ABSTRACT
Drug nanoencapsulation increases the availability, pharmacokinetics, and concentration efficiency for therapeutic regimes. Azobenzene light-responsive molecules experience a hydrophobicity change from a polar to an apolar tendency by trans-cis photoisomerization upon UV irradiation. Polymeric photoresponse nanoparticles (PPNPs) based on azobenzene compounds and biopolymers such as chitosan derivatives show prospects of photodelivering drugs into cells with accelerated kinetics, enhancing their therapeutic effect. PPNP biocompatibility studies detect the safe concentrations for their administration and reduce the chance of side effects, improving the effectiveness of a potential treatment. Here, we report on a PPNP biocompatibility evaluation of viability and the first genotoxicity study of azobenzene-based PPNPs. Cell line models from human ventricular cardiomyocytes (RL14), as well as mouse fibroblasts (NIH3T3) as proof of concept, were exposed to different concentrations of azobenzene-based PPNPs and their precursors to evaluate the consequences on mitochondrial metabolism (MTT assay), the number of viable cells (trypan blue exclusion test), and deoxyribonucleic acid (DNA) damage (comet assay). Lethal concentrations of 50 (LC50) of the PPNPs and their precursors were higher than the required drug release and synthesis concentrations. The PPNPs affected the cell membrane at concentrations higher than 2 mg/mL, and lower concentrations exhibited lesser damage to cellular genetic material. An azobenzene derivative functionalized with a biopolymer to assemble PPNPs demonstrated biocompatibility with the evaluated cell lines. The PPNPs encapsulated Nile red and dofetilide separately as model and antiarrhythmic drugs, respectively, and delivered upon UV irradiation, proving the phototriggered drug release concept. Biocompatible PPNPs are a promising technology for fast drug release with high cell interaction opening new opportunities for azobenzene biomedical applications.
ABSTRACT
Herein, we report the synthesis of a double hydrazone capable of undergoing photochemical E/Z isomerization through the imine double bonds. The bis(hydrazone) 1-E,E can be considered as a "two-arm" system in which the controlled movement of each arm is obtained by photo-modulation, making possible the appearance of two isolable metastable isomeric states 1-E,Z and 1-Z,Z. Such states are characterized by very specific structural, optical, and electrochemical properties. The latter allows the reversible return from either 1-E,Z or 1-Z,Z to the 1-E,E state. Our results are of great importance in the further development of molecular machines and photochemically controlled reactions by introducing for the first time double hydrazones as tunable photochemical switches.
ABSTRACT
The vertebrate retina contains typical photoreceptor (PR) cones and rods responsible for day/night vision, respectively, and intrinsically photosensitive retinal ganglion cells (ipRGCs) involved in the regulation of non-image-forming tasks. Rhodopsin/cone opsin photopigments in visual PRs or melanopsin (Opn4) in ipRGCs utilizes retinaldehyde as a chromophore. The retinoid regeneration process denominated as "visual cycle" involves the retinal pigment epithelium (RPE) or Müller glial cells. Opn4, on the contrary, has been characterized as a bi/tristable photopigment, in which a photon of one wavelength isomerizes 11-cis to all-trans retinal (Ral), with a second photon re-isomerizing it back. However, it is unknown how the chromophore is further metabolized in the inner retina. Nor is it yet clear whether an alternative secondary cycle occurs involving players such as the retinal G-protein-coupled receptor (RGR), a putative photoisomerase of unidentified inner retinal activity. Here, we investigated the role of RGR in retinoid photoisomerization in Opn4x (Xenopus ortholog) (+) RGC primary cultures free of RPE and other cells from chicken embryonic retinas. Opn4x (+) RGCs display significant photic responses by calcium fluorescent imaging and photoisomerize exogenous all-trans to 11-cis Ral and other retinoids. RGR was found to be expressed in developing retina and in primary cultures; when its expression was knocked down, the levels of 11-cis, all-trans Ral, and all-trans retinol in cultures exposed to light were significantly higher and those in all-trans retinyl esters lower than in dark controls. The results support a novel role for RGR in ipRGCs to modulate retinaldehyde levels in light, keeping the balance of inner retinal retinoid pools.
Subject(s)
Eye Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Retina/metabolism , Visual Pathways/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Chick Embryo , Chickens , Isomerism , Models, Biological , Retinal Ganglion Cells/metabolism , Retinaldehyde/metabolism , Retinoids/metabolismABSTRACT
Aroylhydrazones are compounds formed from the condensation of an acylhydrazine and an aldehyde. These compounds exhibit dynamic reversible properties such as isomerization photochemically and thermally activated, hydrazine substitution and coordination to metallic centers. All these together represent systems with multiple dynamics suitable for information storage devices and for the design of molecular photoswitches.
Las aroilhidrazonas son compuestos formados a partir de la condensación de una acilhidrazina y un aldehído. Estos compuestos presentan propiedades dinámicas reversibles tales como la isomerización activada térmica y fotoquímicamente, la sustitución de hidracina y la coordinación con centros metálicos. Todas estas representan sistemas con dinámicas múltiples apropiadas para dispositivos de almacenamiento de información y para el diseño de foto-interruptores moleculares.
Aroilhidrazonas são compostos formados a partir da condensação de uma acilhidrazina e um aldeído. Estes compostos apresentam propriedades reversíveis dinâmicas, como isomerização fotoquímica e termicamente ativada, substituição de hidrazina e coordenação de centros metálicos. Todos estes em conjunto representam sistemas com múl350 Revista Colombiana de Química, Volumen 41, nro. 3 de 2012 tiplas dinâmicas adequadas para dispositivos de armazenamento de informações e para o desenho de fotodispositivos moleculares.