Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Dental press j. orthod. (Impr.) ; 15(4): 103-116, jul.-ago. 2010. ilus, graf
Article in Portuguese | LILACS | ID: lil-555740

ABSTRACT

OBJETIVO: avaliar o sistema de forças gerado pela mola T utilizada para fechamento de espaços. MÉTODOS: por meio do método experimental fotoelástico, avaliou-se a mola T utilizada no fechamento de espaços com duas variações de pré-ativação em sua porção apical, sendo uma com 30º e a outra com 45º. As molas foram confeccionadas com fio retangular de titânio-molibdênio (TMA) de secção 0,017" x 0,025", centralizadas no espaço interbraquetes de 27mm e ativadas em 5,0mm, 2,5mm e posição neutra. Para melhor confiabilidade dos resultados, os testes foram repetidos em três modelos fotoelásticos igualmente reproduzidos e confeccionados pelo mesmo operador. Para compreensão dos resultados, as franjas fotoelásticas visualizadas no polariscópio foram fotografadas e analisadas qualitativamente. RESULTADOS: por meio da análise qualitativa da ordem de franjas no modelo fotoelástico, notou-se que, nas extremidades de retração e ancoragem, a mola T com 30º de ativação apical apresentou um acúmulo de energia discretamente maior para o sistema de forças liberado.


OBJECTIVE: Evaluate the force system produced by the T-spring used for space closure. METHODS: By means of the experimental photoelastic method, we evaluated the T-spring-used for space closure-with two different preactivations on its apical portion, i.e., one with 30º and one with 45º. The springs were fabricated with rectangular 0.017 X 0.025-in titanium-molybdenum alloy (TMA), centered in a 27.0 mm interbracket space and activated at 5.0 mm and 2.5 mm, and in a neutral position. For more reliable results, tests were repeated on three photoelastic models duplicated and prepared by the same operator. To better understand the results, the fringes seen in the polariscope were photographed and analyzed qualitatively. RESULTS: Through qualitative analysis of the fringe order in the photoelastic model it was noted that at the retraction and anchoring ends the T-spring with 30º apical activation showed a slightly greater accumulation of energy relative to the force system that was generated.


Subject(s)
Materials Testing , Orthodontic Space Closure , Orthodontic Wires , Orthodontics
2.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-654100

ABSTRACT

An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth and alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating curve increased from 0 to 15 to 30. 2. When the incisiors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of t he canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.


Subject(s)
Bicuspid , Incisor , Mechanics , Tooth , Torque
3.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-644787

ABSTRACT

This study was designed to investigate the stress distribution of alveolar bone in case of en masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows: 1. Central incisor: As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor: The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine: The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar: The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar: As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed at buccal root apexes. 6. Second molar: The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in en-masse retraction with lingual K-loop archwire, however vertical bowing effect was not. Rather, reverse vertical bowing effect was developed.


Subject(s)
Bicuspid , Crowns , Freezing , Incisor , Molar
4.
Article in Korean | WPRIM (Western Pacific) | ID: wpr-647480

ABSTRACT

Multiloop Edgewise Archwire(MEAW) is effective in relief the Curve of Spee in mandibular arch but up & down orthodontic elastics must be used with it. The purpose of this study was to analyse the effect of orthodontic elastics, like as up & down elastics, Class II elastics, and Class III elastics, and the effect of L loop in Multioop Edgewise Archwire. 1. Intrusive force of MEAW in anterior teeth was reduced and uprighting force in premolars was increased by up & down elastics. 2. Uprighting force was significantly increased with Class III elastics in multiple L loop arch wire. 3. The force of Class II elastics made molars tip mesially and Curve of Spee deep.


Subject(s)
Bicuspid , Molar , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL
...