Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Biomaterials ; 311: 122695, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954960

ABSTRACT

Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.

2.
Sci Total Environ ; : 174690, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992351

ABSTRACT

Harmful algal blooms (HABs) or higher levels of de facto water reuse (DFR) can increase the levels of certain contaminants at drinking water intakes. Therefore, the goal of this study was to use multi-class supervised machine learning (SML) classification with data collected from six online instruments measuring fourteen total water quality parameters to detect cyanobacteria (corresponding to approximately 950 cells/mL, 2900 cells/mL, and 8600 cells/mL) or DFR (0.5, 1 and 2 % for wastewater effluent) events in the raw water entering an intake. Among 56 screened models from the caret package in R, four (mda, LogitBoost, bagFDAGCV, and xgbTree) were selected for optimization. mda had the greatest testing set accuracy, 98.09 %, after optimization with 7 false alerts. Some of the most important water parameters for the different models were phycocyanin-like fluorescence, UVA254, and pH. SML could detect algae blending events (estimated <9000 cells/mL) due in part to the phycocyanin-like fluorescence sensor. UVA254 helped identify higher concentrations of DFR. These results show that multi-class SML classification could be used at drinking water intakes in conjunction with online instrumentation to detect and differentiate HABs and DFR events. This could be used to create alert systems for the water utilities at the intake, rather than the finished water, so any adjustment to the treatment process could be implemented.

3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000294

ABSTRACT

Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.


Subject(s)
Food Industry , Phycobiliproteins , Phycobiliproteins/chemistry , Food Industry/methods , Food Coloring Agents/chemistry , Humans
4.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000141

ABSTRACT

Asthma is a chronic immunological disease related to oxidative stress and chronic inflammation; both processes promote airway remodeling with collagen deposition and matrix thickening, causing pulmonary damage and lost function. This study investigates the immunomodulation of C-phycocyanin (CPC), a natural blue pigment purified from cyanobacteria, as a potential alternative treatment to prevent the remodeling process against asthma. We conducted experiments using ovalbumin (OVA) to induce asthma in Sprague Dawley rats. Animals were divided into five groups: (1) sham + vehicle, (2) sham + CPC, (3) asthma + vehicle, (4) asthma + CPC, and (5) asthma + methylprednisolone (MP). Our findings reveal that asthma promotes hypoxemia, leukocytosis, and pulmonary myeloperoxidase (MPO) activity by increasing lipid peroxidation, reactive oxygen and nitrogen species, inflammation associated with Th2 response, and airway remodeling in the lungs. CPC and MP treatment partially prevented these physiological processes with similar action on the biomarkers evaluated. In conclusion, CPC treatment enhanced the antioxidant defense system, thereby preventing oxidative stress and reducing airway inflammation by regulating pro-inflammatory and anti-inflammatory cytokines, consequently avoiding asthma-induced airway remodeling.


Subject(s)
Airway Remodeling , Asthma , Disease Models, Animal , Ovalbumin , Oxidative Stress , Phycocyanin , Rats, Sprague-Dawley , Animals , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Asthma/drug therapy , Asthma/metabolism , Asthma/chemically induced , Oxidative Stress/drug effects , Ovalbumin/adverse effects , Rats , Airway Remodeling/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Cytokines/metabolism
5.
Quant Imaging Med Surg ; 14(7): 4333-4347, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022262

ABSTRACT

Background: Dynamic surveillance of vasculature is essential for evaluating the healing of oral ulcer. Existing techniques used in vascular imaging face limitations, such as inadequate spatial resolution, restricted diagnostic depth, and the necessity of exogenous contrast agents. Therefore, this study aimed to use robust photoacoustic imaging (PAI) for the dynamic monitoring of vascular response during healing and the associated treatment process of oral ulcer. Methods: Kunming mice (male, 8 weeks old, 31-41 g) were treated with 50% acetic acid for 90 s on the tongue mucosa for induction of oral traumatic ulcer. Mice were randomly divided into three groups (n=12): the control, compound chamomile and lidocaine hydrochloride gel (CCLH), and phycocyanin (PC) groups. PAI was then conducted on days 0, 2, 3, 5, and 7 to obtain vessel parameters of the ulcer area, including vessel intensity, density, mean diameter, maximum diameter, and curvature. Immunohistochemical and hematoxylin and eosin (HE) staining were performed on days 3 and 7 to assess microvessel density and inflammation score. The ulcer healing rate and body weight changes were evaluated for clinical observation. Results: Beginning on the second day after ulcer induction, there was a progressive increase over time in blood intensity and vessel parameters, including vascular density and diameter. On day 7, the CCLH and PC groups demonstrated significantly higher measures than did the control group in terms of blood intensity (P<0.05 and P<0.01), vascular density (both P values <0.05), mean diameter (both P values <0.01), and maximum diameter (P<0.01 and P<0.05). Vessel curvature in the two treatment groups exhibited no significant differences compared to that in the control group (both P values >0.05). The effects of vascular morphological changes were further supported by the histological and clinical outcomes. On day 7, compared to that of the control group, the level of microvessel density was significantly higher in both the CCLH (P<0.01) and PC (P<0.05) groups. The histopathological score in PC group was significantly lower than that of the control group on day 7 (P<0.05). Additionally, compared to that of the control group, the healing rates of the CCLH (P<0.01) and PC groups (P<0.05) were superior on day 7. On day 3, the control group showed more weight loss than did the CCLH (P<0.05) and PC (P<0.01) groups. Conclusions: These findings indicate that PAI is a valuable strategy for the dynamic and quantitative analysis of vascular alterations in oral traumatic ulcers and support its prospective application in improving clinical treatment.

6.
Pak J Med Sci ; 40(5): 962-966, 2024.
Article in English | MEDLINE | ID: mdl-38827843

ABSTRACT

Objective: Evaluation of contemporary disinfection techniques, Moringa Oleifera (M.Oleifera), Phycocyanin activated by photodynamic therapy (PDT), and Chitosan, on S.mutans survival rate and bond integrity of composite to carious-affected dentin (CAD). Methods: The in vitro study was conducted at King Saud University and concluded within three months. Sixty mandibular teeth with cavities extending to the middle third of the dentin were sterilized. S.mutans was inoculated onto the CAD surface of twenty samples. The samples were randomly divided into four groups (n: 15) based on various disinfection regimes. Group-1 received 2% CHX, Group-2 Phycocyanin activated by photodynamic therapy (PDT), Group-3 Chitosan, and Group-4 M.oleifera. S.mutans survival rate was calculated. Ten CAD samples from each group were restored using composite. The bond integrity of samples was assessed using a Universal testing machine (UTM) and failure mode using a stereomicroscope. Analysis of variance (ANOVA) and Tukey's Post Hoc test were used to calculate statistical significance (p=0.05). Results: Group-2 samples subjected to Phycocyanin activated using PDT, displayed minimal survival rate (0.24 ± 0.05 CFU/ml) of S.mutans.Group-1 samples treated with CHX exhibited the highest count of S.mutans (0.69 ± 0.12 CFU/ml). The most robust bond was observed in Group-3 (Chitosan) samples (19.33 ± 0.47 MPa). In contrast, SBS values were lowest in Group-1 (CHX) treated study samples (13.17 ± 1.88 MPa). Conclusion: Chitosan, Phycocyanin activated by PDT, and Moringa Oleifera extract exhibit potential as viable substitutes for chlorhexidine (CHX) in clinical settings, presenting the possibility of better eradication of S.mutans and greater adhesive strength to CAD.

7.
Vet World ; 17(5): 1098-1107, 2024 May.
Article in English | MEDLINE | ID: mdl-38911079

ABSTRACT

Background and Aim: Natural antioxidants are crucial for preserving and enhancing the health, survival, reproduction, and reproductive function of poultry. Phycocyanin (PC) is a natural blue food colorant with various health benefits. The aim of this study was to extract Arthrospira platensis phycocyanin (ApPC) from A. platensis using simple and economical methods and investigate the impact of phytocyanin supplementation on the performance and fatty and amino acid profiles of broiler chicks. Materials and Methods: PC was extracted from A. platensis by freezing and thawing, and optimization conditions such as pH and temperature were applied during storage periods. A total of 270 1-week-old Ross breed broiler chicks were randomly assigned to the following three treatment groups: basal diet supplemented with 0 mg of PC/kg diet (control), basal diet supplemented with 1 g PC/kg diet (T1), and basal diet supplemented with 2 g PC/kg (T2). In a completely randomized design, three cage replicates (30 birds each) were assigned to each of the three groups. The dietary effects of ApPC on growth performance (body weight gain [BWG], body weight [BW], feed intake, feed conversion ratio, serum constituents, and antioxidant indices) in broiler chickens, free amino acids, and fatty acids in muscles were evaluated. Results: Total BWG and BW increased without a significant effect on the total feed consumption. Serum levels of total proteins and albumin increased with increasing ApPC supplementation. In addition, globulin levels significantly increased. There was a significant decrease in serum total cholesterol levels among the treatments. The activity of antioxidant enzymes (superoxide dismutase, catalase, glutathione, and total antioxidant capacity) is significantly increased. In contrast, an increase in ApPC caused a significant decrease in malondialdehyde. The content and quantity of fatty acids and amino acids in the meat of broiler chicks supplemented with PC varies. Conclusion: The addition of PC to broiler chicken diets enhances antioxidant activities, BW, BWG, and meets quality requirements.

8.
Heliyon ; 10(11): e31642, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912514

ABSTRACT

Functional bioactive ingredients isolated from microalgae as sustainable sources have become a new subject of pharmacology and functional foods. Thus, the work aims to produce crude phycocyanin (C-PC), define it, and investigate its pharmacological effects before warping it in a nanophytosome. Subsequently, the physicochemical properties of nanoparticles were evaluated. Both free and nanophytosomes of C-PC were incorporated into cow milk fermented with the probiotic Lactobacillus rhamnosus KU985435 to make functional yoghurt and the stability of C-PC of both phytosomes was assessed. The amino acid content of C-PC revealed the presence of eight of nine essential amino acids and eight of eleven non-essential amino acids. C-PC has a medium molecular weight (82.992 kDa). Some pharmacological effects like reducing inflammation (98.76 % ± 0.065), fighting free radicals (99.12 % ± 0.027), and being able to inhibit the human coronavirus 229 E with a selective index of 27.9 were observed. The maximum viral inhibitory activity was detected during the adsorption stage. Anti-human liver and colon carcinomas that exceeded Doxorubicin with very low cytotoxicity against normal cell lines were detected. C-PC is an unstable protein that could be degraded in the yoghurt during storage. Therefore, phytosome encapsulation can effectively stabilize C-PC (particle size 44.50 ± 12 nm and zeta-potential -32.4 ± 5 mV) and protect it from the acidic environment of the yoghurt. The produced yoghurt showed the desired physicochemical and functional properties and overall acceptance. The results prove that C-PC from spirulina algae is a renewable source of dyes. The encapsulation process using phytosomes gave it high stability against environmental influences, and therefore, it can be applied in the food and pharmaceutical industries in the future.

9.
Bioresour Technol ; 406: 131052, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944314

ABSTRACT

Cyanobacteria hold promise for simultaneous carbon capture and chemicals production, but the regulation and effect of nitrogen (N) and phosphorus (P) remains unclear. This study investigates major productions of glycogen, protein, and C-phycocyanin (C-PC) in Cyanobacterium aponinum PCC10605 under different N/P levels, alongside changes in light and CO2. Increasing nitrate (NO3-) from 2 to 6 mM resulted in a 9.7-fold increase in C-PC and reduced glycogen to 8.9 %. On the other hand, elevating phosphorus from 0.1 to 2 mM under limited nitrogen enhanced biomass and glycogen through the upregulation of carbonic anhydrase, ADP-glucose pyrophosphorylase, and glycogen phosphorylase. Changes in phosphorus levels and CO2 inlet concentrations affected metabolites accumulation and carbon capture efficiency, leading to the best condition of 76 % uptake capacity in direct air capture (DAC). All findings underscore the trade-off between glycogen and protein, representing the importance of N/P levels in nutrient modulation of PCC10605.

10.
Mar Drugs ; 22(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921557

ABSTRACT

Cyanobacterial phycocyanin pigment is widely utilized for its properties in various industries, including food, cosmetics, and pharmaceuticals. Despite its potential, challenges exist, such as extraction methods impacting yield, stability, and purity. This study investigates the impact of the number of freeze-thaw (FT) cycles on the extraction of phycocyanin from the wet biomass of four cyanobacteria species (Arthrospira platensis, Chlorogloeopsis fritschii, Phormidium sp., and Synechocystis sp.), along with the impact of five extraction solutions (Tris-HCl buffer, phosphate buffer, CaCl2, deionized water, and tap water) at various pH values. Synechocystis sp. exhibited the highest phycocyanin content among the studied species. For A. platensis, Tris-HCl buffer yielded maximum phycocyanin concentration from the first FT cycle, while phosphate buffer provided satisfactory results from the second cycle. Similarly, Tris-HCl buffer showed promising results for C. fritschii (68.5% of the maximum from the first cycle), with the highest concentration (~12% w/w) achieved during the seventh cycle, using phosphate buffer. Phormidium sp. yielded the maximum pigment concentration from the first cycle using tap water. Among species-specific optimal extraction solutions, Tris-HCl buffer demonstrated sufficient extraction efficacy for all species, from the first cycle. This study represents an initial step toward establishing a universal extraction method for phycocyanin from diverse cyanobacteria species.


Subject(s)
Biomass , Cyanobacteria , Phycocyanin , Solvents , Phycocyanin/isolation & purification , Phycocyanin/chemistry , Cyanobacteria/chemistry , Solvents/chemistry , Freezing , Hydrogen-Ion Concentration
11.
Open Res Eur ; 4: 69, 2024.
Article in English | MEDLINE | ID: mdl-38915372

ABSTRACT

Harmful algal blooms (HABs) are a significant threat to freshwater ecosystems, and monitoring for changes in biomass is therefore important. Fluorescence in-situ sensors enable rapid and high frequency real-time data collection and have been widely used to determine chlorophyll- a (Chla) concentrations that are used as an indicator of the total algal biomass. However, conversion of fluorescence to equivalent Chla concentrations is often complicated due to biofouling, phytoplankton composition and the type of equipment used. Here, we validated measurements from 24 Chla and 12 phycocyanin (cyanobacteria indicator) fluorescence in-situ sensors (Cyclops-7F, Turner Designs) against spectrophotometrically (in-vitro) determined Chla and tested a data-cleaning procedure for eliminating data errors and impacts of non-photochemical quenching. The test was done across a range of freshwater plankton communities in 24 mesocosms (i.e. experimental tanks) with a 2x3 (high and low nutrient x ambient, IPCC-A2 and IPCC-A2+50% temperature scenarios) factorial design. For most mesocosms (tanks), we found accurate (r 2 ≥ 0.7) calibration of in-situ Chla fluorescence data using simple linear regression. An exception was tanks with high in-situ phycocyanin fluorescence, for which multiple regressions were employed, which increased the explained variance by >16%. Another exception was the low Chla concentration tanks (r 2 < 0.3). Our results also show that the high frequency in-situ fluorescence data recorded the timing of sudden Chla variations, while less frequent in-vitro sampling sometimes missed these or, when recorded, the duration of changes was inaccurately determined. Fluorescence in-situ sensors are particularly useful to detect and quantify sudden phytoplankton biomass variations through high frequency measurements, especially when using appropriate data-cleaning methods and accounting for factors that can impact the fluorescence readings.


Harmful algal blooms (HABs) may pose a significant threat to freshwater ecosystems and to animal and human health. Therefore, it is important to monitor changes in algal biomass. Traditional methods, while effective, lack the ability to provide rapid, high-frequency, real-time data. In-situ fluorescence sensors, specifically designed to measure chlorophyll- a (total phytoplankton indicator) and phycocyanin (Blue-green algae indicator), offer a promising solution. However, challenges such as biofouling, temporal changes in phytoplankton composition, and equipment variations complicate the conversion of fluorescence data into equivalent chlorophyll- a concentrations. Our study aimed to validate measurements from 24 chlorophyll- a and 12 phycocyanin fluorescence in-situ sensors (Cyclops-7F, Turner Designs). We compared these measurements against spectrophotometrically determined (in-vitro method) chlorophyll- a concentrations. Additionally, we tested a data-cleaning procedure to eliminate errors caused by different sources, such as light. The validation and testing were conducted at Lemming Experimental Mesocosm site (Denmark), in 24 experimental tanks (mesocosms) representing 2 different nutrient levels and 3 temperature scenarios. This study underlines that high-frequency in-situ fluorescence sensors can be useful, only if the user is aware of the possible interacting factors that can influence fluorescence readings (e.g. turbidity, daylight). Therefore, in-situ fluorescence sensors, when properly calibrated and validated, offer a valuable tool for monitoring harmful algal blooms. The high-frequency data provides insights into sudden variations in phytoplankton biomass, demonstrating the potential for improved real-time understanding of freshwater ecosystems.

12.
J Biotechnol ; 391: 64-71, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38844247

ABSTRACT

We investigated suitable culture conditions for the production of the blue pigment phycocyanin (PC) from the unique filamentous cyanobacteria Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. White, green, or red LED irradiation at 30 µmol photons/m2/s was effective for phycocyanin production when compared with Arthrospira platensis (Spirulina) sp. NIES-39, which is generally grown under high light irradiation. To investigate the safety of the cyanobacteria, ABRG5-3 cells were subjected to Ames (reverse mutation) tests and single oral-dose rat studies, which revealed non-mutagenic and non-toxic properties. When three purified phycocyanins (abPC, skPC, and spPC) were subjected to agarose gel electrophoresis, they showed different mobility, indicating that each phycocyanin has unique properties. abPC exhibited strong antiglycation activities as novel function.


Subject(s)
Cyanobacteria , Phycocyanin , Phycocyanin/pharmacology , Cyanobacteria/metabolism , Animals , Rats , Glycosylation , Male , Mutagenicity Tests
13.
Mol Biol Rep ; 51(1): 741, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874869

ABSTRACT

Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.


Subject(s)
Gastrointestinal Neoplasms , Phycocyanin , Humans , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Apoptosis/drug effects , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism
14.
Nutrients ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892686

ABSTRACT

Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.


Subject(s)
Dietary Supplements , Phycocyanin , Spirulina , Spirulina/chemistry , Phycocyanin/pharmacology , Humans , Phycobilins/pharmacology , Phycobiliproteins , Oxidative Stress/drug effects
15.
Food Res Int ; 186: 114362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729724

ABSTRACT

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.


Subject(s)
Microalgae , Phycocyanin , Microalgae/metabolism , Spirulina/chemistry , Spirulina/metabolism , Metabolic Engineering
16.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732545

ABSTRACT

Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.


Subject(s)
Curcumin , Neurodegenerative Diseases , Neuroprotective Agents , Resveratrol , Neuroprotective Agents/pharmacology , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Curcumin/pharmacology , Resveratrol/pharmacology , Ergothioneine/pharmacology , Biological Products/pharmacology , Biological Products/therapeutic use , Phycocyanin/pharmacology , Animals , Cyanobacteria , Agaricales/chemistry , Microalgae
17.
Article in English | MEDLINE | ID: mdl-38803172

ABSTRACT

This comprehensive review of Spirulina encompasses biotechnology, phycocyanin production, and purification. Bioactive compounds and vital nutrients are investigated during the study. The literature examines the potential therapeutic advantages and clinical applications of Spirulina. This analysis assesses Spirulina consumption and its associated health risks. The current review offers a comprehensive synthesis of the therapeutic applications as well as technologies utilized for the extraction and purification of phycocyanin. Moreover, this discourse delves into the examination of various advantageous techniques for extracting and purifying phycocyanin, encompassing physical, chemical, and enzymatic methods. The data derived from a multitude of studies strongly indicate the potential therapeutic applications of phycocyanin, encompassing its notable attributes as an antioxidant, anti-inflammatory agent, anticancer agent, antiviral agent, antimicrobial agent, antiallergic agent, anti-obesity agent, antihypertensive agent, and an immunological agent.

18.
Int J Biol Macromol ; 269(Pt 2): 131969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697419

ABSTRACT

In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.


Subject(s)
Alginates , Drug Carriers , Hydrogels , Pectins , Phycocyanin , Alginates/chemistry , Pectins/chemistry , Phycocyanin/chemistry , Hydrogels/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Biological Availability , Animals
19.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791192

ABSTRACT

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Subject(s)
Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
20.
Photodiagnosis Photodyn Ther ; 47: 104108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697450

ABSTRACT

AIMS: To assess the impact of various cavity disinfectants PC-PDT (Phycocyanin activated by Photodynamic therapy), PC@AgNPs-PDT (Phycocyanin and silver nanoparticles activated by PDT), and Nd: YAG laser on the survival rate of S.mutans and the bond integrity of composite restoration METHODS: Sixty human mandibular molars that scored 4 and 5 based on ICDAS criteria were included. The infected dentin was removed while the CAD was preserved based on visual, tactile, and staining assessment. S.mutans were cultured on the CAD of twenty samples. All the specimens were indiscriminately distributed into four groups based on cavity disinfection (n=20 each includes n = 5 each group incubated with S.mutans) Group 1: CHX, Group 2: Nd:YAG laser, Group 3: PC-PDT and Group 4: PC@AgNPs-PDT. S.mutans survival rate was assessed for each group(n = 5). Forty samples underwent composite bonding for SBS and failure mode assessment using universal testing machine (UTM) and stereomicroscope. The calculations for the mean and standard deviation (SD) and their comparison among different groups were performed using a one-way analysis of variance (ANOVA) and the Tukey post hoc test (p ≤ 0.05) RESULTS: CAD surface treated disinfected with PC@AgNPs-PDT yielded the lowest survival rates (0.13 ± 0.05 CFU/ml) and highest SBS (17.23 ± 1.45 MPa). Group 1 (CHX) unveiled the highest survival rate of S.mutans (0.33 ± 0.12 CFU/ml). However, Group 2 (Nd:YAG Laser) (11.87 ± 0.67 MPa) presented the lowest SBS CONCLUSION: The combination of Phycocyanin loaded with silver nanoparticles and activated with Photodynamic therapy demonstrates the highest antimicrobial potential and bond strength of composite restorations.


Subject(s)
Dental Caries , Dentin , Lasers, Solid-State , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Phycocyanin , Silver , Streptococcus mutans , Photochemotherapy/methods , Silver/pharmacology , Silver/therapeutic use , Humans , Streptococcus mutans/drug effects , Metal Nanoparticles/therapeutic use , Phycocyanin/pharmacology , Photosensitizing Agents/pharmacology , Lasers, Solid-State/therapeutic use , Dental Caries/microbiology , Dental Caries/drug therapy , Dentin/drug effects , Dentin/microbiology , Disinfection/methods , Shear Strength , Molar
SELECTION OF CITATIONS
SEARCH DETAIL
...