicrobial properties using a two-step method. Composite films (CNSP) were prepared by incorporating NPCS and polyvinyl alcohol (PVA) as the base material, citric acid as the crosslinker and functional additive, exhibiting antibacterial and UV-blocking properties. The composite film showed a maximum tensile strength of 20.4 MPa, an elongation at break of 677%, and a UV light barrier transmittance of 70%. Application of these composite membranes in preserving strawberries demonstrated effectiveness in maintaining freshness by preventing water loss, inhibiting microbial growth, and extending shelf life. In addition, the composite film demonstrated biosafety. These results indicate that CNSP composite films holds significant promise for safe and sustainable food packaging applications.


Subject(s)
Chitosan , Citric Acid , Food Packaging , Food Preservation , Fragaria , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Fragaria/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Citric Acid/chemistry , Citric Acid/pharmacology , Food Packaging/instrumentation , Food Preservation/methods , Food Preservation/instrumentation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cross-Linking Reagents/chemistry , Tensile Strength
20.
J Nucl Med ; 65(7): 1087-1094, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38844360

ABSTRACT

Benchtop 99Mo/99mTc and 188W/188Re generators enable economical production of molecular theranostic 99mTc and 188Re radiopharmaceuticals, provided that simple, kit-based chemistry exists to radiolabel targeting vectors with these radionuclides. We have previously described a diphosphine platform that efficiently incorporates 99mTc into receptor-targeted peptides. Here, we report its application to label a prostate-specific membrane antigen (PSMA)-targeted peptide with 99mTc and 188Re for diagnostic imaging and systemic radiotherapy of prostate cancer. Methods: Two diphosphine-dipeptide bioconjugates, DP1-PSMAt and DP2-PSMAt, were formulated into kits for radiolabeling with 99mTc and 188Re. The resulting radiotracers were studied in vitro, in prostate cancer cells, and in vivo in mouse xenograft models, to assess similarity of uptake and biodistribution for each 99mTc/188Re pair of agents. Results: Both DP1-PSMAt and DP2-PSMAt could be efficiently radiolabeled with 99mTc and 188Re using kit-based methods to furnish the isostructural compounds M-DP1-PSMAt and M-DP2-PSMAt (M = [99mTc]Tc, [188Re]Re). All 99mTc/188Re radiotracers demonstrated specific uptake in PSMA-expressing prostate cancer cells, with negligible uptake in prostate cancer cells that did not express PSMA or in which PSMA uptake was blocked. M-DP1-PSMAt and M-DP2-PSMAt also exhibited high tumor uptake (18-30 percentage injected dose per gram at 2 h after injection), low retention in nontarget organs, fast blood clearance, and excretion predominantly via a renal pathway. Importantly, each pair of 99mTc/188Re radiotracers showed near-identical biologic behavior in these experiments. Conclusion: We have prepared and developed novel pairs of isostructural PSMA-targeting 99mTc/188Re theranostic agents. These generator-based theranostic agents have potential to provide access to the benefits of PSMA-targeted diagnostic imaging and systemic radiotherapy in health care settings that do not routinely have access to either reactor-produced 177Lu radiopharmaceuticals or PET/CT infrastructure.


Subject(s)
Prostatic Neoplasms , Radioisotopes , Rhenium , Technetium , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Mice , Rhenium/chemistry , Animals , Humans , Technetium/chemistry , Radioisotopes/chemistry , Cell Line, Tumor , Tissue Distribution , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Theranostic Nanomedicine , Peptides/chemistry , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...