Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Int J Biol Macromol ; 275(Pt 2): 133651, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972656

ABSTRACT

When PBAT used as film, stability deteriorates under sunlight exposure, the poor barrier and antibacterial properties are also limiting its application. In this work, lignin-ZnO nanoparticles were prepared by hydrothermal method, as additives to fill the PBAT matrix. In addition, PBAT-lignin-ZnO composite films were successfully prepared by melting and hot-pressing method. It is found that lignin could well dispersed the ZnO when its implantation into PBAT films, and lignin-ZnO not only maintaining tensile strength and thermal stability, but also could prompt PBAT's crystallinity. Especially, P-L-ZnO-2 composite films have good photostability. After 60 h aging, it can still maintain good molecular weight, chemical structure and mechanical properties. Besides, these composite films have improved hydrophobicity, barrier and antibacterial properties, could prevent mildew and significantly reduce the weight loss rate, color difference and hardness changes of strawberries during storage. This work provides a potential film material for outdoor applications and food packaging.

2.
Article in English | MEDLINE | ID: mdl-39017869

ABSTRACT

We have adopted a novel CeO2/Bi2MoO6/g-C3N4-based ternary nanocomposite that was synthesized via hydrothermal technique. The physiochemical characterization of as-prepared samples was examined through various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy TEM, photoluminescent spectra (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), and ultraviolet diffuse reflectance spectroscopy (UV-DRS) technique. In addition, the photocatalytic performance was carried out by degradation of Rhodamine B dye under visible light irradiation using this nanocatalyst. The ternary nanocomposite achieved 94% of the degradation efficiency within 100 min which is higher than the pristine and binary composites under the predetermined condition pH = 7, Rhodamine B dye = 5 mg/L, and catalyst concentration = 150 mg/L. The experimental synergetic effect of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite has been ascribed to the interfacial charge carrier migration between CeO2, Bi2MoO6, and g-C3N4. The optical absorption range of CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite was enhanced, and the band gap was reduced up to 2.2 eV. In addition, scavenger trapping experiment proves that the super oxide anions (O2-.) and photogenerated holes are the major active species. The reusability and stability experiment proved the CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite keeps good durability during the photocatalytic degradation process after the five successive cycles. Furthermore, based on the results, the charge carrier transfer photocatalytic mechanism was also discussed. This CeO2/Bi2MoO6/g-C3N4 ternary nanocomposite may offer the cheapest material and extend the great opportunity for clean and environmental remediation approach under the visible light irradiation.

3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892468

ABSTRACT

The biological activities and related mechanisms of curcumin, a major polyphenolic compound in turmeric, the rhizome of Curcuma longa, have been extensively investigated. Due to its poor solubility in water, the analysis of curcumin's biological activities is limited in most aqueous experimental systems. In the present study, the effects of polyvinyl alcohol (PVA), a dietary-compatible vehicle, on the solubility, stability, cellular uptake, and bioactivities of curcumin were investigated. Curcumin solubility was improved significantly by PVA; the color intensity of curcumin aqueous solution in the presence of PVA increased concentration-dependently with its peak shift to a shorter wavelength. Improved suspension stability and photostability of curcumin in an aqueous solution were also observed in the presence of PVA, even at 62.5 µg/mL. The scavenging activities of curcumin against DPPH, ABTS, AAPH radicals, and nitric oxide were enhanced significantly in the presence of PVA. PVA at 250 µg/mL also significantly enhanced the cytotoxic activity of curcumin against both HCT 116 colon cancer and INT 407 (HeLa-derived) embryonic intestinal cells by reducing the IC50 from 16 to 11 µM and 25 to 15 µM, respectively. PVA improved the cellular uptake of curcumin in a concentration-dependent manner in INT 407 cells; it increased the cellular levels more effectively at lower curcumin treatment concentrations. The present results indicate that PVA improves the solubility and stability of curcumin, and changes in these chemical behaviors of curcumin in aqueous systems by PVA could enhance the bioavailability and pharmacological efficacy of curcumin.


Subject(s)
Curcumin , Polyvinyl Alcohol , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Polyvinyl Alcohol/chemistry , Humans , Drug Stability , HCT116 Cells , HeLa Cells , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Cell Survival/drug effects
4.
Bioorg Chem ; 150: 107554, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38878753

ABSTRACT

Plasma membranes are vital biological structures, serving as protective barriers and participating in various cellular processes. In the field of super-resolution optical microscopy, stimulated emission depletion (STED) nanoscopy has emerged as a powerful method for investigating plasma membrane-related phenomena. However, many applications of STED microscopy are critically restricted by the limited availability of suitable fluorescent probes. This paper reports on the development of two amphiphilic membrane probes, SHE-2H and SHE-2N, specially designed for STED nanoscopy. SHE-2N, in particular, demonstrates quick and stable plasma membrane labelling with negligible intracellular redistribution. Both probes exhibit outstanding photostability and resolution improvement in STED nanoscopy, and are also suited for two-photon excitation microscopy. Furthermore, microscopy experiments and cytotoxicity tests revealed no noticeable cytotoxicity of probe SHE-2N at concentration used for fluorescence imaging. Spectral analysis and fluorescence lifetime measurements conducted on probe SHE-2N using giant unilamellar vesicles, revealed that emission spectra and fluorescence lifetimes exhibited minimal sensitivity to lipid composition variations. These novel probes significantly augment the arsenal of tools available for high-resolution plasma membrane research, enabling a more profound exploration of cellular processes and dynamics.

5.
Eur J Pharm Biopharm ; 201: 114387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944210

ABSTRACT

Monoclonal antibodies (mAbs) are an essential class of therapeutic proteins for the treatment of cancer, autoimmune and rare diseases. During their production, storage, and administration processes, these proteins encounter various stressors such as temperature fluctuations, vibrations, and light exposure, able to induce chemico-physical modifications to their structure. Viral inactivation is a key step in downstream processes, and it is achieved by titration of the mAb at low pH, followed by neutralization. The changes of the pH pose a significant risk of unfolding and subsequent aggregation to proteins, thereby affecting their manufacturing. This study aims to investigate whether a combined exposure to light during the viral inactivation process can further affect the structural integrity of Ipilimumab, a mAb primarily used in the treatment of metastatic melanoma. The biophysical and biochemical characterization of Ipilimumab revealed that pH variation is a considerable risk for its stability with irreversible unfolding at pH 2. The threshold for Ipilimumab denaturation lies between pH 2 and 3 and is correlated with the loss of the protein structural cooperativity, which is the most critical factor determining the protein refolding. Light has demonstrated to exacerbate some local and global effects making pH-induced exposed regions more vulnerable to structural and chemical changes. Therefore, specific precautions to real-life exposure to ambient light during the sterilization process of mAbs should be considered to avoid loss of the therapeutic activity and to increase the yield of production. Our findings underscore the critical role of pH optimization in preserving the structural integrity and therapeutic efficacy of mAbs. Moreover, a detailed conformational study on the structural modifications of Ipilimumab may improve the chemico-physical knowledge of this effective drug and suggest new production strategies for more stable products under some kind of stress conditions.


Subject(s)
Ipilimumab , Light , Hydrogen-Ion Concentration , Ipilimumab/administration & dosage , Ipilimumab/pharmacology , Protein Unfolding , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Protein Stability , Drug Stability , Protein Denaturation , Temperature , Humans , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/administration & dosage , Melanoma/drug therapy
6.
Sci Rep ; 14(1): 11882, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789582

ABSTRACT

Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels' fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing.


Subject(s)
Fluorescent Dyes , Polyethylene Glycols , Fluorescent Dyes/chemistry , Polyethylene Glycols/chemistry , Humans , Microscopy, Fluorescence/methods , Flow Cytometry
7.
Microb Cell Fact ; 23(1): 140, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760827

ABSTRACT

BACKGROUND: Quantum Dots (QDs) are fluorescent nanoparticles with exceptional optical and optoelectronic properties, finding widespread utility in diverse industrial applications. Presently, chemically synthesized QDs are employed in solar cells, bioimaging, and various technological domains. However, many applications demand QDs with prolonged lifespans under conditions of high-energy radiation. Over the past decade, microbial biosynthesis of nanomaterials has emerged as a sustainable and cost-effective process. In this context, the utilization of extremophile microorganisms for synthesizing QDs with unique properties has recently been reported. RESULTS: In this study, UV-resistant bacteria were isolated from one of the most extreme environments in Antarctica, Union Glacier at the Ellsworth Mountains. Bacterial isolates, identified through 16 S sequencing, belong to the genera Rhodococcus, Pseudarthrobacter, and Arthrobacter. Notably, Rhodococcus sp. (EXRC-4 A-4), Pseudarthrobacter sp. (RC-2-3), and Arthrobacter sp. (EH-1B-1) tolerate UV-C radiation doses ≥ 120 J/m². Isolated UV-resistant bacteria biosynthesized CdS QDs with fluorescence intensities 4 to 8 times higher than those biosynthesized by E. coli, a mesophilic organism tolerating low doses of UV radiation. Transmission electron microscopy (TEM) analysis determined QD sizes ranging from 6 to 23 nm, and Fourier-transform infrared (FTIR) analysis demonstrated the presence of biomolecules. QDs produced by UV-resistant Antarctic bacteria exhibit high photostability after exposure to UV-B radiation, particularly in comparison to those biosynthesized by E. coli. Interestingly, red fluorescence-emitting QDs biosynthesized by Rhodococcus sp. (EXRC-4 A-4) and Arthrobacter sp. (EH-1B-1) increased their fluorescence emission after irradiation. Analysis of methylene blue degradation after exposure to irradiated QDs biosynthesized by UV-resistant bacteria, indicates that the QDs transfer their electrons to O2 for the formation of reactive oxygen species (ROS) at different levels. CONCLUSIONS: UV-resistant Antarctic bacteria represent a novel alternative for the sustainable generation of nanostructures with increased radiation tolerance-two characteristics favoring their potential application in technologies requiring continuous exposure to high-energy radiation.


Subject(s)
Cadmium Compounds , Quantum Dots , Rhodococcus , Ultraviolet Rays , Quantum Dots/chemistry , Antarctic Regions , Cadmium Compounds/metabolism , Cadmium Compounds/chemistry , Rhodococcus/metabolism , Rhodococcus/genetics , Arthrobacter/metabolism , Arthrobacter/genetics , Sulfides/metabolism , Sulfides/chemistry
8.
J Drug Target ; : 1-23, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779708

ABSTRACT

N-doped carbon quantum dot (CQD) nanoparticle was prepared as a novel nanocarrier with excellent solubility, stability, and high quantum yield to overcome Indocyanine Green (ICG) obstacle in photodynamic therapy (PDT) with simultaneous cell imaging property. Cell culture study and In vivo assessments on the C57BL/6 mice containing melanoma cancer cells was performed. Results showed that CQD size after ICG loading slightly enhanced from 24.55 nm to 42.67 nm. Detection of reactive oxygen species (ROS) test demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease the survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG drug to 28% for ICG@CQD. Captured images by confocal microscopy approved more cellular uptake of ICG@CQD and more qualified cell imaging ability of the nanocarrier. In vivo assessments on the C57BL/6 mice containing melanoma cancer cells displayed the obvious inhibitory effect of the tumor growth for ICG@CQD in comparison to free ICG. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in the tumor region. In conclusion, ICG@CQD is proposed as an innovative nanocarrier with great potential for PDT and diagnosis.

9.
Photochem Photobiol Sci ; 23(6): 1179-1194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38771468

ABSTRACT

In this study, photostability and photodynamic antimicrobial performance of dye extracts from Hibiscus sabdariffa (HS) calyces, Sorghum bicolor (SB) leaf sheaths, Lawsonia inermis (LI) leaves and Curcuma longa (CL) roots were investigated in Acetate-HCl (AH) Buffer (pH 4.6), Tris Base-HCl (TBH) Buffer (pH 8.6), distilled water (dH2O), and Phosphate Buffer Saline (PBS, pH 7.2) using Bacillus subtilis as model for gram positive bacteria, Escherichia coli as model for gram negative bacteria, phage MS2 as model for non-envelope viruses and phage phi6 as model for envelope viruses including SARS CoV-2 which is the causative agent of COVID-19. Our results showed that the photostability of the dye extracts is in the decreasing order of LI > CL > SB > HS. The dye extract-HS is photostable in dH2O but bleaches in buffers-AH, TBH and PBS. The rate of bleaching is higher in AH compared to in TBH and PBS. The bleaching and buffers affected the photodynamic and non-photodynamic antimicrobial activity of the dye extracts. The photodynamic antibacterial activity of the dye extracts is in the decreasing order of CL > HS > LI > SB while the non-photodynamic antibacterial activity is in the decreasing order of LI > CL > HS > SB. The non-photodynamic antiviral activity pattern observed is the same as that of non-photodynamic antibacterial activity observed. However, the photodynamic antiviral activity of the dye extracts is in the decreasing order of CL > LI > HS > SB. Given their performance, the dye extracts maybe mostly suitable for environmental applications including fresh produce and food disinfection, sanitation of hands and contact surfaces where water can serve as diluent for the extracts and the microenvironment is free of salts.


Subject(s)
Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sorghum/chemistry , Hibiscus/chemistry , Curcuma/chemistry , Escherichia coli/drug effects , Levivirus/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Bacillus subtilis/drug effects , Disinfection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , SARS-CoV-2/drug effects , Microbial Sensitivity Tests , Coloring Agents/chemistry , Coloring Agents/pharmacology , COVID-19 , Plant Leaves/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Light
10.
Nano Lett ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747634

ABSTRACT

Structural parameters play a crucial role in determining the electromagnetic and thermal responses of gold nanoconstructs (GNCs) at near-infrared (NIR) wavelengths. Therefore, developing GNCs for reliable, high-contrast photoacoustic imaging has been focused on adjusting structural parameters to achieve robust NIR light absorption with photostability. In this study, we introduce an efficient photoacoustic imaging contrast agent: gold sphere chains (GSCs) consisting of plasmonically coupled gold nanospheres. The chain geometry results in enhanced photoacoustic signal generation originating from outstanding photothermal characteristics compared to traditional gold contrast agents, such as gold nanorods. Furthermore, the GSCs produce consistent photoacoustic signals at laser fluences within the limits set by the American National Standards Institute. The exceptional photoacoustic response of GSCs allows for high-contrast photoacoustic imaging over multiple imaging sessions. Finally, we demonstrate the utility of our GSCs for molecular photoacoustic cancer imaging, both in vitro and in vivo, through the integration of a tumor-targeting moiety.

11.
Curr Drug Discov Technol ; 21(1): e101023222025, 2024.
Article in English | MEDLINE | ID: mdl-38629170

ABSTRACT

Recently, it has been observed that newly developed drugs are lipophilic and have low aqueous solubility issues, which results in a lower dissolution rate and bioavailability of the drugs. To overcome these issues, the liquisolid technique, an innovative and advanced approach, comes into play. This technique involves the conversion of the drug into liquid form by dissolving it in non-volatile solvent and then converting the liquid medication into dry, free-flowing, and compressible form by the addition of carrier and coating material. It offers advantages like low cost of production, easy method of preparation, and compactable with thermo labile and hygroscopic drugs. It has been widely applied for BCS II drugs to enhance dissolution profile. Improving bioavailability, providing sustained release, minimizing pH influence on drug dissolution, and improving drug photostability are some of the other promising applications of this technology. This review article presents an overview of the liquisolid technique and its applications in formulation development.


Subject(s)
Biopharmaceutics , Chemistry, Pharmaceutical , Chemistry, Pharmaceutical/methods , Solubility , Drug Liberation , Water , Tablets
12.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611832

ABSTRACT

In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.

13.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612638

ABSTRACT

Antidepressant drugs play a crucial role in the treatment of mental health disorders, but their efficacy and safety can be compromised by drug degradation. Recent reports point to several drugs found in concentrations ranging from the limit of detection (LOD) to hundreds of ng/L in wastewater plants around the globe; hence, antidepressants can be considered emerging pollutants with potential consequences for human health and wellbeing. Understanding and implementing effective degradation strategies are essential not only to ensure the stability and potency of these medications but also for their safe disposal in line with current environment remediation goals. This review provides an overview of degradation pathways for amitriptyline, a typical tricyclic antidepressant drug, by exploring chemical routes such as oxidation, hydrolysis, and photodegradation. Connex issues such as stability-enhancing approaches through formulation and packaging considerations, regulatory guidelines, and quality control measures are also briefly noted. Specific case studies of amitriptyline degradation pathways forecast the future perspectives and challenges in this field, helping researchers and pharmaceutical manufacturers to provide guidelines for the most effective degradation pathways employed for minimal environmental impact.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Humans , Amitriptyline , Antidepressive Agents, Tricyclic/therapeutic use , Drug Packaging
14.
BMC Chem ; 18(1): 69, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600590

ABSTRACT

Cancer is a deadly illness with a convoluted pathogenesis. The most prevalent restrictions that frequently result in treatment failure for cancer chemotherapy include lack of selectivity, cytotoxicity, and multidrug resistance. Thus, considerable efforts have been focused in recent years on the establishment of a modernistic sector termed nano-oncology, which offers the option of employing nanoparticles (NPs) with the objective of detecting, targeting, and treating malignant disorders. NPs offer a focused approach compared to conventional anticancer methods, preventing negative side effects. In the present work, a successful synthetic process was used to create magnetic cobalt cores with an AgNPs shell to form bimetallic nanocomposites CoAg, then functionalized with Cis forming novel CoAg@Cis nanohybrid. The morphology and optical properties were determined by TEM, DLS, FTIRs and UV-vis spectroscopy, furthermore, anticancer effect of CoAg and CoAg@Cis nanohybrids were estimated using MTT assay on MCF7 and HCT cell lines. Our results showed that Co@Ag core shell is about 15 nm were formed with dark CoNPs core and AgNPs shell with less darkness than the core, moreover, CoAg@Cis has diameter about 25 nm which are bigger in size than Co@Ag core shell demonstrating the loading of Cis. It was observed that Cis, CoAg and CoAg@Cis induced a decline in cell survival and peaked at around 65%, 73%and 66% on MCF7 and 80%, 76%and 78% on HCT at 100 µg/ml respectively. Compared to Cis alone, CoAg and CoAg@Cis caused a significant decrease in cell viability. These findings suggest that the synthesized CoAg can be used as a powerful anticancer drug carrier.

15.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Article in English | MEDLINE | ID: mdl-38685223

ABSTRACT

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Subject(s)
Ivermectin , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/chemistry , Animals , Insecticides/pharmacology , Insecticides/chemistry , Particle Size , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry , Moths/drug effects , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Larva/drug effects , Emulsions
16.
Adv Healthc Mater ; : e2400791, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588220

ABSTRACT

Dyes with extended conjugate structures are the focus of extensive design and synthesis efforts, aiming to confer unique and improved optical and electronic properties. Such advancements render these dyes applicable across a wide spectrum of uses, ranging from second-window near-infrared (NIR-II) bioimaging to organic photovoltaics. Nevertheless, the inherent benefits of long conjugation are often accompanied by persistent challenges like aggregation, fluorescence quenching, absorption blueshift, and low stability and poor water solubility. Herein, a unique structural design strategy termed "homo-dyad with outer hydration layer" is introduced to address these inherent problems, tailored for the development of imaging probes exhibiting long absorption/emission wavelengths. This approach involves bringing two heptamethine cyanines together through a flexible linker, forming a homo-dyad structure, while strategically attaching four polyethylene glycol (PEG9) chains to the terminal heterocycles. This approach imparts excellent water solubility, biocompatibility, and enhanced chemical, photo-, and spectral stability for the dyes. Utilizing this strategy, a biomarker-activatable probe (HD-FL-4PEG9-N) for NIR-II fluorescent and 3D multispectral optoacoustic tomography imaging is developed, and its effectiveness in disease visualization. It can not only serve as an injectable probe for acute kidney injury imaging due to its high water solubility, but also a sprayable probe for imaging bacterial-infected wounds.

17.
Angew Chem Int Ed Engl ; 63(24): e202405081, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38600037

ABSTRACT

We report a family of donor-acceptor thermally activated delayed fluorescent (TADF) compounds based on derivatives of DMAC-TRZ, that are strongly photoreducing. Both Eox and thus E*ox could be tuned via substitution of the DMAC donor with a Hammett series of p-substituted phenyl moieties while Ered remained effectively constant. These compounds were assessed in the photoinduced dehalogenation of aryl halides, and analogues bearing electron withdrawing groups were found to produce the highest yields. Substrates of up to Ered=-2.72 V could be dehalogenated at low PC loading (1 mol %) and under air, conditions much milder than previously reported for this reaction. Spectroscopic and chemical studies demonstrate that all PCs, including literature reference PCs, photodegrade, and that it is these photodegradation products that are responsible for the reactivity.

18.
Nanotechnology ; 35(30)2024 May 09.
Article in English | MEDLINE | ID: mdl-38631329

ABSTRACT

Modified fluorescent nanoparticles continue to emerge as promising candidates for drug delivery, bioimaging, and labeling tools for various biomedical applications. The ability of nanomaterials to fluorescently label cells allow for the enhanced detection and understanding of diseases. Silica nanoparticles have a variety of unique properties that can be harnessed for many different applications, causing their increased popularity. In combination with an organic dye, fluorescent nanoparticles demonstrate a vast range of advantageous properties including long photostability, surface modification, and signal amplification, thus allowing ease of manipulation to best suit bioimaging purposes. In this study, the Stöber method with tetraethyl orthosilicate (TEOS) and a fluorescent dye sulfo-Cy5-amine was used to synthesize fluorescent silica nanoparticles. The fluorescence spectra, zeta potential, quantum yield, cytotoxicity, and photostability were evaluated. The increased intracellular uptake and photostability of the dye-silica nanoparticles show their potential for bioimaging.


Subject(s)
Fluorescent Dyes , Nanoparticles , Silicon Dioxide , Silicon Dioxide/chemistry , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Humans , Carbocyanines/chemistry , Cell Survival/drug effects , Optical Imaging/methods
19.
Adv Sci (Weinh) ; 11(24): e2309267, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639398

ABSTRACT

Single-molecule localization microscopy has proved promising to unravel the dynamics and molecular architecture of thin biological samples down to nanoscales. For applications in complex, thick biological tissues shifting single-particle emission wavelengths to the shortwave infrared (SWIR also called NIR II) region between 900 to 2100 nm, where biological tissues are more transparent is key. To date, mainly single-walled carbon nanotubes (SWCNTs) enable such applications, but they are inherently 1D objects. Here, 0D ultra-small luminescent gold nanoclusters (AuNCs, <3 nm) and ≈25 nm AuNC-loaded-polymeric particles that can be detected at the single-particle level in the SWIR are presented. Thanks to high brightness and excellent photostability, it is shown that the dynamics of the spherical polymeric particles can be followed at the single-particle level in solution at video rates for minutes. We compared single particle tracking of AuNC-loaded-polymeric particles with that of SWCNT diffusing in agarose gels demonstrating the specificity and complementarity of diffusion properties of these SWIR-emitting nano-objects when exploring a complex environment. This extends the library of photostable SWIR emitting nanomaterials to 0D nano-objects of variable size for single-molecule localization microscopy in the second biological window, opening unprecedented possibilities for mapping the structure and dynamics of complex biological systems.

20.
ACS Appl Mater Interfaces ; 16(14): 17946-17953, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38512303

ABSTRACT

Recently, lead halide perovskite nanocrystals (NCs) have shown great potential and have been widely studied in lighting and optoelectronic fields. However, the long-term stability of perovskite NCs under irradiation is an important challenge for their application in practice. Mn2+ dopants are mostly proposed as substitutes for the Pb site in perovskite NCs synthesized through the hot-injection method, with the aim of improving both photo- and thermal stability. In this work, we employed a facile ligand-assisted reprecipitate strategy to introduce Mn ions into perovskite lattice, and the results showed that Mn3+ instead of Mn2+, even with a very low level of incorporation of 0.18 mol % as interstitial dopant, can enhance the photostability of perovskite binder film under the ambient conditions without emission change, and the photoluminescent efficiency can retain 70% and be stable under intensive irradiation for 12 h. Besides, Mn3+ incorporation could prolong the photoluminescent decay time by passivating trap defects and modifying the distortion of the lattice, which underscores the significant potential for application as light emitters.

SELECTION OF CITATIONS
SEARCH DETAIL
...