Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters











Publication year range
1.
Adv Mater ; : e2411906, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39285827

ABSTRACT

Manipulating intracellular biological processes and organelles has emerged as a pivotal strategy to influence cellular physiological functions. Mitochondria, recognized as the powerhouse of cells, play a crucial role in tumorigenesis and progression. Inspired by the Nature's tyrosinase-catalyzed melanin formation within melanoma cells, here an approach is developed using a polysaccharide dually-functionalized with tyrosine and triphenylphosphine (TPP) for targeted mitochondria cross-linking in melanoma cells. This technique intricately weaves melanin nets within the cells, serving as a tether for the mitochondria and effectively decelerating tumor metabolism through nanoparticle-net transformation. Tyrosinase acts as the "needle", while the functionalized polysaccharide serves as the "string" successfully constructing nets within the cell. Furthermore, the tyrosinase-catalyzed cross-linking of tyrosine not only facilitates the production of artificial melanin but also enhances the photothermal conversion efficiency of melanoma cells, leading to decrease of the tumor growth. This study unveils a non-drug method for regulating organelle physiological activity and introduces photothermal treatment. This work not only sheds light on the manipulation of cellular functions but also holds promise for advancing cancer therapeutic strategies.

2.
ACS Appl Mater Interfaces ; 16(33): 43212-43226, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106039

ABSTRACT

Reactive oxygen species (ROS) hold great potential in tumor pyroptosis therapy, yet they are still limited by short species lifespan and limited diffusion distance. Inducing cells into a metastable state and then applying external energy can effectively trigger pyroptosis, but systemic sensitization still faces challenges, such as limited ROS content, rapid decay, and short treatment windows. Herein, a nanohybrid-based redox homeostasis-perturbator system was designed that synergistically induce early lysosomal escape, autophagy inhibition, and redox perturbation functions to effectively sensitize cells to address these challenges. Specifically, weakly alkaline layered double hydroxide nanosheets (LDH NSs) with pH-responsive degradation properties enabled early lysosomal escape within 4 h, releasing poly(L-dopa) nanoparticles for inducing catechol-quinone redox cycling in the cytoplasm. The intracellular ROS levels were systematically rebounded by 3-4 times in tumor cells and lasted for over 4 h. Subsequently induced lysosomal stress and Ca2+ signaling activation resulted in severe mitochondrial dysfunction, as well as a perilous metastable state. Thereby, sequential near-infrared light was applied to trigger amplified stress through a local photothermal conversion. This led to sufficiently high levels of cleaved caspase-1 and GSDMD activation (2.5-2.8-fold increment) and subsequent pyroptosis response. In addition, OH- released by LDH elevated pH to alleviate the limitation of glutathione depletion by quinones at acidic pH and inhibit protective autophagy. Largely secreted inflammatory factors (2.5-5.6-fold increment), efficient maturation of dendritic cells, and further immune stimulation were boosted for tumor inhibition as a consequence. This study offers a new paradigm and insights into the synergy of internal systematic cellular sensitization and sequential external energy treatment to achieve tumor suppression through pyroptosis.


Subject(s)
Homeostasis , Lysosomes , Oxidation-Reduction , Pyroptosis , Pyroptosis/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Humans , Animals , Mice , Homeostasis/drug effects , Homeostasis/radiation effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photothermal Therapy , Hydroxides/chemistry , Hydroxides/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/metabolism
3.
Colloids Surf B Biointerfaces ; 242: 114094, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39047641

ABSTRACT

Reactive oxygen species (ROS) provide a promising way to fight bacterial infection and meet the persistent challenge of antibiotic resistance. Nanoenzyme mimics natural enzyme and becomes an effective regulator of ROS level. In this study, NH2-MIL-88B with high specific surface area was selected as the core, and the covalent organic skeleton material TP-TA COF was wrapped by "sequential growth" technology. Subsequently, through the second hydrothermal treatment, the inorganic material CuS with excellent photothermal performance was integrated into the outer layer, and the NH2-MIL-88B@TP-TA@CuSX composite nanoenzyme was synthesized. Different from the traditional nano-enzyme, NH2-MIL-88B@TP-TA@CuSX nano-enzyme still has good catalytic effect under neutral conditions (pH=7). In addition, NH2-MIL-88B@TP-TA@CuSX has good near infrared (NIR) absorption rate and high photothermal conversion efficiency (PTCE is 48.7 %), which can be used for photothermal treatment (PTT) of bacteria. Mild photothermal effect can further enhance the enzyme-like catalytic activity of NH2-MIL-88B@TP-TA@CuSX, so that H2O2 can be more efficiently catalyzed to produce a large number of ROS. The experimental results in vitro show that NH2-MIL-88B@TP-TA@CuSX can effectively kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in the presence of laser irradiation and H2O2.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Microbial Sensitivity Tests , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catalysis , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Photothermal Therapy , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/chemistry , Particle Size , Surface Properties
4.
Talanta ; 278: 126381, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38936108

ABSTRACT

Circulating tumor cell (CTC) in the blood is the main cause of cancer metastasis for death in cancer patients. It is extremely important for cancer diagnosis at an early stage and treatment to simultaneously detect and kill the CTCs. In this work, a new hybridized nanolayer, namely gold nanoparticle/gold nanorods@ Polydopamine (AuNPs/AuNRs@PDA), was coated on the Ω-shaped fiber optics (Ω-FO) for localized surface plasmonic resonance (LSPR) to perform tumor cell sensing and photothermal treatment (PTT). The PDA nanolayer was formed on a bare fiber optic through the self-polymerization of dopamine under mild conditions. The AuNRs and AuNPs were absorbed on the surface of the PDA nanolayer to form a hybridized nanolayer. The hybridized nanolayer-modified Ω-FO LSPR exhibited a high refractive index sensitivity (RIS) of 37.59 (a.u/RIU) and photothermal conversion efficiency. After being modified with the recognition element of aptamer, the Ω-FO LSPR was used to develop a sensitive and specifical tumor cell sensing. Under the irradiation of near-infrared light (NIR) laser, the Ω-FO LSPR can kill the captured tumor cells with the apoptotic/necrotic rate of 62.6 % and low side-effect for the nontarget cells. The FO LSPR sensor realized the dual functions of CTC sensing and PTT, which provided a new idea for the early diagnosis and treatment of cancer.


Subject(s)
Gold , Indoles , Metal Nanoparticles , Photothermal Therapy , Polymers , Surface Plasmon Resonance , Humans , Gold/chemistry , Indoles/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Fiber Optic Technology , Neoplastic Cells, Circulating/pathology , Nanotubes/chemistry , Optical Fibers , Cell Line, Tumor
5.
Int Immunopharmacol ; 136: 112356, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820957

ABSTRACT

The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.


Subject(s)
Aptamers, Nucleotide , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Aptamers, Nucleotide/therapeutic use , Animals , Immunotherapy/methods , Photochemotherapy/methods , Drug Delivery Systems , Photothermal Therapy/methods , Antineoplastic Agents/therapeutic use
6.
Adv Healthc Mater ; 13(16): e2303390, 2024 06.
Article in English | MEDLINE | ID: mdl-38490171

ABSTRACT

Tumor recurrence and massive bone defects are two critical challenges for postoperative treatment of oral and maxillofacial tumor, posing serious threats to the health of patients. Herein, in order to eliminate residual tumor cells and promote osteogenesis simultaneously, the hydrogen peroxide (H2O2) self-sufficient TCP-PDA-CaO2-CeO2 (TPCC) scaffolds are designed by preparing CaO2 or/and CeO2 nanoparticles (NPs)/chitosan solution and modifying the NPs into polydopamine (PDA)-modified 3D printed TCP scaffolds by rotary coating method. CaO2 NPs loaded on the scaffolds can release Ca2+ and sufficient H2O2 in the acidic tumor microenvironment (TME). The generated H2O2 can further produce hydroxyl radicals (·OH) under catalysis effect by peroxidase (POD) activity of CeO2 NPs, in which the photothermal effect of the PDA coating enhances its POD catalytic effect. Overall, NPs loaded on the scaffold chemically achieve a cascade reaction of H2O2 self-sufficiency and ·OH production, while functionally achieving synergistic effects on anti-tumor and bone promotion. In vitro and in vivo studies show that the scaffolds exhibit effective osteo-inductivity, induced osteoblast differentiation and promote osseointegration. Therefore, the multifunctional composite scaffolds not only validate the concept of chemo-dynamic therapy (CDT) cascade therapy, but also provide a promising clinical strategy for postoperative treatment of oral and maxillofacial tumor.


Subject(s)
Calcium Phosphates , Hydrogen Peroxide , Osseointegration , Printing, Three-Dimensional , Tissue Scaffolds , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Animals , Tissue Scaffolds/chemistry , Osseointegration/drug effects , Mice , Humans , Nanoparticles/chemistry , Polymers/chemistry , Indoles/chemistry , Indoles/pharmacology , Oxides/chemistry , Cerium/chemistry , Cerium/pharmacology , Osteogenesis/drug effects , Tumor Microenvironment/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects
7.
Small ; 20(27): e2312211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38381004

ABSTRACT

Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.


Subject(s)
Copper , Melanoma , Nanocomposites , Photothermal Therapy , Uveal Neoplasms , Copper/chemistry , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Melanoma/therapy , Melanoma/pathology , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Humans , Animals , Free Radicals/chemistry , Cell Line, Tumor , Porosity , Sulfides/chemistry , Mice , Imidazoles/chemistry , Tumor Microenvironment/drug effects , Glutathione/metabolism , Glutathione/chemistry
8.
Nanomaterials (Basel) ; 14(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38251152

ABSTRACT

The growing interest in graphene oxide (GO) for different biomedical applications requires thoroughly examining its safety. Therefore, there is an urgent need for reliable data on how GO nanoparticles affect healthy cells and organs. In the current work, we adopted a comprehensive approach to assess the influence of GO and its polyethylene glycol-modified form (GO-PEG) under near-infrared (NIR) exposure on several biological aspects. We evaluated the contractility of isolated frog hearts, the activity of two rat liver enzymes-mitochondrial ATPase and diamine oxidase (DAO), and the production of reactive oxygen species (ROS) in C2C12 skeletal muscle cells following direct exposure to GO nanoparticles. The aim was to study the influence of GO nanoparticles at multiple levels-organ; cellular; and subcellular-to provide a broader understanding of their effects. Our data demonstrated that GO and GO-PEG negatively affect heart contractility in frogs, inducing stronger arrhythmic contractions. They increased ROS production in C2C12 myoblasts, whose effects diminished after NIR irradiation. Both nanoparticles in the rat liver significantly stimulated DAO activity, with amplification of this effect after NIR irradiation. GO did not uncouple intact rat liver mitochondria but caused a concentration-dependent decline in ATPase activity in freeze/thaw mitochondria. This multifaceted investigation provides crucial insights into GOs potential for diverse implications in biological systems.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021423

ABSTRACT

BACKGROUND:Inflammation,oxidative stress and bacterial infection are the main causes of delayed wound healing in diabetes.In recent years,various inorganic nanomaterials have been widely used in the treatment of skin wound healing due to their antibacterial activities,but their effects on anti-oxidation and anti-inflammation are limited. OBJECTIVE:To investigate the effect of Prussian blue nanoparticles on the wound repair of diabetes in terms of antioxidant,anti-inflammatory and photothermal antibacterial activities. METHODS:Prussian blue nanoparticles were prepared and characterized.(1)In vitro:The biocompatibility of Prussian blue nanoparticles with different concentrations was detected by MTT assay.The cytoprotective effect of Prussian blue nanoparticles and the intracellular reactive oxidative species level were examined under the condition of hydrogen peroxide.The ability of Prussian blue nanoparticles to decompose hydrogen peroxide and superoxide anion radicals was tested;the effect of Prussian blue nanoparticles on lipopolysaccharide-induced macrophage inflammation was investigated.The photothermal antibacterial activity of Prussian blue nanoparticles was detected by the plate colony counting method.(2)In vivo:ICR mice were intraperitoneally injected with streptozotocin to establish a diabetes mouse model.After the model was successfully established,a 6 mm wound was created on the back with a hole punch.There were the control group(no treatment),the Prussian blue group and the Prussian blue with light group.The wound healing and histomorphological changes were observed. RESULTS AND CONCLUSION:(1)In vitro:Prussian blue nanoparticles in 25-200 μg/mL were non-toxic to cells.Prussian blue nanoparticles had the extremely strong antioxidant capacity and mitigated the intracellular reactive oxidative species at a high oxidative stress environment,resulting in a pronounced cytoprotective effect.The Prussian blue nanoparticles not only exhibited hydrogen peroxide degradation activity but also showed strong superoxide scavenging ability.Prussian blue nanoparticles also displayed significant anti-inflammatory activity and extremely strong antibacterial ability after light irradiation.(2)In vivo:After 14 days,the wound sizes of the Prussian blue group and Prussian blue with light group were significantly reduced,and the healing speed of Prussian blue with light group was the fastest.Hematoxylin-eosin and Masson staining showed a lot of granulation tissue formation and collagen deposition in the Prussian blue group and the Prussian blue with light group,of which the Prussian blue with light group was the most.Immunofluorescence staining displayed that,compared with the control group,the expressions of α-SMA and CD31 were increased significantly in Prussian blue group and Prussian blue with light group(P<0.05),but F4/80 expression was decreased significantly in Prussian blue group and Prussian blue with light group(P<0.05),indicating more obvious improvement in the Prussian blue with light group.(3)These results showed that Prussian blue nanoparticles could promote the skin wound healing of the diabetes mouse model by exerting anti-inflammatory,antioxidant and antibacterial effects.

10.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38139769

ABSTRACT

Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with controllable size and improved performance is valuable and desirable. Herein, we reported a facile way to synthesize pyrrole-doped polydopamine-pyrrole nanoparticles (PDA-nPY NPs) with tunable size and enhanced near-infrared (NIR) absorption capacity through self-oxidative polymerization of DA with PY in an alkaline ethanol/H2O/NH4OH solution. The PDA-nPY NPs maintain excellent biocompatibility and surface reactivity as PDA. By regulating the volume of added PY, PDA-150PY NPs with a smaller size (<100 nm) and four-fold higher absorption intensity at 808 nm than that of PDA can be successfully fabricated. In vitro and in vivo experiments effectively further demonstrate that PDA-150PY NPs can effectively inhibit tumor growth and completely thermally ablate a tumor. It is believed that these PY doped PDA-nPY NPs can be a potential photothermal (PT) agent in biomedical application.

11.
Biomed Pharmacother ; 169: 115891, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37979378

ABSTRACT

Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Micromachines (Basel) ; 14(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37374759

ABSTRACT

A new generation of nanoscale photosensitizer agents has improved photothermal capabilities, which has increased the impact of photothermal treatments (PTTs) in cancer therapy. Gold nanostars (GNS) are promising for more efficient and less invasive PTTs than gold nanoparticles. However, the combination of GNS and visible pulsed lasers remains unexplored. This article reports the use of a 532 nm nanosecond pulse laser and polyvinylpyrrolidone (PVP)-capped GNS to kill cancer cells with location-specific exposure. Biocompatible GNS were synthesized via a simple method and were characterized under FESEM, UV-visible spectroscopy, XRD analysis, and particle size analysis. GNS were incubated over a layer of cancer cells that were grown in a glass Petri dish. A nanosecond pulsed laser was irradiated on the cell layer, and cell death was verified via propidium iodide (PI) staining. We assessed the effectiveness of single-pulse spot irradiation and multiple-pulse laser scanning irradiation in inducing cell death. Since the site of cell killing can be accurately chosen with a nanosecond pulse laser, this technique will help minimize damage to the cells around the target cells.

13.
Mater Today Bio ; 20: 100663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37273798

ABSTRACT

Photodynamic therapy (PDT) induces immunogenic cell death (ICD) by producing reactive oxygen species (ROS), making it an ideal method for cancer treatment. However, the extremely lower level of oxygen, short half-life of produced ROS, and limited photosensitizers accumulating in the tumor site via intravenous administration are the main reasons that limit the further application of PDT. To address these issues, we loaded the photosensitizer porphine (THPP) into biomimetic gold nanorod-mesoporous silica core-shell nanoparticles (Au-MSN NPs) to prepare Au@MSN/THPP@CM NPs. We then seeded the NPs together with catalase (CAT) into a gelatin methacryloyl (GelMA) microgel matrix to form Au@MSN-Ter/THPP@CM@GelMA/CAT microspheres consisting of biomimetic nano@microgel. The NPs and biomimetic nano@microgel exhibited enhanced photodynamic (PD) reaction and excellent photothermal conversion ability. Moreover, we further conjugated an endoplasmic reticulum (ER) targeting ligand Tosyl Ethylenediamine (Ter) on the surface of Au-MSN NPs. The results showed that both Au@MSN-Ter/THPP@CM NPs and the finally formed Au@MSN-Ter/THPP@CM@GelMA/CAT biomimetic nano@microgel induced precise and prolonged ER stress through photodynamic reactions, which stimulated the exposure of the proapoptotic calreticulin (CRT) on the cell membrane and increased the release of high mobility group box 1 (HMGB1) form the nucleus in SKOV3 cells under near-infrared (NIR) laser irradiation. Additionally, a single dose of the nano@microgel delivered through minimally invasive injection generated a significant anti-tumor effect in the SKOV3 cell line-derived orthotopic ovarian cancer mouse model through a PD and PT combination therapy. This study offers a new strategy for enhanced PDT and provides a PD/PT synergistic treatment method for ovarian cancer.

14.
ACS Appl Bio Mater ; 6(3): 1231-1241, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36867723

ABSTRACT

Prosthetic joint infection (PJI) is a devastating complication requiring surgical intervention and prolonged antimicrobial treatment. The prevalence of PJI is on the rise, with an average incidence of 60,000 cases per year and a projected annual cost of $1.85 billion in the US. The underlying pathogenesis of PJI involves the formation of bacterial biofilms that protect the pathogen from the host immune response and antibiotics, making it difficult to eradicate such infections. Biofilms on implants are also resistant to mechanical brushing/scrubbing methods of removal. Since the removal of biofilms is currently only achievable by the replacement of the prosthesis, therapies aimed at eradicating biofilms while enabling retention of implants will revolutionize the management of PJIs. To address severe complications associated with biofilm-related infections on implants, we have developed a combination treatment that is based on a hydrogel nanocomposite system, containing d-amino acids (d-AAs) and gold nanorods, which can be delivered and transforms from a solution to a gel state at physiological temperature for sustained release of d-AAs and light-activated thermal treatment of infected sites. Using this two-step approach to utilize a near-infrared light-activated hydrogel nanocomposite system for thermal treatment, following initial disruption with d-AAs, we were able to successfully demonstrate in vitro the total eradication of mature Staphylococcus aureus biofilms grown on three-dimensional printed Ti-6Al-4V alloy implants. Using a combination of cell assays, computer-aided scanning electron microscopy analyses, and confocal microscopy imaging of the biofilm matrix, we could show 100% eradication of the biofilms using our combination treatment. In contrast, we were only able to see 25% eradication of the biofilms using the debridement, antibiotics, and implant retention method. Moreover, our hydrogel nanocomposite-based treatment approach is adaptable in the clinical setting and capable of combating chronic infections brought about by biofilms on medical implants.


Subject(s)
Amino Acids , Hydrogels , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Prostheses and Implants/adverse effects
15.
ACS Nano ; 17(5): 4601-4618, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36826229

ABSTRACT

Injudicious or inappropriate use of antibiotics has led to the prevalence of drug-resistant bacteria, posing a huge menace to global health. Here, a self-assembled aggregation-induced emission (AIE) nanosphere (AIE-PEG1000 NPs) that simultaneously possesses near-infrared region II (NIR-II) fluorescence emissive, photothermal, and photodynamic properties is prepared using a multifunctional AIE luminogen (AIE-4COOH). The AIE-PEG1000 NPs were encapsulated with teicoplanin (Tei) and ammonium bicarbonate (AB) into lipid nanovesicles to form a laser-activated "nanobomb" (AIE-Tei@AB NVs) for the multimodal theranostics of drug-resistant bacterial infections. In vivo experiments validate that the "nanobomb" enables high-performance NIR-II fluorescence, infrared thermal, and ultrasound (AB decomposition during the photothermal process to produce numerous CO2/NH3 bubbles, which is an efficient ultrasound contrast agent) imaging of multidrug-resistant bacteria-infected foci after intravenous administration of AIE-Tei@AB NVs followed by 660 nm laser stimulation. The highly efficient photothermal and photodynamic features of AIE-Tei@AB NVs, combined with the excellent pharmacological property of rapidly released Tei during bubble generation and NV disintegration, collectively promote broad-spectrum eradication of three clinically isolated multidrug-resistant bacteria strains and rapid healing of infected wounds. This multimodal imaging-guided synergistic therapeutic strategy can be extended for the theranostics of superbugs.


Subject(s)
Bacterial Infections , Nanoparticles , Nanospheres , Photochemotherapy , Humans , Light , Diagnostic Imaging , Bacterial Infections/diagnostic imaging , Bacterial Infections/drug therapy , Theranostic Nanomedicine/methods , Nanoparticles/therapeutic use
16.
Small ; 19(11): e2205744, 2023 03.
Article in English | MEDLINE | ID: mdl-36634995

ABSTRACT

Thrombosis and its complications are responsible for 30% of annual deaths. Limitations of methods for diagnosing and treating thrombosis highlight the need for improvements. Agents that provide simultaneous diagnostic and therapeutic activities (theranostics) are paramount for an accurate diagnosis and rapid treatment. In this study, silver-iron oxide nanoparticles (AgIONPs) are developed for highly efficient targeted photothermal therapy and imaging of thrombosis. Small iron oxide nanoparticles are employed as seeding agents for the generation of a new class of spiky silver nanoparticles with strong absorbance in the near-infrared range. The AgIONPs are biofunctionalized with binding ligands for targeting thrombi. Photoacoustic and fluorescence imaging demonstrate the highly specific binding of AgIONPs to the thrombus when functionalized with a single chain antibody targeting activated platelets. Photothermal thrombolysis in vivo shows an increase in the temperature of thrombi and a full restoration of blood flow for targeted group but not in the non-targeted group. Thrombolysis from targeted groups is significantly improved (p < 0.0001) in comparison to the standard thrombolytic used in the clinic. Assays show no apparent side effects of AgIONPs. Altogether, this work suggests that AgIONPs are potential theranostic agents for thrombosis.


Subject(s)
Metal Nanoparticles , Nanoparticles , Thrombosis , Humans , Photothermal Therapy , Silver , Metal Nanoparticles/therapeutic use , Thrombosis/diagnostic imaging , Thrombosis/therapy , Multimodal Imaging/methods , Magnetic Iron Oxide Nanoparticles , Theranostic Nanomedicine/methods , Phototherapy/methods
17.
Int J Nanomedicine ; 18: 323-337, 2023.
Article in English | MEDLINE | ID: mdl-36700147

ABSTRACT

Background: Multifunctional stimuli-responsive nanoparticles with photothermal-chemotherapy provided a powerful tool for improving the accuracy and efficiency in the treatment of malignant tumors. Methods: Herein, photosensitizer indocyanine green (ICG)-loaded amorphous calcium-carbonate (ICG@) nanoparticle was prepared by a gas diffusion reaction. Doxorubicin (DOX) and ICG@ were simultaneously encapsulated into poly(lactic-co-glycolic acid)-ss-chondroitin sulfate A (PSC) nanoparticles by a film hydration method. The obtained PSC/ICG@+DOX hybrid nanoparticles were characterized and evaluated by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The cellular uptake and cytotoxicity of PSC/ICG@+DOX nanoparticles were analyzed by confocal laser scanning microscopy (CLSM) and MTT assay in 4T1 cells. In vivo antitumor activity of the nanoparticles was evaluated in 4T1-bearing Balb/c mice. Results: PSC/ICG@+DOX nanoparticles were nearly spherical in shape by TEM observation, and the diameter was 407 nm determined by DLS. Owing to calcium carbonate and disulfide bond linked copolymer, PSC/ICG@+DOX nanoparticles exhibited pH and reduction-sensitive drug release. Further, PSC/ICG@+DOX nanoparticles showed an effective photothermal effect under near-infrared (NIR) laser irradiation, and improved cellular uptake and cytotoxicity in breast cancer 4T1 cells. Importantly, PSC/ICG@+DOX nanoparticles demonstrated the most effective suppression of tumor growth in orthotopic 4T1-bearing mice among the treatment groups. In contrast with single chemotherapy or photothermal therapy, chemo-photothermal treatment by PSC/ICG@+DOX nanoparticles synergistically inhibited the growth of 4T1 cells. Conclusion: This study demonstrated that PSC/ICG@+DOX nanoparticles with active targeting and stimuli-sensitivity would be a promising strategy to enhance chemo-photothermal cancer therapy.


Subject(s)
Hyperthermia, Induced , Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Animals , Mice , Indocyanine Green/chemistry , Photothermal Therapy , Phototherapy/methods , Hyperthermia, Induced/methods , Doxorubicin , Neoplasms/drug therapy , Nanoparticles/chemistry , Cell Line, Tumor
18.
Carbohydr Polym ; 300: 120264, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372515

ABSTRACT

After bone tumor resection, the severe complications including cancer recurrence, infection and extensive bone loss are still a challenge. To address this problem, a chitosan/hydroxypropyltrimethyl ammonium chloride chitosan/hydroxyapatite/black phosphorus (CS/HC/HA/BP) hybrid photothermal scaffold with a multistage photothermal strategy was developed. HC-stabilized BP endowed the scaffold with simultaneous antitumor/antibacterial properties under photothermal stimulation of <50 °C. Subsequently, excellent osteogenesis could be achieved with mild hyperthermia stimulation (∼42 °C) through up-regulating the expressions of heat shock proteins. Under NIR irradiation, the scaffold could eliminate 95 % of osteosarcoma cells as well as 97 % of E. coli and 92 % of S. aureus. The osteogenic gene expressions of ALP, COL 1A1, and OCN in photothermal group were 1.64, 1.31 and 1.27 folds higher than that of non-photothermal group in vivo, respectively. Therefore, the obtained scaffold synergized with multistage photothermal strategy was effective and a reference for the treatment of other complex diseases.


Subject(s)
Bone Neoplasms , Chitosan , Humans , Chitosan/therapeutic use , Tissue Scaffolds , Staphylococcus aureus , Escherichia coli , Osteogenesis , Bone Neoplasms/therapy
19.
ACS Appl Mater Interfaces ; 15(1): 1784-1797, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36580421

ABSTRACT

Photothermal therapy (PTT), by converting light to thermal energy, has become a novel and noninvasive technique for tumor thermal ablation in clinical practice. However, as a result of phagocytosis of reticuloendothelial cells, current photothermal agents (PTAs) derived from exogenous materials suffer from incompetent tumor targeting and brief internal circulation time. The resulting poor accumulation of PTAs in the target area severely reduces the efficacy of PTT. In addition, the potential toxicity of PTAs, excessive laser exposure, and possibilities of tumor recurrence and metastasis following PTT are still intractable problems that severely influence patients' quality of life. Herein, a biomimetic pH-responsive nanoprobe was prepared via cancer cell membrane coating polydopamine (PDA)-CaCO3 nanoparticles (CPCaNPs) for photoacoustic (PA)/ultrasonic (US)/thermal imaging-guided PTT. When CPCaNPs targeted and infiltrated into the tumor's acidic microenvironment, the decomposed CO2 bubbles from homologous targeting CPCaNPs enhanced ultrasonic (US) signals obviously. At the same time, the PDA of CPCaNPs not only performed efficient PTT of primary tumors but also generated photoacoustic (PA) signals. In addition, an immune checkpoint pathway blockade was combined, which inhibited tumor recurrence and metastasis significantly and improved the immunosuppressive microenvironment after PTT to a large extent. Thus, these proposed biomimetic pH-responsive CPCaNPs provide a promising strategy for precise PTT immunotherapy under the intelligent guidance of PA/US/thermal imaging and show great potential for clinical translation.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Cell Line, Tumor , Biomimetics , Neoplasm Recurrence, Local , Quality of Life , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/therapeutic use , Multimodal Imaging , Immunotherapy , Hydrogen-Ion Concentration , Tumor Microenvironment
20.
Article in English | MEDLINE | ID: mdl-35848997

ABSTRACT

Functional colloidal nanoparticles capable of converting between various energy types are finding an increasing number of applications. One of the relevant examples concerns light-to-heat-converting colloidal nanoparticles that may be useful for localized photothermal therapy of cancers. Unfortunately, quantitative comparison and ranking of nanoheaters are not straightforward as materials of different compositions and structures have different photophysical and chemical properties and may interact differently with the biological environment. In terms of photophysical properties, the most relevant information to rank these nanoheaters is the light-to-heat conversion efficiency, which, along with information on the absorption capacity of the material, can be used to directly compare materials. In this work, we evaluate the light-to-heat conversion properties of 17 different nanoheaters belonging to different groups (plasmonic, semiconductor, lanthanide-doped nanocrystals, carbon nanocrystals, and metal oxides). We conclude that the light-to-heat conversion efficiency alone is not meaningful enough as many materials have similar conversion efficiencies─in the range of 80-99%─while they significantly differ in their extinction coefficient. We therefore constructed their qualitative ranking based on the external conversion efficiency, which takes into account the conventionally defined light-to-heat conversion efficiency and its absorption capacity. This ranking demonstrated the differences between the samples more meaningfully. Among the studied systems, the top-ranking materials were black porous silicon and CuS nanocrystals. These results allow us to select the most favorable materials for photo-based theranostics and set a new standard in the characterization of nanoheaters.

SELECTION OF CITATIONS
SEARCH DETAIL