Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 570
Filter
1.
Methods Mol Biol ; 2816: 129-138, 2024.
Article in English | MEDLINE | ID: mdl-38977594

ABSTRACT

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Subject(s)
Alcohols , Click Chemistry , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Click Chemistry/methods , Alcohols/chemistry , Alcohols/metabolism , Cycloaddition Reaction , Humans , Phosphatidic Acids/metabolism , Phosphatidic Acids/chemistry , Azides/chemistry , Molecular Imaging/methods , Alkynes/chemistry
2.
BMC Genomics ; 25(1): 653, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956471

ABSTRACT

BACKGROUND: Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS: The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while ß and γ genes expressed in the leaf. CONCLUSIONS: The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.


Subject(s)
Crops, Agricultural , Evolution, Molecular , Lipid Droplets , Selection, Genetic , Lipid Droplets/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Oils/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Gene Expression Regulation, Plant
3.
Biochimie ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944106

ABSTRACT

The Loxosceles genus represents one of the main arachnid genera of medical importance in Brazil. Despite the gravity of Loxosceles-related accidents, just a handful of species are deemed medically important and only a few have undergone comprehensive venom characterization. Loxosceles amazonica is a notable example of a potentially dangerous yet understudied Loxosceles species. While there have been limited reports of accidents involving L. amazonica to date, accidents related to Loxosceles are increasing in the North and Northeast regions of Brazil, where L. amazonica has been reported. In this work, we provide a complementary biochemical and immunological characterization of L. amazonica venom, considering its most relevant enzymatic activities and its immunorecognition and neutralization by current therapeutic antivenoms. Additionally, a cDNA library enriched with phospholipase D (PLD) sequences from L. amazonica venom glands was built and subsequently sequenced. The results showed that L. amazonica venom is well immunorecognised by all the tested antibodies. Its venom also displayed proteolytic, hyaluronidase, and sphingomyelinase activities. These activities were at least partially inhibited by available antivenoms. With cDNA sequencing of PLDs, seven new putative isoforms were identified in the venom of L. amazonica. These results contribute to a better knowledge of the venom content and activities of a synanthropic, yet understudied, Loxosceles species. In vivo assays are essential to confirm the medical relevance of L. amazonica, as well as to assess its true toxic potential and elucidate its related pathophysiology.

4.
Planta ; 259(6): 142, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702456

ABSTRACT

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Hydrogen Sulfide , Phospholipase D , Plant Stomata , Arabidopsis/genetics , Arabidopsis/physiology , Plant Stomata/physiology , Plant Stomata/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Proline/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Lipid Peroxidation
5.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703555

ABSTRACT

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Subject(s)
Acute Lung Injury , Glycocalyx , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Phospholipase D , Respiratory Distress Syndrome , Animals , Phospholipase D/metabolism , Phospholipase D/genetics , Glycocalyx/metabolism , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/etiology , Mice , Humans , Male , Matrix Metalloproteinase 9/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Syndecan-1/metabolism , Syndecan-1/genetics , Cytokines/metabolism , Cell Line
6.
Rev Alerg Mex ; 71(1): 47-51, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683069

ABSTRACT

BACKGROUND: Loxoscelism is a toxic clinical condition caused by the bite of spiders of the genus Loxosceles, with wide distribution throughout the world.1 Phospholipase D is responsible for dermonecrosis, inflammation, platelet aggregation, hemolysis, alteration of vascular permeability, cytotoxicity, nephrotoxicity, acute renal failure, among other symptoms involved with this protein. CASE REPORT: 27-year-old male patient, who began with a sudden episode of intense pain in the right hand, in the metacarpus and metacarpophalangeal joints. On clinical examination, the upper extremity was noted to have increased volume, extensive edema, hyperemia, and increased local temperature; The lesion progressed to extensive necrosis. Fasciotomies were performed, from distal to proximal, and release of the second and third finger compartment through longitudinal radial and ulnar incisions. A skin autograft was placed, obtained from the anterior surface of the right thigh. Opioid analgesics, non-steroidal anti-inflammatory drugs, corticosteroids, and antibiotics were administered. The skin biopsy reported: inflammatory infiltrate with neutrophils, ulceration, and bacterial colonies. After 27 days he had a favorable evolution, so he was discharged to his home, with follow-up by staff from the Outpatient Service. CONCLUSION: Cutaneous loxoscelism, as a cause of acute compartment syndrome of the hand, is rare, but should be considered in an area endemic for Loxosceles spp. Surgical decompression of the affected compartments represents a decisive factor in the treatment of patients.


ANTECEDENTES: El loxoscelismo es un cuadro clínico tóxico provocado por la mordedura de arañas del género Loxosceles, con amplia distribución en todo el mundo.1 La fosfolipasa D es la responsable de la dermonecrosis, inflamación, agregación plaquetaria, hemólisis, alteración de la permeabilidad vascular, citotoxicidad, nefrotoxicidad, insuficiencia renal aguda, entre otros síntomas implicados con esta proteína. REPORTE DE CASO: Paciente masculino de 27 años, que inició con un cuadro repentino de dolor intenso en la mano derecha, en el metacarpo y las articulaciones metacarpofalángicas. Al examen clínico, la extremidad superior se percibió con aumento de volumen, edema extenso, hiperemia y aumento de la temperatura local; la lesión progresó a necrosis extensa. Se realizaron fasciotomías, de distal a proximal, y liberación del compartimento del segundo y tercer dedo a través de incisiones longitudinales radiales y cubitales. Se colocó un autoinjerto de piel, obtenido de la superficie anterior del muslo derecho. Se administraron analgésicos opioides, antiinflamatorios no esteroides, corticosteroides y antibióticos. La biopsia de piel reporto: infiltrado inflamatorio con neutrófilos, ulceración y colonias bacterianas. Luego de 27 días tuvo evolución favorable, por lo que se dio alta a su domicilio, con seguimiento por personal del servicio de Consulta externa. CONCLUSIÓN: El loxoscelismo cutáneo, como causa de síndrome compartimental agudo de la mano, es poco común, pero debe considerarse en un área endémica para Loxosceles spp. La descompresión quirúrgica de los compartimentos afectados representa un factor decisivo en el tratamiento de los pacientes.


Subject(s)
Spider Bites , Humans , Male , Adult , Spider Bites/complications , Acute Disease , Compartment Syndromes/etiology
7.
Front Cell Neurosci ; 18: 1352630, 2024.
Article in English | MEDLINE | ID: mdl-38572075

ABSTRACT

Introduction: Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods: In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results: The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion: Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.

8.
Food Microbiol ; 121: 104496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637067

ABSTRACT

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Subject(s)
Hypocreales , Malus , Malus/microbiology , Fruit/microbiology , Virulence/genetics
9.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612766

ABSTRACT

Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.


Subject(s)
Oleic Acid , Triple Negative Breast Neoplasms , Humans , Pseudopodia , Cell Movement , Actins , Actin-Related Protein 2-3 Complex
10.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630134

ABSTRACT

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Subject(s)
Cardiomyopathies , Caspase 1 , Mice, Knockout , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Phospholipase D , Pyroptosis , Sepsis , Animals , Male , Mice , Rats , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Caspase 1/metabolism , Caspase 1/genetics , Cell Line , Gasdermins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Sepsis/complications , Sepsis/genetics , Signal Transduction
11.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672447

ABSTRACT

Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.


Subject(s)
Escherichia coli , Phosphatidylserines , Phospholipase D , Calcium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Phosphatidylserines/biosynthesis , Phosphatidylserines/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism
12.
Food Microbiol ; 120: 104484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431329

ABSTRACT

Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.


Subject(s)
Fruit , Hypocreales , Malus , Fruit/microbiology , Malus/microbiology , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Membrane Lipids/metabolism
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360201

ABSTRACT

The Ebola virus matrix protein VP40 is responsible for the formation of the viral matrix by localizing at the inner leaflet of the human plasma membrane (PM). Various lipid types, including PI(4,5)P2 (i.e. PIP2) and phosphatidylserine (PS), play active roles in this process. Specifically, the negatively charged headgroups of both PIP2 and PS interact with the basic residues of VP40 and stabilize it at the membrane surface, allowing for eventual egress. Phosphatidic acid (PA), resulting from the enzyme phospholipase D (PLD), is also known to play an active role in viral development. In this work, we performed a biophysical and computational analysis to investigate the effects of the presence of PA on the membrane localization and association of VP40. We used coarse-grained molecular dynamics simulations to quantify VP40 hexamer interactions with the inner leaflet of the PM. Analysis of the local distribution of lipids shows enhanced lipid clustering when PA is abundant in the membrane. We observed that PA lipids have a similar role to that of PS lipids in VP40 association due to the geometry and charge. Complementary experiments performed in cell culture demonstrate competition between VP40 and a canonical PA-binding protein for the PM. Also, inhibition of PA synthesis reduced the detectable budding of virus-like particles. These computational and experimental results provide new insights into the early stages of Ebola virus budding and the role that PA lipids have on the VP40-PM association.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Ebolavirus/metabolism , Hemorrhagic Fever, Ebola/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Lipids/analysis
14.
J Nutr ; 154(4): 1119-1129, 2024 04.
Article in English | MEDLINE | ID: mdl-38365119

ABSTRACT

BACKGROUND: The intestinal epithelium is one of the fastest self-renewal tissues in the body, and glutamine plays a crucial role in providing carbon and nitrogen for biosynthesis. In intestinal homeostasis, phosphorylation-mediated signaling networks that cause altered cell proliferation, differentiation, and metabolic regulation have been observed. However, our understanding of how glutamine affects protein phosphorylation in the intestinal epithelium is limited, and identifying the essential signaling pathways involved in regulating intestinal epithelial cell growth is particularly challenging. OBJECTIVES: This study aimed to identify the essential proteins and signaling pathways involved in glutamine's promotion of porcine intestinal epithelial cell proliferation. METHODS: Phosphoproteomics was applied to describe the protein phosphorylation landscape under glutamine treatment. Kinase-substrate enrichment analysis was subjected to predict kinase activity and validated by qRT-PCR and Western blotting. Cell Counting Kit-8, glutamine rescue experiment, chloroquine treatment, and 5-fluoro-2-indolyl deschlorohalopemide inhibition assay revealed the possible underlying mechanism of glutamine promoting porcine intestinal epithelial cell proliferation. RESULTS: In this study, glutamine starvation was found to significantly suppress the proliferation of intestinal epithelial cells and change phosphoproteomic profiles with 575 downregulated sites and 321 upregulated sites. Interestingly, phosphorylation of eukaryotic initiation factor 4E-binding protein 1 at position Threonine70 was decreased, which is a crucial downstream of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Further studies showed that glutamine supplementation rescued cell proliferation and mTORC1 activity, dependent on lysosomal function and phospholipase D activation. CONCLUSION: In conclusion, glutamine activates mTORC1 signaling dependent on phospholipase D and a functional lysosome to promote intestinal epithelial cell proliferation. This discovery provides new insight into regulating the homeostasis of the intestinal epithelium, particularly in pig production.


Subject(s)
Glutamine , Phospholipase D , Animals , Swine , Mechanistic Target of Rapamycin Complex 1/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Phospholipase D/metabolism , Intestines , Proteins/metabolism , Intestinal Mucosa/metabolism , Cell Proliferation
15.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403587

ABSTRACT

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Subject(s)
Ovarian Neoplasms , Phospholipase D , Female , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcription Factors/metabolism , Phospholipase D/genetics , Tumor Hypoxia , Animals
16.
Cells ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38334661

ABSTRACT

Murine leukemia viruses (MuLVs) are simple retroviruses that cause several diseases in mice. Retroviruses encode three basic genes: gag, pol, and env. Gag is translated as a polyprotein and moves to assembly sites where viral particles are shaped by cleavage of poly-Gag. Viral release depends on the intracellular trafficking of viral proteins, which is determined by both viral and cellular factors. ADP-ribosylation factor 6 (Arf6) is a small GTPase that regulates vesicular trafficking and recycling of different types of cargo in cells. Arf6 also activates phospholipase D (PLD) and phosphatidylinositol-4-phosphate 5-kinase (PIP5K) and produces phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). We investigated how Arf6 affected MuLV release with a constitutively active form of Arf6, Arf6Q67L. Expression of Arf6Q67L impaired Gag release by accumulating Gag at PI(4,5)P2-enriched compartments in the cytoplasm. Treatment of the inhibitors for PLD and PIP5K impaired or recovered MuLV Gag release in the cells expressing GFP (control) and Arf6Q67L, implying that regulation of PI(4,5)P2 through PLD and PIP5K affected MuLV release. Interference with the phosphoinositide 3-kinases, mammalian target of rapamycin (mTOR) pathway, and vacuolar-type ATPase activities showed further impairment of Gag release from the cells expressing Arf6Q67L. In contrast, mTOR inhibition increased Gag release in the control cells. The proteasome inhibitors reduced viral release in the cells regardless of Arf6Q67L expression. These data outline the differences in MuLV release under the controlled and overactivated Arf6 conditions and provide new insight into pathways for MuLV release.


Subject(s)
ADP-Ribosylation Factor 6 , Leukemia Virus, Murine , Viral Proteins , Animals , Mice , Leukemia Virus, Murine/physiology , TOR Serine-Threonine Kinases
17.
Braz. j. med. biol. res ; 57: e13218, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534063

ABSTRACT

High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.

18.
Biotechnol Biofuels Bioprod ; 17(1): 16, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291531

ABSTRACT

BACKGROUND: The hydrolysis and transphosphatidylation of phospholipase D (PLD) play important roles in the interconversion of phospholipids (PLs), which has been shown to profoundly impact lipid metabolism in plants. In this study, the effect of the PLD1 gene of Schizochytrium limacinum SR21 (S. limacinum SR21) on lipid metabolism was investigated. RESULTS: PLD1 knockout had little impact on cell growth and lipid production, but it significantly improved the percentage of polyunsaturated fatty acids in lipids, of which docosahexaenoic acid (DHA) content increased by 13.3% compared to the wild-type strain. Phospholipomics and real-time quantitative PCR analysis revealed the knockout of PLD1 reduced the interexchange and increased de novo synthesis of PLs, which altered the composition of PLs, accompanied by a final decrease in phosphatidylcholine (PC) and an increase in phosphatidylinositol, lysophosphatidylcholine, and phosphatidic acid levels. PLD1 knockout also increased DHA content in triglycerides (TAGs) and decreased it in PLs. CONCLUSIONS: These results indicate that PLD1 mainly performs the transphosphatidylation activity in S. limacinum SR21, and its knockout promotes the migration of DHA from PLs to TAGs, which is conducive to DHA accumulation and storage in TAGs via an acyl CoA-independent pathway. This study provides a novel approach for identifying the mechanism of DHA accumulation and metabolic regulation strategies for DHA production in S. limacinum SR21.

19.
Acta Pharm Sin B ; 14(1): 256-272, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261867

ABSTRACT

Liver regeneration following injury aids the restoration of liver mass and the recovery of liver function. In the present study we investigated the contribution of megakaryocytic leukemia 1 (MKL1), a transcriptional modulator, to liver regeneration. We report that both MKL1 expression and its nuclear translocation correlated with hepatocyte proliferation in cell and animal models of liver regeneration and in liver failure patients. Mice with MKL1 deletion exhibited defective regenerative response in the liver. Transcriptomic analysis revealed that MKL1 interacted with E2F1 to program pro-regenerative transcription. MAPKAPK2 mediated phosphorylation primed MKL1 for its interaction with E2F1. Of interest, phospholipase d2 promoted MKL1 nuclear accumulation and liver regeneration by catalyzing production of phosphatidic acid (PA). PA administration stimulated hepatocyte proliferation and enhanced survival in a MKL1-dependent manner in a pre-clinical model of liver failure. Finally, PA levels was detected to be positively correlated with expression of pro-regenerative genes and inversely correlated with liver injury in liver failure patients. In conclusion, our data reveal a novel mechanism whereby MKL1 contributes to liver regeneration. Screening for small-molecule compounds boosting MKL1 activity may be considered as a reasonable approach to treat acute liver failure.

20.
Mol Med Rep ; 29(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38186310

ABSTRACT

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the PLD2 western blotting data shown in Fig. 3A and the Transwell invasion assay data shown in Fig. 6 were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time. In view of the fact that certain of these data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 9: 503­508, 2014; 10.3892/mmr.2013.1814].

SELECTION OF CITATIONS
SEARCH DETAIL
...