Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; 951: 175392, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39122037

ABSTRACT

Phytoplankton growth in freshwater is often limited by the availability of phosphorus (P), and thorough understandings of P availability are essential to prevent algal blooms. However, the differences in bioavailability and utilization mechanisms of different P forms remain unclear, especially whether organophosphorus could be used as P sources. This study investigated the effects of 0.5, 1.0, and 2.0 mg/L P on Microcystis aeruginosa, including dissolved organic P (DOP) (1-hydroxyethane 1,1-diphosphonic acid) and dissolved inorganic P (DIP) (dipotassium phosphate). Compared with DIP, intracellular P content absorbed in DOP treatment was significantly lower. DOP was more conducive to the synthesis of soluble protein and the release of extracellular polymeric substances. Alkaline phosphatase activity was generally enhanced in response to DIP deficiency. Both DIP and DOP promoted carbon uptake to the same extent. DOP groups absorbed carbon to synthesize energy and proteins in response to stress, while DIP groups were mainly used carbon for growth. They all reduced the content of microcystin releasing into the aquatic environment and therefore reduced ecological risk caused by microcystin. Compared with DIP, the expressions of photosynthesis-related genes were significantly down-regulated in DOP group, while the expressions of nucleoside phosphate catabolism, P transporter, and amino acid biosynthesis and metabolism were significantly up-regulated in response to P deficiency environment and the stress of 1.0 mg/L DOP concentration. In summary, the bioavailability of different P forms on cyanobacteria is different, so it is not sufficient to only use total P for assessing environmental risk. P forms should also be considered for risk management of freshwater ecosystems.


Subject(s)
Microcystis , Phosphorus , Microcystis/metabolism , Microcystis/drug effects , Phosphorus/metabolism , Water Pollutants, Chemical , Eutrophication
2.
Ecotoxicol Environ Saf ; 281: 116668, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964058

ABSTRACT

The study of the fractions and distribution characteristics of organic phosphorus in the sediment of the water level fluctuating zone of Nansi Lake is conducive to revealing the transformation of phosphorus in the lake, and has important scientific significance for controlling the eutrophication of Nansi Lake. Based on the sediment of the water level fluctuation zone of Nansi Lake. The improved Hedley continuous grading extraction, ultraviolet-visible spectroscopy and three-dimensional fluorescence spectroscope were used to characterize the structural characteristics and stability of organic molecules in the sediment, and to reflect the differences in the structure and stability of organophosphate in the water level fluctuating zone. Principal component analysis (PCA), Redundancy analysis (RDA) and correlation heat map analysis were used to analyze the correlation between phosphorus and physicochemical index. The results showed that the alternation between wet-dry conditions was more favorable for the release of phosphorus from sediment, compared to continuous inundation conditions. Moreover, the higher the frequency of wet-dry alternations, the greater the release of phosphorus in different forms from the sediment. Wet-dry alternation resulted in a reduction of substituent on the aromatic rings of sediment DOM (dissolved organic matter), and the continuous drying would increase the molecular weight and humidification degree of DOM in the sediment. Correlation analysis showed that NaOH-Po content in sediment was significantly negatively correlated with TP, IP, OP and various organophosphorus forms, indicating a close transformation relationship between phosphorus forms in sediment. The results can provide a scientific basis for controlling the release of endogenous phosphorus and the risk of eutrophication in Nansi Lake.


Subject(s)
Environmental Monitoring , Eutrophication , Geologic Sediments , Lakes , Phosphorus , Water Pollutants, Chemical , Geologic Sediments/chemistry , Lakes/chemistry , Phosphorus/analysis , Phosphorus/chemistry , Water Pollutants, Chemical/analysis , China , Principal Component Analysis
3.
Bioresour Technol ; 401: 130760, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692376

ABSTRACT

This study aims to apply the Absorbing oxygen carriers (AOCs) to induce the migration and transformation of phosphorus compounds during the microwave thermal conversion of sludge so the hard-to-extract organic phosphorus (OP) can be converted to easy-to-extract inorganic phosphorus (IP) and be enriched onto the sludge char. The AOCs were recycled by screen separation from the IP-rich sludge char, with the latter being a renewable phosphorus source from sludge. The AOCs in this novel process enhanced the conversion efficiency of OP into non-apatite inorganic phosphorus (NAlP), which was further converted to apatite inorganic phosphorus (AP). Most phosphorus in the sludge char is presented in the form of orthophosphate.


Subject(s)
Microwaves , Oxygen , Phosphorus , Sewage , Sewage/chemistry , Oxygen/chemistry , Temperature
4.
Bioresour Technol ; 400: 130697, 2024 May.
Article in English | MEDLINE | ID: mdl-38614145

ABSTRACT

Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.


Subject(s)
Chlorella , Lipids , Phosphates , Wastewater , Wastewater/microbiology , Animals , Chlorella/metabolism , Chlorella/growth & development , Swine , Phosphates/metabolism , Lipids/biosynthesis , Phosphorus/metabolism , Lipid Metabolism , Solubility , Bacillus/metabolism
5.
Sci Total Environ ; 922: 171360, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38428613

ABSTRACT

Phosphorus (P) forms in soil are related to the P cycle and play an important role in maintaining the productivity and function of wetlands. Tidal hydrology is a key factor controlling soil P forms in estuary wetlands; however, the response of soil P forms to tidal hydrological changes remains unclear. A translocation experiment in the Yellow River Estuary wetland was conducted to study the effect of hydrological changes on P forms in the soil, in which freshwater marsh soils in the supratidal zone were translocated to salt marshes in different intertidal zones (up-high-tidal zone, high-tidal zone, and middle-tidal zone). Over a 23-month experiment, soil properties showed varying changes under different tidal hydrology conditions, with an increase in pH, salinity, Ca2+ and salt ions and a decrease in iron oxide and nutrients. Compared with the control, the content of different forms of phosphorus (total phosphorus, inorganic phosphorus, organic phosphorus, and calcium-bound phosphorus) in the cultured soil cores decreased from 3.3 % to 67.0 % in the intertidal zones, whereas the content of ferrum­aluminum-bound phosphorus increased from 58.9 % to 65.1 % at the end of the experiment. According to the partial least squares structural equation model, P forms are influenced by tidal hydrology mainly through the mediation of salt ions and nutrient levels. These results suggest that seawater intrusion promotes the release of P in the supratidal zone soil of estuary wetlands.

6.
Huan Jing Ke Xue ; 44(7): 3945-3956, 2023 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-37438293

ABSTRACT

The Waiqinhuai River is an important urban landscape flood channel in Nanjing, which has been seriously polluted by industrial and domestic sewage for many years. To fully understand the characteristics of Waiqinhuai river sediment pollution and provide a decision-making basis for dredging, the sediment interface microenvironment and nutrient content of river sediment collected from method-typical sections in the upper, middle, and lower reaches were determined, and the organic index and pollution index methods were used to evaluate the sediment pollution condition. We also simulated the effect of desilting on the reduction of endogenous release in sediment according to pollutant characteristics of vertical distribution. The results showed that the average dissolved oxygen concentrations at the upper, middle, and lower sediment interfaces were 4.62, 3.25, and 3.41 mg·L-1, respectively; the concentrations were exhausted at 4.4, 3.5, and 5.5 mm, respectively, which were typical characteristics of urban river pollution. The average contents of TN, TP, and OM in the surface sediment of the investigated reach were 1734 mg·kg-1, 1337 mg·kg-1, and 4.82%, respectively. The organic pollution index of TN and OM in the sediment was 0.48 on average, which was at the clean level, whereas the individual pollution index of TP was 3.18 on average, which was at the severe pollution level. The results of simulating the dredging depth of 30 cm showed that the release rates of SRP and iron divalent were reduced by 42%-82% and 88%-96%, respectively, whereas the release rate of ammonia nitrogen was increased. The results of DGT determination and phosphorus speciation analysis showed that the phosphorus activity of surface sediment decreased significantly after desilting, and DGT-P and Mobile-P decreased by 9%-11% and 1%-35%, respectively, compared with those in the control treatment. These results indicated that the sediment of Waiqinhuai River was seriously polluted by endogenous phosphorus, and desilting could reduce the release of endogenous phosphorus to a certain extent, which may be an important method for improving the water quality of the Waiqinhuai River.

7.
Sci Total Environ ; 881: 163384, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044344

ABSTRACT

Due to the phosphorus (P) deficiency in coking wastewater, sufficient P needs to be provided in the treatment process to maintain biotic activity. However, most of the dosed P sources are transferred to the sludge phase out of the chemical equilibrium. After an in-depth investigation of P morphology changes in coking wastewater treatment, it is found that above 71.6 % P applied to the full-scale O/H/H/O (oxic-hydrolytic & denitrification-hydrolytic & denitrification-oxic) process for coking wastewater treatment is ended up in the sludge phase of the aerobic reactors in the forms of non-apatite inorganic phosphorus (NAIP). Theoretical simulations suggest that the P forms precipitates such as FePO4·2H2O, AlPO4·2H2O, MnHPO4 at pH < 7, and Ca5(PO4)3OH at pH > 7. Microbial utilization of P in coking wastewater treatment is swayed by precipitation, pH and sludge retention time (SRT). By pyrolysis treatment of the waste sludge at 700 °C, phosphoric substances in coking sludge are enriched and converted into Ca5(PO4)3OH, Ca5(PO4)3Cl, Ca3(PO4)2, etc. with apatite phosphorus (AP) accounting for 65.7 % of total phosphorus. Moreover, the heavy metals in biochar were below the national standard limits for discharge. This study shows that hazardous waste (coking sludge) can be transformed into bioavailable products (P-rich biochar) through comprehensive management of the fate of P. Combined with the O/H/H/O process, the mechanisms of phosphorus consumption in coking wastewater treatment are revealed for the first time, which will facilitate a reduced consumption of phosphorus and provide a demonstration for other phosphorus-deficient industrial wastewater treatment.


Subject(s)
Coke , Wastewater , Sewage/chemistry , Phosphorus/chemistry
8.
J Environ Sci (China) ; 124: 50-60, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182158

ABSTRACT

Phosphorus (P) in sediments plays an important role in shallow lake ecosystems and has a major effect on the lake environment. The mobility and bioavailability of P primarily depend on the contents of different P forms, which in turn depend on the sedimentary environment. Here, sediment samples from Baiyangdian (BYD) lake were collected and measured by the Standards, Measurements, and Testing procedure and Phosphorus-31 nuclear magnetic resonance spectroscopy (31P NMR) to characterize different P forms and their relationships with sediment physicochemical properties. The P content in the sediments varied in different areas and had characteristics indicative of exogenous river input. Inorganic P (334-916 mg/kg) was the dominant form of P. The 31P NMR results demonstrated that orthophosphate monoesters (16-110 mg/kg), which may be a source of P when redox conditions change, was the dominant form of organic P (20-305 mg/kg). The distribution of P forms in each region varied greatly because of the effects of anthropogenic activities, and the regions affected by exogenous river input had a higher content of P and a higher risk of P release. Principal component analysis indicated that P bound to Fe, Al, and Mn oxides and hydroxides (NaOH-P) and organic P were mainly derived from industrial and agricultural pollution, respectively. Redundancy analysis indicated that increases in pH lead to the release of NaOH-P. Organic matter plays an important role in the organic P biogeochemical cycle, as it acts as a sink and source of organic P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Oxides/analysis , Phosphates/analysis , Phosphorus/analysis , Sodium Hydroxide , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 863: 160997, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36535477

ABSTRACT

Aquatic environment factors often influence and regulate the direction of phosphorus (P) flow at the sediment-water interface (SWI). High pH and low DO, common in eutrophic lakes, would induce large releases of P from sediment, and thus cause the negative effect on the efficiency of some P-passivators. Hence, the development of P passivators that could function over a wide range of pH condition and redox state in the overlaying water with reduced undesirable side effects is critical for the eutrophic lake remediation. In the present study, a calcium (Ca)/aluminum (Al) composite (CA) and a lanthanum (La)/Ca/Al composite (LCA) were prepared for P immobilization in lake sediments, using calcium and lanthanum coprecipitated with aluminum. CA and LCA were shown to have good P sorption performance at pH 4-11, particularly at pH 8-11. Furthermore, CA and LCA have an ability to correct the pH of water that deviates from neutral. The maximum P adsorption (Qmax) of sediment amended by 4 % CA and 4 % LCA increased by 83 % and 103 %, and their equilibrium P concentration (EPC0) decreased by 76 % and 88 %, respectively. Under various pH and DO conditions, the P concentration in overlying water was significantly decreased by CA and LCA amendment, and their addition could effectively counteract the P release from sediments induced by high pH and low DO. The mechanisms of P immobilization in amended sediments under various pH and DO levels are primarily the conversion of reactive P to stable P. The P immobilization performance of CA and LCA could cope with a wide range of pH and redox conditions in eutrophic lakes, and they would help to correct extreme pH values, thus they are expected to be a new generation of commercial P-passivators.

10.
Huan Jing Ke Xue ; 43(7): 3672-3681, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791550

ABSTRACT

In order to study the comprehensive effects of different types of dehydrating agents on the dewatering and solidification of dredged sediments, this study took the dredged sediments of Taihu Lake as the research object and selected microorganisms, polymeric iron aluminum salts, organic polymers, organic-inorganic composites, and aluminum salt microorganisms. These five types of composite dehydrating agents were used to conduct a three-month solidification test on the dredged sediment by means of geotechnical pipe bag solidification. The results of the study showed that the dehydration efficiency of organic polymers and organic-inorganic composite chemicals was better. After one month, the water content of sediment dropped to 61.78% and 63.26%, respectively, which then dropped to 40.56% and 32.16% after three months. Compared with that of the unsolidified sludge, the total nitrogen of the bottom sludge after solidification by the organic-inorganic composite agent was reduced by 74.82%, reaching 591 mg·kg-1, primarily due to the reduction in ammonia nitrogen. The solid sludge contained mainly aluminum-bound phosphorus, calcium-bound phosphorus, and iron-bound phosphorus. Among them, four groups (organic-inorganic composite) had the largest reduction in active phosphorus, with the lowest being 64.3 mg·kg-1. In addition, organic polymer agents had the best curing effect on heavy metals, the comprehensive ecological risk index of heavy metals was reduced by 51.3%, and the leaching toxicity concentration was far below the standard threshold. This study showed that organic polymers and organic-inorganic composite medicaments have a better effect on the dehydration and solidification of bottom sludge and thus have good application prospects.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Aluminum , Dehydration , Environmental Monitoring , Geologic Sediments/chemistry , Humans , Iron , Metals, Heavy/analysis , Nitrogen/analysis , Organic Chemicals , Phosphorus/analysis , Polymers , Sewage , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 843: 157022, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35772528

ABSTRACT

Biochar plays a key role in soil phosphorus (P) forms and distribution by affecting soil biochemical characteristics with relevant effects on the microbial community. In this study, we aimed to study the role of biochar in the variation of microbial community and P forms, and the relationships between soil properties, microbial community, and P forms. Here, we conducted a five-year field experiment NPK minerally fertilized with different application rates of biochar; control (B0, 0 kg ha-1 yr-1), low rate (B1500, 1500 kg ha-1 yr-1), medium rate (B3000, 3000 kg ha-1 yr-1), high rate (B6000, 6000 kg ha-1 yr-1). Our study showed that the highest increases in bacterial diversity and abundances coincided with increases in P forms typically retained in bacterial cells (ß-glucosidase, adenosine monophosphate-AMP, choline phosphate, and glucose-6 phosphate) and occurred at medium application rates. At low application rates, N2-fixing and P solubilizing and mineralizing bacteria (Sphingomonas, Haliangium, and Bradyrhizobium) increased. P forms retained in bacterial cells decreased at the highest application rates while the most stable forms such as DNA and inositol hexaphosphate (IHP), steadily increased. Stereoisomers of IHP derived from soil microbes (scyllo-IHP and D-chiro-IHP) accounted for the total IHP increases at high application rates. pH and available P and K and total P were highest at high biochar application rates whereas the proportion of organic P was reduced. The most relevant genus in such soils was Gemmatimonas, a polyphosphate accumulating and pyrogenic material degrading bacterium. Therefore, it appears that applying biochar at higher rates reduced the abundance of plant growth promoting bacteria while enhancing the abundance of P accumulating and pyrogenic degrading types.


Subject(s)
Phosphorus , Soil , Bacteria , Charcoal/chemistry , Fertilization , Soil/chemistry , Soil Microbiology
12.
Huan Jing Ke Xue ; 43(3): 1356-1364, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258199

ABSTRACT

The unique operation mode of the Three Gorges Dam has determined that the tributaries of the Three Gorges Reservoir (TGR) are significantly different from natural rivers in terms of hydrodynamics. The aim of this study was to explore the dynamic changes of internal phosphorus in tributary sediments under special water transfer mechanisms in the reservoir area. In 2016, we conducted samplings eight times (January, March-August, and October, once a month) in the Gaoyang Lake, which is located in the middle section of the Pengxi River, the largest tributary in the northern bank of the TGR. Samples of the adjacent overlying (AOL) water and sediment were collected, and a series of analyses were carried out on the flow velocity, water depth, and alkaline phosphatase activity (APA) of sediments. The results indicated that the waterbody types of the Gaoyang Lake can be divided into two hydrological states:deep lakes before May and June and typical rivers from May and June until the Three Gorges Dam re-flooding in autumn. The concentration of dissolved phosphorus in the AOL water during the lake state was 42.48% higher than that in the river state, which was beneficial for the weakly bounded phosphorus (NH4Cl-P) in the sediment surface to be in an adsorption-releasing equilibrium state. At the beginning of the spring algal bloom, with the increase in water temperature and APA in the sediments, the content of potential mobile phosphorus (PMP) in the sediments increased; however, the stable-form phosphorus content decreased, showing a tendency of transformation between these two forms of phosphorus, which may be one of the available phosphorus sources for algal blooms. The stable-form phosphorus content in the sediments of the Gaoyang Lake accounted for approximately 81.79% of the total phosphorus content, its coefficient of variation was relatively small (2.90%-4.21%), and there was a significant trend of accumulation over time (P<0.05). The study revealed the transformation of different phosphorus forms in sediments and their relationship with the state shift of the waterbodies, and provided a reference to understand the internal phosphorus cycle in other tributaries of the TGR area or other reservoir tributaries under similar situations.


Subject(s)
Lakes , Water Pollutants, Chemical , China , Environmental Monitoring , Eutrophication , Geologic Sediments , Phosphorus/analysis , Rivers , Water Pollutants, Chemical/analysis
13.
Article in English | MEDLINE | ID: mdl-35162417

ABSTRACT

Speeding up the promotion and application of bio-fuel ethanol was a national strategy in China, which in turn affected changes in the raw material planting structure. This study analyzed the distribution of nitrogen and phosphorus forms in water bodies and the soil of the typical maize and cassava fuel ethanol raw material planting areas. The results revealed that the maize planting area faced more serious TN and TP pollution. The river pollution was greatly affected by TN, TP, Ex-P and Fe/Al-P in soil, while soil TN and NO3--N were the main factors influencing its counterpart. Furthermore, the risk assessment of soil nitrogen and phosphorus loss was carried out based on planting structures of crops. We investigated whether the water quality indexes or soil nitrogen and phosphorus loss risk assessment results showed that the Yujiang River stayed significantly less polluted. It was proven that the cassava planting area was more suitable for vigorously developing fuel ethanol. As for the high-risk areas, ecological agriculture promoting and fertilizer controlling measures were suggested. Under the change of the fuel-ethanol policy, this study could provide scientific support for the assessment of the impact of the Chinese national fuel ethanol policy on the water environment of the raw material planting area.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Agriculture , Biofuels , China , Environmental Monitoring , Ethanol , Nitrogen/analysis , Phosphorus/analysis , Risk Assessment , Rivers/chemistry , Water Pollutants, Chemical/analysis
14.
J Contam Hydrol ; 247: 103978, 2022 05.
Article in English | MEDLINE | ID: mdl-35202965

ABSTRACT

River ice in the upper Yarlung Zangbo River is characterized by seasonal freezing-thawing cycles (SFTC). It is important to explore the effects of SFTC on phosphorus release and transformation from upstream surface sediments to protect the ecosystem of the Yarlung Zangbo River. The process and mechanism of phosphorus release and transformation in sediments following SFTC were investigated in a laboratory simulation experiment. The results showed that after freezing, sediment particles were broken, the specific surface area was increased by 14%, and the particle size was decreased by 43%, which resulted in weakened adsorption of phosphorus by sediments. Moreover, the destruction of organic matter (OM) on the sediment surface will release more ion adsorption sites and promote the release of phosphorus. The bioavailabilities of exchangeable phosphorus (Ex-P), aluminum phosphorus (Al-P) and iron phosphorus (Fe-P) increased by 60.09%, 86.86% and 31.86%, respectively, after freezing. Organic phosphorus (O-P) is used indirectly by organisms, and O-P content showed a significant correlation with OM content. Water affected the oxygen content in sediments during the freezing period, and continuous hypoxia promoted the release and transformation of Fe-P and Al-P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , China , Ecosystem , Environmental Monitoring , Freezing , Geologic Sediments , Phosphorus/analysis , Rivers , Seasons , Water Pollutants, Chemical/analysis
15.
J Environ Manage ; 302(Pt B): 114033, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34763188

ABSTRACT

Phosphorus was one of the nutrient limitations to vegetations in wetland ecosystem. In peatland, organic phosphorus is accumulated as vegetation residues in anaerobic conditions, affecting the contents of phosphorus pools for long time. It is unclear that different vegetations affect the contents of phosphorus and whether successions of vegetations could reflected by sedimentation of phosphorus forms. Phosphorus forms from six surface soils plots and four dominant vegetations in the north of the Great Khingan mountains were detected to investigate the differences of phosphorus forms of soil between different vegetations. Phosphorus forms and macrofossil were also detected in a 77-cm peat core (1-cm intervals) in TQ. A fingerprinting historical vegetations were reconstructed by phosphors forms to reflect successions of vegetations during 2200 cal yr BP in TQ area. The results showed that the main phosphorus forms in peatland were NaOH-Po and conc. HCl-Po. The percentages of inorganic phosphorus forms of trees were generally higher than other vegetations. Moss was more conducive for accumulation of organic phosphorus. NaHCO3-Pi, NaOH-Pi, conc. HCl-Po and Pi were selected into linear discrimination analysis. The vegetations reconstructed by phosphorus forms were strongly correlated with the pollen records of moss, herbs and shrubs, as well as with macrofossils in herbs. The fingerprinting of vegetations by phosphorus has potential geochemical reference to reflect the successions of vegetation in peatland.


Subject(s)
Phosphorus , Soil , Ecosystem , Trees , Wetlands
16.
Environ Sci Pollut Res Int ; 28(17): 21779-21788, 2021 May.
Article in English | MEDLINE | ID: mdl-33411272

ABSTRACT

Lanthanum-modified bentonite (LMB) is widely used for eutrophication control and has demonstrated good efficiency in some eutrophic lakes. However, the efficiency of LMB on eutrophication control in some eutrophic lakes, where the structure of food webs is mainly dominated by omni-benthivorous fish, remains ambiguous. Omni-benthivorous fish usually disturbs sediment and promotes the release of internal nutrients, the effect of which on the efficacy of LMB remains to be studied. Thus, a 30-day mesocosm experiment was conducted to determine whether omni-benthivorous fish disturbance and LMB would cause antagonistic responses. LMB significantly reduced dissolved P concentration in overlying water, converting mobile P to bound P in the surface layer of sediment in the absence of crucian carp (Carassius carassius). However, there were significantly negative interaction effects between LMB and crucian carp. Although LMB still effectively reduced the total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) concentrations of overlying water in the presence of crucian carp, it had limited efficacy on inhibiting the increased concentrations of suspended solids, particulate nutrients, and chlorophyll a (Chl a) due to crucian carp disturbance. Furthermore, the crucian carp disturbance also increased the risk of mobile P releasing from surface sediment, whether with or without LMB application. The results indicated that the efficacy of LMB was insufficient to offset the negative effect of omni-benthivorous fish disturbance on eutrophication control. Hence, the omni-benthivorous fish also need to be considered for eutrophication control in shallow eutrophic lakes. Some measures need to be taken to control the biomass of omni-benthivorous fish.


Subject(s)
Bentonite , Carps , Animals , Chlorophyll A , Eutrophication , Lakes , Lanthanum , Phosphorus
17.
J Environ Manage ; 278(Pt 2): 111468, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33152546

ABSTRACT

The aim of the study was to determine the mobility of phosphorus forms in raw organic waste and from the solid and liquid fractions of digestate. To achieve the purpose of this study, the components (including livestock manure, agricultural waste, food waste, sewage sludge) and their post fermentation products were considered. Subsequently, the effect of the fermentation process on the mobility of phosphorus forms in post-fermentation fractions (solid and liquid) was investigated. Then, the evaluation of the fertilising potential of digestate fractions was assessed. The available organic and inorganic phosphorus forms were determined according to the Standards in Measurements and Testing (SMT) Programme extraction protocol and according to the acid molybdate spectrophotometric method. It has been shown that phosphorus in digestates occurred mainly in inorganic forms with Fe, Al, Mn, Mg and Ca ions. Its proportion in relation to total phosphorus ranged from 80 to 90%. The lowest phosphorus content was found in digestate from the fermentation of agricultural and food waste (fruit and vegetables), while digestate from livestock manure and sewage sludge fermentation was rich in phosphorus. It was shown that the solid fractions of digestate represented from 30 to 70% of highly labile phosphorus (i.e. phosphorus with organic matter and in bonds with Al, Fe, Mg and Mn oxides and hydroxides) in relation to total phosphorus. However, the share of labile phosphorus forms in the liquid fraction of digestates was much higher and accounted for 80-90% of the total phosphorus.


Subject(s)
Phosphorus , Refuse Disposal , Anaerobiosis , Fermentation , Food , Sewage , Soil
18.
Huan Jing Ke Xue ; 41(12): 5400-5409, 2020 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-33374056

ABSTRACT

To clarify the endogenous pollution and release characteristics of the bottom sediment of Hengshan Reservoir in Yixing City, a typical section of the reservoir was sampled and analyzed. The research results show that the average concentrations of total nitrogen, total phosphorus, and organic matter in the surface sediments of Hengshan Reservoir are 2778 mg·kg-1, 899 mg·kg-1, and 3.1%, respectively. The endogenous pollution is serious, and the downstream sediments are highly polluted upstream of the reservoir. Phosphorus spectroscopic analysis results show that iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main bound phosphorus forms in the sediment, accounting for 28% and 39% of the total phosphorus, respectively. The average concentration of activated phosphorus in the sediment (combination of weakly adsorbed phosphorus, organic phosphorus, and iron phosphorus) is 255 mg·kg-1, accounting for 38% of the total phosphorus. The average release rates of nitrogen and phosphorus in sediments were 18.0 mg·(m2·d)-1 and 0.60 mg·(m2·d)-1. The correlation analysis results show that the organic matter content of the sediment is significantly correlated with the diffusion flux of phosphate, ammonia nitrogen, and ferrous iron (P<0.05), indicating that the mineralization of organic matter in the sediment may be the main release source of nitrogen and phosphorus in the sediment influencing factors.

19.
Huan Jing Ke Xue ; 41(3): 1276-1285, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608629

ABSTRACT

As the source of non-point pollution in the Three Gorges Reservoir Area, small watershed is a key control object in alleviating deterioration of water quality. In the Three Gorges Reservoir Area, the Shipanqiu small watershed with various land-use types was selected as the research object, and the water quantity and quality of the outlet section of the watershed were continuously monitored. We carried out analysis of the small watershed runoff loss and nitrogen and phosphorus pollutants with concentration, analyzed the morphology change characteristics of runoff erosion, calculated the small watershed of pollutant emission flux, and analyzed the nitrogen and phosphorus nutrient loss and main human and natural factors, especially in the Three Gorges Reservoir Area of agriculture where nonpoint source pollution research has important practical significance. The results showed that the rainfall in the watershed varied significantly with the seasons, and the rainfall was mainly distributed from April to June, which was the main output period of nitrogen and phosphorus loss in the small watershed, accounting for 58.94% and 67.60% of the total nitrogen and phosphorus load, respectively, in the whole year. The total annual runoff in the Shipanqiu small watershed was 8.02×104 m3, and the annual total nitrogen loss flux was 5.04 kg·hm-2, of which nitrate nitrogen (2.54 kg·hm-2) was the main part. The total phosphorus output was 0.534 kg·hm-2, and the soluble total phosphorus (0.422kg·hm-2) accounted for 79.00% of the total phosphorus flux. The loss flux of total nitrogen was 9.51 times that of total phosphorus, and the non-point source pollution risk of nitrogen was much greater than that of phosphorus. Therefore, for the Shipanqiu small watershed, it is especially important to prevent nitrogen loss in paddy fields when fertilization and rainfall coincide.

20.
Sci Total Environ ; 741: 140203, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32570068

ABSTRACT

Particulate phosphorus (P) dominates the total P (TP) content in lacustrine water columns and is a primary source of dissolved P in turbid eutrophic shallow lakes. However, the spatiotemporal variability of P compositions in suspended particulate matter (SPM) remains poorly understood. In this study, we applied chemical extraction and solution 31P nuclear magnetic resonance (31P NMR) to assess the seasonal variations of SPM P compositions from a shallow turbid lake (Lake Chaohu, China) and its main river tributaries. P fractionation analysis indicated that mobile P (the sum of labile-P, iron-bound P, and organic P) accounted for >60% of the TP in SPM and showed high spatiotemporal variability throughout the year-long field investigation. In most seasons, riverine SPM (in urban rivers or rivers with high flow) contained a higher mobile P content than that of the lake and was therefore a dominant source of lacustrine mobile particulate P. Solution 31P NMR identified five types of P compounds in SPM, with highest contributions from orthophosphate. Organic P components and concentrations showed high seasonal variability, and elevated p values occurred during the summer algal bloom. The correlation analysis between organic and inorganic P fractions inferred the possible degradation of organic P into reactive inorganic components of SPM. Consequently, biological or chemical processes would further transform the labile inorganic P into soluble reactive phosphorus, which is readily utilized by lacustrine algae. Our results suggest that the labile forms of P in SPM were highly dynamic and significantly contributed to the eutrophication of the turbid shallow lake.


Subject(s)
Lakes , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Eutrophication , Geologic Sediments , Particulate Matter/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL