Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
Plants (Basel) ; 13(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065466

ABSTRACT

The impacts of climate change are reaching unprecedented levels, heightening the risk of species loss and ecosystem service degradation. Wetlands, highly threatened ecosystems, serve vital ecological functions by capturing carbon, filtering water, and harbouring diverse wildlife. Coastal wetlands encounter many challenges, such as increased drought periods and escalating salinity levels, severely impacting plant biodiversity. Assessing how plants respond to various environmental stress factors is imperative for devising successful conservation strategies. In the present study, we examined three representative grass species found in various habitats within the Albufera Natural Park, close to the city of Valencia on the Spanish Mediterranean coast: Imperata cylindrica, Phragmites australis, and Saccharum ravennae. High salinity and water stress conditions were induced by subjecting the plants to irrigation with solutions containing 200, 400, 600, and 800 mM NaCl or withholding irrigation altogether to mimic coastal flooding and drought scenarios. The treatments were maintained until noticeable wilting of the plants occurred, at which point a range of stress biomarkers were determined, including photosynthetic pigments, ions, osmolytes, oxidative stress markers, and antioxidant metabolites, as well as antioxidant enzyme activities. Saccharum ravennae displayed the highest sensitivity to salt stress, whereas I. cylindrica appeared to be the most tolerant. The primary salinity tolerance mechanism observed in I. cylindrica and P. australis was a blockage of ion transport from the root zone to the aerial part, together with the salt-induced accumulation of proline and soluble sugars to high concentrations in the former. No significant effects of the water deficit treatment on the growth or biochemical parameters were observed for any of the analysed species. These findings offer valuable information for the effective management and conservation of coastal wetlands facing the challenges posed by climate change.

2.
Front Plant Sci ; 15: 1336639, 2024.
Article in English | MEDLINE | ID: mdl-38993939

ABSTRACT

Better crop stand establishment, a function of rapid and uniform seedling emergence, depends on the activities of germination-related enzymes, which is problematic when there is insufficient soil moisture. Different ways are in practice for counteracting this problem, including seed priming with different chemicals, which are considered helpful in obtaining better crop stand establishment to some extent through improved seed germination and seedling emergence. In this growth room experiment, caffeine was used as a seed priming agent to improve germination under moisture scarcity. Polyethylene glycol-8000 (18%) was added to Hoagland's nutrient solution to create drought stress (-0.65 MPa). The experiment was arranged in a completely randomized design (CRD), having four replications of each treatment. A newly developed wheat genotype SB-1 was used for the experimentation. Different doses of caffeine, i.e., 4 ppm, 8 ppm, 12 ppm, and 16 ppm, including no soaking and water soaking, were used as seed priming treatments. Water deficit caused oxidative stress and adversely affected the seed germination, seedling vigor, activities of germination enzymes, photosynthetic pigments, and antioxidative defense mechanism in roots and shoots of seedlings. Caffeine seed priming ameliorated the negative effects of water deficit on seed germination and seedling vigor, which was attributed to the reduction in lipid peroxidation and improvement in the activities of germination-related enzymes like glucosidase, amylase, and protease. Conclusively, seed priming with 12 ppm caffeine outperformed the other treatments and hence is recommended for better crop stand establishment under conditions of soil moisture deficit.

3.
BioTechnologia (Pozn) ; 105(2): 149-158, 2024.
Article in English | MEDLINE | ID: mdl-38988363

ABSTRACT

In recent years, with the increased production of oilseed rape, there has been a simultaneous enhancement in reports on pathogens causing diseases. Magnetic technology has been recognized as a new agricultural method aimed at improving health and crop production. In this work, the effect of magnetic fields was studied on the mycelial growth and conidia formation of Leptosphaeria maculans Gol125 and Leptosphaeria biglobosa KH36, the causal agents of Phoma stem cancer (blackleg) disease in rapeseed. In addition, seeds exposed to eight direct frequencies of magnetic fields were impregnated with pathogen suspension and grown under greenhouse conditions. The growth speed of both pathogen isolates decreased by 1-28% in GOL125 and 6-46% in KH36 over time in cultures exposed to magnetic fields. However, the number of conidia increased significantly under magnetic field exposure, reaching 5.4 × 107 and 7.7 × 107 SFU/ml in KH36 and GOL125 isolates, respectively. Furthermore, in greenhouse conditions, an increase in photosynthetic pigment levels was observed in almost all of the magnetic field-treated plants. In addition, disease incidence decreased by around 6% in the magnetic field-treated plants. This study represents the first evaluation of magnetic technology in controlling plant diseases. The use of magnetic fields may present a viable strategy for a sustainable production system; however, it requires further advanced studies to improve plant health and productivity.

4.
Ecotoxicol Environ Saf ; 282: 116731, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029219

ABSTRACT

The prevalence of inorganic pollutants in the environment, including heavy metals (HMs), necessitates a sustainable and cost-effective solution to mitigate their impacts on the environment and living organisms. The present research aimed to assess the phytoextraction capability of spinach (Spinach oleracea L.), under the combined effects of ascorbic acid (AA) and microwave (MW) irradiation amendments, cultivated using surgical processing wastewater. In a preliminary study, spinach seeds were exposed to MW radiations at 2.45 GHz for different durations (15, 30, 45, 60, and 90 seconds). Maximum germination was observed after the 30 seconds of radiation exposure. Healthy spinach seeds treated with MW radiations for 30 s were cultivated in the sand for two weeks, after which juvenile plants were transferred to a hydroponic system. Surgical industry wastewater in different concentrations (25 %, 50 %, 75 %, 100 %) and AA (10 mM) were provided to both MW-treated and untreated plants. The results revealed that MW-treatment significantly enhanced the plant growth, biomass, antioxidant enzyme activities and photosynthetic pigments, while untreated plants exhibited increased reactive oxygen species (ROS) and electrolyte leakage (EL) compared with their controls. The addition of AA to both MW-treated and untreated plants improved their antioxidative defense capacity under HMs-induced stress. MW-treated spinach plants, under AA application, demonstrated relatively higher concentrations and accumulation of HMs including lead (Pb), cadmium (Cd) and nickel (Ni). Specifically, MW-treated plants with AA amendment showed a significant increase in Pb concentration by 188 % in leaves, Cd by 98 %, and Ni by 102 % in roots. Additionally, the accumulation of Ni increased by 174 % in leaves, Cd by 168 % in roots, and Pb by 185 % in the stem of spinach plant tissues compared to MW-untreated plants. These findings suggested that combining AA with MW irradiation of seeds could be a beneficial strategy for increasing the phytoextraction of HMs from wastewater and improving overall plant health undergoing HMs stress.

5.
Plants (Basel) ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891242

ABSTRACT

The need for the increasing geographical spread of fire blight (FB) affecting fruit crops to be addressed led to large-scale chemicalization of the environmental matrices and reduction of plant productivity. The current study aimed to assess the effects of novel biopreparations at different exposure durations on photosynthetic pigment content and antioxidant enzyme activity in leaves of apple and pear varieties with varying levels of resistance to FB. Biopreparations were formulated from a cultural broth containing Lacticaseibacillus paracasei M12 or Bacillus amyloliquefaciens MB40 isolated from apple trees' phyllosphere. Aseptic leaves from blight-resistant (endemic Malus sieversii cv. KG10), moderately resistant (Pyrus pyraster cv. Wild), and susceptible (endangered Malus domestica cv. Aport and Pyrus communis cv. Shygys) varieties were employed. The impact of biopreparations on fruit crop antioxidant systems and photosynthetic apparatuses was investigated in vitro. Study results indicated that FB-resistant varieties exhibit enhanced adaptability and oxidative stress resistance compared to susceptible ones. Plant response to biopreparations varied based on the plant's initial FB sensitivity and exposure duration. Indeed, biopreparations improved the adaptive response of the assimilation apparatus, protein synthesis, and catalase and superoxide dismutase activity in susceptible varieties, suggesting that biopreparations have the potential for future commercialization to manage FB in fruit crops.

6.
Plants (Basel) ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891377

ABSTRACT

Salicylic acid (SA) plays a crucial role in regulating plant growth and development and mitigating the negative effects of various stresses, including salinity. In this study, the effect of 50 µM SA on the physiological and biochemical parameters of wheat plants under normal and stress conditions was investigated. The results showed that on the 28th day of the growing season, SA pretreatment continued to stimulate the growth of wheat plants. This was evident through an increase in shoot length and leaf area, with the regulation of leaf blade width playing a significant role in this effect. Additionally, SA improved photosynthesis by increasing the content of chlorophyll a (Chl a) and carotenoids (Car), resulting in an increased TAP (total amount of pigments) index in the leaves. Furthermore, SA treatment led to a balanced increase in the levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) in the leaves, accompanied by a slight but significant accumulation of ascorbic acid (ASA), hydrogen peroxide (H2O2), proline, and the activation of glutathione reductase (GR) and ascorbate peroxidase (APX). Exposure to salt stress for 28 days resulted in a reduction in length and leaf area, photosynthetic pigments, and GSH and ASA content in wheat leaves. It also led to the accumulation of H2O2 and proline and significant activation of GR and APX. However, SA pretreatment exhibited a long-term growth-stimulating and protective effect under stress conditions. It significantly mitigated the negative impacts of salinity on leaf area, photosynthetic pigments, proline accumulation, lipid peroxidation, and H2O2. Furthermore, SA reduced the salinity-induced depletion of GSH and ASA levels, which was associated with the modulation of GR and APX activities. In small-scale field experiments conducted under natural growing conditions, pre-sowing seed treatment with 50 µM SA improved the main indicators of grain yield and increased the content of essential amino acids in wheat grains. Thus, SA pretreatment can be considered an effective approach for providing prolonged protection to wheat plants under salinity and improving grain yield and quality.

7.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931071

ABSTRACT

The escalating global temperatures associated with climate change are detrimental to plant growth and development, leading to significant reductions in crop yields worldwide. Our research demonstrates that salicylic acid (SA), a phytohormone known for its growth-promoting properties, is crucial in enhancing heat tolerance in cotton (Gossypium hirsutum). This enhancement is achieved through modifications in various biochemical, physiological, and growth parameters. Under heat stress, cotton plants typically show significant growth disturbances, including leaf wilting, stunted growth, and reduced biomass. However, priming cotton plants with 1 mM SA significantly mitigated these adverse effects, evidenced by increases in shoot dry mass, leaf-water content, and chlorophyll concentrations in the heat-stressed plants. Heat stress also prompted an increase in hydrogen peroxide levels-a key reactive oxygen species-resulting in heightened electrolyte leakage and elevated malondialdehyde concentrations, which indicate severe impacts on cellular membrane integrity and oxidative stress. Remarkably, SA treatment significantly reduced these oxidative stresses by enhancing the activities of critical antioxidant enzymes, such as catalase, glutathione S-transferase, and ascorbate peroxidase. Additionally, the elevated levels of total soluble sugars in SA-treated plants enhanced osmotic regulation under heat stress. Overall, our findings reveal that SA-triggered protective mechanisms not only preserve photosynthetic pigments but also ameliorate oxidative stress and boost plant resilience in the face of elevated temperatures. In conclusion, the application of 1 mM SA is highly effective in enhancing heat tolerance in cotton and is recommended for field trials before being commercially used to improve crop resilience under increasing global temperatures.

8.
Plant Physiol Biochem ; 212: 108778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838570

ABSTRACT

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.


Subject(s)
Chlorophyll , Phenotype , Protochlorophyllide , Protoporphyrins , Chlorophyll/metabolism , Protochlorophyllide/metabolism , Protoporphyrins/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Photosynthesis
9.
Ecosystems ; 27(4): 577-591, 2024.
Article in English | MEDLINE | ID: mdl-38899133

ABSTRACT

Discerning ecosystem change and food web dynamics underlying anthropogenic eutrophication and the introduction of non-native species is necessary for ensuring the long-term sustainability of fisheries and lake biodiversity. Previous studies of eutrophication in Lake Victoria, eastern Africa, have focused on the loss of endemic fish biodiversity over the past several decades, but changes in the plankton communities over this same time remain unclear. To fill this gap, we examined sediment cores from a eutrophic embayment, Mwanza Gulf, to determine the timing and magnitude of changes in the phytoplankton and zooplankton assemblages over the past century. Biogeochemical proxies indicate nutrient enrichment began around ~ 1920 CE and led to rapid increases in primary production, and our analysis of photosynthetic pigments revealed three zones: pre-eutrophication (prior to 1920 CE), onset of eutrophication with increases in all pigments (1920-1990 CE), and sustained eutrophication with cyanobacterial dominance (1990 CE-present). Cladoceran remains indicate an abrupt decline in biomass in ~ 1960 CE, in response to the cumulative effects of eutrophication and lake-level rise, preceding the collapse of haplochromine cichlids in the 1980s. Alona and Chydorus, typically benthic littoral taxa, have remained at relatively low abundances since the 1960s, whereas the abundance of Bosmina, typically a planktonic taxon, increased in the 1990s concurrently with the biomass recovery of haplochromine cichlid fishes. Overall, our results demonstrate substantial changes over the past century in the biomass structure and taxonomic composition of Mwanza Gulf phytoplankton and zooplankton communities, providing a historical food web perspective that can help understand the recent changes and inform future resource management decisions in the Lake Victoria ecosystem. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-024-00908-x.

10.
Sci Rep ; 14(1): 12897, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839939

ABSTRACT

An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.


Subject(s)
Antioxidants , Nitrogen , Triticum , Zinc , Triticum/growth & development , Triticum/metabolism , Zinc/metabolism , Nitrogen/metabolism , Antioxidants/metabolism , Soil/chemistry , Photosynthesis , Biomass
11.
Plants (Basel) ; 13(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794416

ABSTRACT

The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action.

12.
Plants (Basel) ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732476

ABSTRACT

One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.

13.
Mar Pollut Bull ; 203: 116411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733890

ABSTRACT

This study delves into how two ecotypes of diatom affect the Pyropia haitanensis, a valuable and commercial red macroalga. We co-cultivated P. haitanensis with a planktonic diatom Skeletonema costatum and benthic diatom Navicula climacospheniae. The results showed that benthic diatom significantly hindered P. haitanensis growth, while planktonic ones had no major impact. The macroalga restrained planktonic diatom growth but did not affect benthic diatom. Photosynthetic pigments of macroalga, except chlorophyll, were higher, indicating stress when exposed to diatoms. Microscopic images revealed dense benthic diatom attachment, potentially stressing thalli due to limited light and EPS secretion. Total carbohydrate slightly decreased in both diatom treatments, while total protein significantly decreased with increasing benthic diatom densities. In summary, benthic diatom notably influenced P. haitanensis growth, pigments, and total protein levels. This study sheds light on the interaction between microalgal ecotypes and commercial macroalga P. haitanensis, which is crucial for its economic significance.


Subject(s)
Diatoms , Rhodophyta , Diatoms/growth & development , Rhodophyta/growth & development , Rhodophyta/physiology , Seaweed , Chlorophyll/metabolism , Plankton , Photosynthesis/drug effects
14.
J Environ Manage ; 358: 120858, 2024 May.
Article in English | MEDLINE | ID: mdl-38614005

ABSTRACT

This review presents a comprehensive analysis of the ecological implications of metallic nanoparticles (MNPs) on photosynthetic organisms, particularly plants and algae. We delve into the toxicological impacts of various MNPs, including gold, silver, copper-based, zinc oxide, and titanium dioxide nanoparticles, elucidating their effects on the growth and health of these organisms. The article also summarizes the toxicity mechanisms of these nanoparticles in plants and algae from previous research, providing insight into the cellular and molecular interactions that underpin these effects. Furthermore, it discusses the reciprocal interactions between different types of MNPs, their combined effects with other metal contaminants, and compares the toxicity between MNPs with their counterpart. This review highlights the urgent need for a deeper understanding of the environmental impact, considering their escalating use and the potential risks they pose to ecological systems, especially in the context of photosynthetic organisms that are vital to ecosystem health and stability.


Subject(s)
Metal Nanoparticles , Photosynthesis , Metal Nanoparticles/toxicity , Photosynthesis/drug effects , Ecosystem , Plants/drug effects , Ecology , Silver/toxicity
15.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612494

ABSTRACT

Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.


Subject(s)
Brassica , Coumaric Acids , Humans , Animals , Mice , Temperature , Chromatography, Liquid , Hydrogen Peroxide , Tandem Mass Spectrometry
16.
Chemosphere ; 357: 142061, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642775

ABSTRACT

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Subject(s)
Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Polystyrenes , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Herbicides/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Antioxidants/metabolism , Toxicity Tests, Acute , Photosynthesis/drug effects
17.
Cells ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667301

ABSTRACT

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Subject(s)
Antioxidants , Cadmium , Chlorophyta , Zeatin , Cadmium/toxicity , Zeatin/metabolism , Zeatin/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Chlorophyta/drug effects , Chlorophyta/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Phytochelatins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
18.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575856

ABSTRACT

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Subject(s)
Antioxidants , Ascorbic Acid , Antioxidants/metabolism , Chlorophyll A , Lipid Peroxidation , Pisum sativum , Reactive Oxygen Species , Salt Stress , Sodium Chloride/pharmacology
19.
Plants (Basel) ; 13(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38592854

ABSTRACT

Due to the increasing presence of industrial hemp (Cannabis sativa L.) and its multiple possibilities of use, the influence of different light and several biopreparations based on beneficial fungi and bacteria on hemp's morphological and physiological properties were examined. Different biopreparations and their combinations were inoculated on hemp seed and/or substrate and grown under blue and white light. A completely randomized block design was conducted in four replications within 30 days. For biopreparation treatment, vesicular arbuscular mycorrhiza (VAM) in combination with Azotobacter chroococum and Trichoderma spp. were inoculated only on seed or both on seed and in the substrate. Generally, the highest morphological parameters (stem, root and plant length) were recorded on plants in white light and on treatment with applied Trichoderma spp., both on seed and substrate. Blue light negatively affected biopreparation treatments, resulting in lower values of all morphological parameters compared to control. Leaves pigments were higher under blue light, as compared to the white light. At the same time, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), flavonoids, total flavanol content and phenolic acids were not influenced by light type. Biopreparation treatments did not significantly influence the leaves' pigments content (Chl a, Chl b and Car), nor the phenolic and flavanol content.

20.
J Plant Res ; 137(3): 521-543, 2024 May.
Article in English | MEDLINE | ID: mdl-38460108

ABSTRACT

The present study examined the regulatory mechanism of hydrogen sulfide (H2S) and nitric oxide (NO) in nickel (Ni) stressed cyanobacteria viz., Nostoc muscorum and Anabaena sp. by analyzing growth, photosynthetic pigments, biochemical components (protein and carbohydrate), exopolysaccharides (EPS), inorganic nitrogen content, and activity of enzymes comprised in nitrogen metabolism and Ni accumulation. The 1 µM Ni substantially diminished growth by 18% and 22% in N. muscorum and Anabaena sp. respectively, along with declining the pigment contents (Chl a/Car ratio and phycobiliproteins), and biochemical components. It also exerted negative impacts on inorganic uptake of nitrate and nitrite contents; nitrate reductase and nitrite reductase; and ammonium assimilating enzymes (glutamine synthetase, glutamate synthase, and glutamate dehydrogenase exhibited a reverse trend) activities. Nonetheless, the adverse impact of Ni can be mitigated through the exogenous supplementation of NaHS [sodium hydrosulfide (8 µM); H2S donor] and SNP [sodium nitroprusside (10 µM); NO donor] which showed substantial improvement on growth, pigments, nitrogen metabolism, and EPS layer and noticeably occurred as a consequence of a substantial reduction in Ni accumulation content which minimized the toxicity effects. The accumulation of Ni on both the cyanobacterial cell surface (EPS layer) are confirmed by the SEM-EDX analysis. Further, the addition of NO scavenger (PTIO; 20 µM) and inhibitor of NO (L-NAME; 100 µM); and H2S scavenger (HT; 20 µM) and H2S inhibitor (PAG; 50 µM) reversed the positive responses of H2S and NO and damages were more prominent under Ni stress thereby, suggesting the downstream signaling of H2S on NO-mediated alleviation. Thus, this study concludes the crosstalk mechanism of H2S and NO in the mitigation of Ni-induced toxicity in rice field cyanobacteria.


Subject(s)
Hydrogen Sulfide , Nickel , Nitric Oxide , Nitrogen , Oryza , Nitric Oxide/metabolism , Nickel/metabolism , Hydrogen Sulfide/metabolism , Nitrogen/metabolism , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Nostoc muscorum/metabolism , Polysaccharides, Bacterial/metabolism , Anabaena/metabolism , Anabaena/drug effects , Anabaena/growth & development , Stress, Physiological , Nitroprusside/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...