Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell Host Microbe ; 32(4): 557-572.e6, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38402614

ABSTRACT

Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.


Subject(s)
Bacteriophages , Bacteriophages/genetics , Escherichia coli/genetics , Bacteria , Genome, Bacterial
2.
Mol Biol Rep ; 51(1): 143, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236338

ABSTRACT

BACKGROUND: It has been interesting to compare the levels of antimicrobial resistance and the virulence characteristics of uropathogenic Escherichia coli (UPEC) strains of certain phylogenetic groups. The purpose of this study was to identify the frequency of phylogenetic groups, adhesin genes, antibiotic sensitivity patterns, and extended spectrum-lactamases (ESBLs) genes in hospital-acquired UPEC. METHODS: After UPEC isolation, the disc diffusion method was used to assess its susceptibility to antibiotics. Combination disc testing confirmed the existence of ESBL producers. Polymerase chain reaction (PCR) was used to detect genes for adhesin and ESBLs. RESULTS: One hundred and twenty-eight E. coli were isolated which had the highest resistance to tetracycline (96%) followed by cefoxitin (93%), cefepime (92%), ceftazidime (79%), aztreonam (77%) and sulfamethoxazole -trimethoprim (75%). About 57% of isolates were phenotypically ESBLs positive and they were confirmed by PCR. B2 phylogroup (41%) was the most frequent in E. coli isolates then group D (30%), group A (18%), and lastly group B1 (11%). ESBLs genes were more significantly prevalent in phylogroups B2 and D than other phylogroups (P < 0.001). Regarding adhesin genes, both fim H and afa were more significantly associated with group B2 than other groups (P < 0.009, < 0.032), respectively. In ESBL-positive isolates, both genes were more significantly detected compared to negative ones (P < 0.001). CONCLUSION: Phylogroups B2 and D of UPEC are important reservoirs of antimicrobial resistance and adhesion genes. Detection of ESBL-producing E. coli is important for appropriate treatment as well as for effective infection control in hospitals.


Subject(s)
Uropathogenic Escherichia coli , Phylogeny , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Hospitals , Trimethoprim, Sulfamethoxazole Drug Combination , beta-Lactamases/genetics
3.
Pathogens ; 12(9)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37764897

ABSTRACT

During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.

4.
Int J Food Microbiol ; 400: 110276, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37270987

ABSTRACT

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D. Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B + C, and D, respectively, although B and C strains were also detected in wine. This study was performed to better understand the distribution of the phylogroups in wine and cider. Their population dynamics were determined by qPCR all through wine and cider productions, and the behavior of the strains was analyzed in synthetic wines and ciders. Phylogroups A, B and C were all represented in grape must and throughout the alcoholic fermentation, but on the transition to MLF, only phylogroup A remained at high levels in all wine productions. In the case of cider, phylogroups A, B and C were detected in stable levels during the process. When they were tested in synthetic wine and cider, all phylogroups performed MLF, but with different survival rates depending on the ethanol content. In this sense, ethanol and fermentation kinetics are the main agent that drives the selection of phylogroup A strains in wine, while B and C strains dominates in cider containing less ethanol.


Subject(s)
Oenococcus , Vitis , Wine , Wine/microbiology , Fermentation , Vitis/microbiology , Oenococcus/genetics , Ethanol/analysis , Malates/analysis
5.
Antibiotics (Basel) ; 12(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36830200

ABSTRACT

Antimicrobials are routinely used in human and veterinary medicine. With repeated exposure, antimicrobials promote antibiotic resistance, which poses a threat to public health. In this study, we aimed to determine the susceptibility patterns, virulence factors, and phylogroups of E. coli isolates during the killing process in a bovine slaughterhouse. We analyzed 336 samples (from water, surfaces, carcasses, and feces), and 83.3% (280/336) were positive for E. coli. The most common phenotypic resistances that we detected were 50.7% (142/280) for tetracycline, 44.2% (124/280) for cephalothin, 34.6% (97/280) for streptomycin, and 36.7% (103/280) for ampicillin. A total of 82.4% of the isolates had resistance for at least one antimicrobial, and 37.5% presented multiresistance. We detected a total of 69 different phenotypic resistance patterns. We detected six other resistance-related genes, the most prevalent being tetA (22.5%) and strB (15.7%). The prevalence values of the virulence genes were 5.4% in hlyA, 1.4% in stx1, and 0.7% in stx2. The frequencies of the pathogenic strains (B2 and D) were 32.8% (92/280) and 67.1% (188/280) as commensals A and B1, respectively. E. coli isolates with pathogenic potential and multiresistance may represent an important source of dissemination and a risk to consumers.

6.
Foods ; 12(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36766128

ABSTRACT

Escherichia coli with multidrug resistance and ß-lactamase genes may constitute a great public health hazard due to the potential for their transmission to humans through the food chain. This study determined the prevalence, antibiotic resistance profiles, phylogroups, and ß-lactamase genes of E. coli isolates from chicken carcasses marketed in Mansoura, Egypt. Interestingly, E. coli was detected in 98% (98/100) of the chicken carcasses examined, which seemed among the highest contamination rates by E. coli worldwide. From the 425 genetically verified uidA gene-positive E. coli, 85 isolates were further studied for antimicrobial resistance profiles, phylogroups, and ß-lactamase genes. Interestingly, 89.41% of E. coli (76/85) strains tested against 24 different antibiotics were multidrug-resistant. Of the examined 85 E. coli isolates, 22 (25.88%) isolates harbored blaCTX-M and were resistant to ampicillin, cefazoline, and ceftriaxone, while three of them were resistant to ceftazidime besides. Nine (10.59%) E. coli strains harbored AmpC- ß-lactamase blaCMY and were resistant to ampicillin. One isolate co-carried blaCMY and blaCTX-M genes, though it was negative for the blaTEM gene. Of the 35 isolates that harbored either extended-spectrum ß-lactamase (ESBL) and/or AmpC ß-lactamase genes, six strains (17.14%) were assigned to pathogenic phylogroup F and one to phylogroup E, whereas 28 (80%) isolates belonged to commensal phylogenetic groups.

7.
J Infect Public Health ; 16(2): 266-271, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621204

ABSTRACT

BACKGROUND: Neonatal sepsis has high incidence with significant mortality and morbidity rates in Pakistan. We investigated common etiological patterns of neonatal sepsis at a tertiary care setup. METHODS: 90 pus and blood, gram negative and gram positive bacterial isolates were analyzed for virulence and antibiotic resistance gene profiling using PCR and disc diffusion methods. RESULTS: Staphylococcus aureus showed strong association with neonatal sepsis (43 %) followed by Citrobacter freundii (21 %), Pseudomonas aeruginosa (13 %), Escherichia coli (15 %) and Salmonella enterica (8 %). Molecular typing of E. coli isolates depicted high prevalence of the virulent F and B2 phylogroups, with 4 hypervirulent phylogroup G isolates. 76.9 % S. aureus isolates showed presence of Luk-PV, encoding for Panton-valentine leucocidin (PVL) toxin with majority also carrying MecA gene and classified as methicillin resistant S. aureus (MRSA). ecpA, papC, fimH and traT virulence genes were detected in E. coli and Salmonella isolates. 47 % Citrobacter freundii isolates carried the shiga like toxin SltII B. Antimicrobial resistance profiling depicted common resistance to cephalosporins, beta lactams and fluoroquinolones. CONCLUSION: Presence of PVL carrying MRSA and multidrug resistant gram negative bacteria, all isolated from late onset sepsis neonates indicate a predominant nosocomial transmission pattern which may complicate management of the disease in NICU setups.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Neonatal Sepsis , Staphylococcal Infections , Humans , Infant, Newborn , Anti-Bacterial Agents/pharmacology , Cross Infection/epidemiology , Escherichia coli , Exotoxins/genetics , Leukocidins/genetics , Microbial Sensitivity Tests , Pakistan/epidemiology , Prevalence , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Tertiary Care Centers , Drug Resistance, Multiple
8.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688768

ABSTRACT

The rates of antibiotic resistance in extraintestinal pathogenic Escherichia coli (ExPEC) have increased significantly in recent years. This study aims at studying antibiotic resistance, virulence factors (VFs), and the phylogenetic background of ExPEC isolated from Palestinian patients. A total of 42 ExPEC isolates were collected from patients with extraintestinal infections in three Palestinian hospitals. Antimicrobial susceptibility was studied by the disk diffusion method. Resistance/virulence-gene profiles, phylogenetic groups, and integron profiles of these isolates were studied by PCR. The susceptibility to carbapenems was detected in 90.5% of the isolates. Half of the isolates were resistant to ampicillin and sulfamethoxazole/trimethoprim, and 33.3% of the isolates were multidrug-resistant. BlaTEM-1 was detected in seven isolates and blaOXA-1 was identified in one isolate. Sul, qnrA, and aac(6')-Ib-cr genes were found in 12, 3, and 2 isolates, respectively. Class 1 integron has been identified in 10 isolates with the gene cassette arrangement dhfr17 + aadA5. The isolates were distributed between phylogroups B2 and D. The presence of VFs, antibiotic resistance genes, and class 1 integron associated with phylogenetic groups (B2 and D) among multidrug-resistant (MDR)-ExPEC recovered from urinary tract infections (UTIs) patients will complicate infection management and increase therapy failure. Routine screening of antibiotic resistance is important for appropriate and efficient empirical treatment.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Humans , Escherichia coli/genetics , Phylogeny , Arabs , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Virulence Factors/genetics , Drug Resistance, Multiple, Bacterial/genetics
9.
Antibiotics (Basel) ; 11(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36358120

ABSTRACT

In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of blaCTX-M1 and blaCTX-M15 genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly blaCTX-M14 and blaCTX-M15 genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL.

10.
Infect Genet Evol ; 106: 105380, 2022 12.
Article in English | MEDLINE | ID: mdl-36283634

ABSTRACT

Escherichia coli is a leading cause of human enteric diseases worldwide. The rapid and accurate causal agent identification to a particular source represents a crucial step in the establishment of safety and health measures in the affected human populations and would thus provide insights into the relationship of traits that may contribute for pathogen persistence in a particular reservoir. The objective of the present study was to characterize over two hundred E. coli strains from different isolation sources in Mexico by conducting a correspondence analysis to explore associations with the detected phylogenetic groups. The results indicated that E. coli strains, recovered from distinct sources in Mexico, were classified into phylogroups B1 (35.8%), A (27.8%), and D (12.3%) and were clustered to particular clades according to the predicted phylogroups. The results from correspondence analysis showed that E. coli populations from distinct sources in Mexico, belonging to different phylogroups, were not dispersed randomly and were associated with a particular isolation source. Phylogroup A was strongly associated with human sources, and the phylogroup B1 showed a significant relationship with food sources. Additionally, phylogroup D was also related to human sources. Phylogroup B2 was associated with herbivorous and omnivorous mammals. Moreover, common virulence genes in the examined E. coli strains, assigned to all phylogroups, were identified as essential markers for survival and invasion in the host. Although virulence profiles varied among the detected phylogroups, E. coli strains belonging to phylogroup D, associated with humans, were found to contain the largest virulence gene repertoire conferring for persistence and survival in the host. In summary, these findings provide fundamental information for a better characterization of pathogenic E. coli, recovered from distinct isolation sources in Mexico and would assist in the development of better tools for identifying potential transmission routes of contamination.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Humans , Phylogeny , Virulence/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/pathology , Virulence Factors/genetics , Mammals
11.
Microorganisms ; 10(9)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36144444

ABSTRACT

Understanding Shiga toxin subtypes in E. coli from reservoir hosts may give insight into their significance as human pathogens. The data also serve as an epidemiological tool for source tracking. We characterized Shiga toxin subtypes in 491 goat E. coli isolates (STEC) from the mid-Atlantic US region (stx1 = 278, stx2 = 213, and stx1/stx2 = 95). Their serogroups, phylogroups, M13RAPD genotypes, eae (intimin), and hly (hemolysin) genes were also evaluated. STEC-positive for stx1 harbored Stx1c (79%), stx1a (21%), and stx a/c (4%). Those positive for Stx2 harbored stx2a (55%) and Stx2b (32%), while stx2a/stx2d and stx2a/stx2b were each 2%. Among the 343 STEC that were serogrouped, 46% (n = 158) belonged to O8, 20% (n = 67) to 076, 12% (n = 42) to O91, 5% (n = 17) to O5, and 5% (n = 18) to O26. Less than 5% belonged to O78, O87, O146, and O103. The hly and eae genes were detected in 48% and 14% of STEC, respectively. Most belonged to phylogroup B1 (73%), followed by D (10%), E (8%), A (4%), B2 (4%), and F (1%). M13RAPD genotyping revealed clonality of 091, O5, O87, O103, and O78 but higher diversity in the O8, O76, and O26 serogroups. These results indicate goat STEC belonged to important non-O157 STEC serogroups, were genomically diverse, and harbored Shiga toxin subtypes associated with severe human disease.

12.
Foodborne Pathog Dis ; 19(9): 637-647, 2022 09.
Article in English | MEDLINE | ID: mdl-35925756

ABSTRACT

An increasing number of outbreaks are caused by foodborne pathogens such as Escherichia coli and Salmonella, which often harbor antimicrobial resistance (AMR) genes. We previously demonstrated the transmission of pathogens from animal operations to produce fields on sustainable farms, which illustrated an urgent need to develop and implement novel prevention methods and remediation practices such as the vegetative buffer zone (VBZ) to prevent this movement. The focus of this study was to use whole-genome sequencing (WGS) to characterize the AMR, virulence, and single-nucleotide polymorphism profile of 15 Salmonella and 128 E. coli isolates collected from small-scale dairy and poultry farms on a research station in North Carolina. Phenotypically, seven E. coli and three Salmonella isolates displayed resistance to antibiotics such as tetracycline (n = 4), ampicillin (n = 4), nalidixic acid (n = 3), chloramphenicol (n = 2), sulfisoxazole (n = 1), and streptomycin (n = 1). A single E. coli isolate was found to be resistant to five different antibiotic class types and possessed the blaTEM-150 resistance gene. Virulence genes that facilitate toxin production and cell invasion were identified. Mauve analysis of the E. coli isolates identified seven clusters (dairy-six and poultry-one) indicating that transmission is occurring from animal operations to fresh produce fields and the surrounding environment when the VBZ is denudated. This suggests that the VBZ is a useful barrier to reducing the transmission of enteric pathogens in agricultural systems. Our study demonstrates the prevalence of AMR and virulence genes on small-scale sustainable farms and highlights the advantage of using WGS to assess the impact of the VBZ to reduce the transmission of E. coli and Salmonella.


Subject(s)
Escherichia coli Infections , Escherichia coli , Agriculture , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/veterinary , Microbial Sensitivity Tests , Poultry , Salmonella , Whole Genome Sequencing
13.
Antibiotics (Basel) ; 11(2)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35203805

ABSTRACT

Escherichia coli is classified into four major phylogenetic groups (A, B1, B2, and D) that are associated with antibiotic resistance genes. Although antibiotic-resistant E. coli is commonly detected in municipal wastewater, little is known about the relationship between the phylogenetic groups and antibiotic-resistant E. coli in wastewater. In this study, the survival of E. coli in wastewater and the changes to the relationships between each phylogroup and the antibiotic-resistant profiles of E. coli isolates from wastewater were investigated under aerobic conditions for 14 days. The isolates were classified into the phylogroups A, B1, B2, and D or others by multiplex PCR. In addition, the susceptibility of the isolates to 11 antibiotics was assessed with the minimum inhibitory concentration (MIC) assay. While E. coli counts decreased in the wastewater with time under aerobic conditions, the prevalence of phylogroup B2 had increased to 73% on day 14. Furthermore, the MIC assay revealed that the abundance of antibiotic-resistant E. coli also increased on day 14. After batch-mixing the experiments under aerobic conditions, the surviving antibiotic-resistant E. coli included mainly multidrug-resistant and beta-lactamase-producing isolates belonging to phylogroup B2. These results suggest that the phylogroup B2 isolates that have acquired antibiotic resistance had a high survivability in the treated wastewater.

14.
Environ Sci Pollut Res Int ; 29(26): 39593-39609, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35107727

ABSTRACT

Escherichia coli, as a global source of antimicrobial resistance, is a serious veterinary and public health concern. The transmission of pathogenic multidrug-resistant (MDR) E. coli within diarrheic calves and its correlation with Musca domestica and milk strains have been investigated. In total, 110, 80, and 26 E. coli strains were obtained from 70 rectal swabs from diarrheic calves, 60 milk samples and 20 M. domestica, respectively. Molecular pathotyping of E. coli revealed the presence of pathogenic E. coli with a higher percentage of shigatoxigenic strains within diarrheic calves and M. domestica at 46.4% and 34.6%, respectively. Phenotypic antimicrobial resistance revealed higher ß-lactams resistance except for cefquinome that exhibited low resistance in M.domestica and milk strains at 30.8% and 30%, respectively. The extended-spectrum cephalosporin (ESC) resistant strains were detected within fecal, M. domestica, and milk strains at 69.1%, 73.1%, and 71.3%, respectively. All E. coli strains isolated from M. domestica exhibited MDR, while fecal and milk strains were harboring MDR at 99.1% and 85%, respectively. Molecular detection of resistant genes revealed the predominance of the blaTEM gene, while none of these strains harbored the blaOXA gene. The highest percentages for blaCTXM and blaCMYII genes were detected in M. domestica strains at 53.8% and 61.5%, respectively. Regarding colistin resistance, the mcr-1 gene was detected only in fecal and milk strains at 35.5% and 15%, respectively. A high frequency of phylogroup B2 was detected within fecal and M. domestica strains, while milk strains were mainly assigned to the B1 phylogroup. Pathogenic E. coli strains with the same phenotypic and genotypic antimicrobial resistance and phylogroups were identified for both diarrheic calves and M. domestica, suggesting that the possible role of M. domestica in disseminating pathogenic strains and antimicrobial resistance in dairy farms.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Escherichia coli Proteins , Houseflies , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Milk
15.
Microb Pathog ; 163: 105378, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34982979

ABSTRACT

Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.


Subject(s)
Escherichia coli Infections , Meningitis , Sepsis , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Integrons , Sepsis/veterinary
16.
Int J Infect Dis ; 114: 226-232, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34775113

ABSTRACT

BACKGROUND: Diarrhoeagenic Escherichia coli pose a significant risk to human health. As such, determining the source(s) of these bacteria when isolated from patients with diarrhoea is an important step in disease prevention. OBJECTIVES: To identify the presence of genes coding for virulence and phylogroups among E. coli isolated from children hospitalized due to diarrhoea in Limpopo Province, South Africa. METHODS: E. coli isolates were identified using the VITEK-2 automated system. An 11-gene multiplex polymerase chain reaction (PCR) was used to differentiate five pathogenic types of E. coli: enteroaggregative (EAEC), enteroinvasive (EIEC), enterohaemorrhagic (EHEC), enteropathogenic (EPEC) and enterotoxigenic (ETEC). The Clermont quadruplex PCR method was used to identify phylogroups of isolates. RESULTS: From the 133 isolates tested, 79 were confirmed as E. coli. Of these, 19.0% (15/79) were commensals and 81.0% (64/79) were positive for at least one pathotype, of which ETEC was predominant (16.5%, 13/79), followed by EAEC (10.1%, 8/79), EPEC (7.6%, 6/79) and EHEC (2.5%, 2/79). Hybrid pathotypes were also detected and EAEC/ETEC was predominant (25.3%, 20/79). Phylogroup B2 was predominant (30.4%, 24/79), followed by phylogroup B1 (22.8%, 18/79), and phylogroups C and E (both 12.7%, 10/79). Just over 6% (5/79) of isolates were non-typable. CONCLUSION: There was a high distribution of diarrhoeagenic E. coli associated with different phylogroups among children living in Limpopo Province, South Africa. This emphasizes the importance of future monitoring of virulence and phylogroup distribution of E. coli isolates in this province in particular and in South Africa as a whole.


Subject(s)
Escherichia coli Infections , Escherichia coli , Child , Diarrhea , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Humans , Multiplex Polymerase Chain Reaction , Phylogeny , Prevalence , South Africa/epidemiology , Virulence/genetics
17.
Appl Environ Microbiol ; 88(1): e0148721, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34669436

ABSTRACT

Akkermansia muciniphila is a mucin-degrading bacterium found in the human gut and is often associated with positive human health. However, despite being detected by as early as 1 month of age, little is known about the role of Akkermansia in the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria has been shown to grow well on HMOs and mucin. We therefore examined the ability of genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85 genomes representing the four known Akkermansia phylogroups to examine their metabolic potential to degrade HMOs. Furthermore, we examined the ability of representative isolates to grow on individual HMOs in a mucin background and analyzed the resulting metabolites. All Akkermansia genomes were equipped with an array of glycoside hydrolases associated with HMO deconstruction. Representative strains were all able to grow on HMOs with various efficiencies and growth yields. Strain CSUN-19, belonging to the AmIV phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs. This activity may be partially related to the increased copy numbers and/or the enzyme activities of the α-fucosidases, α-sialidases, and ß-galactosidases. This study examines the utilization of individual purified HMOs by Akkermansia strains representing all known phylogroups. Further studies are required to examine how HMO ingestion influences gut microbial ecology in infants harboring different Akkermansia phylogroups. IMPORTANCE Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk and provide several benefits to developing infants, including the recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely considered beneficial bacteria and have been detected in colostrum, breast milk, and young infants. A. muciniphila MucT, belonging to the AmI phylogroup, contributes to the HMO deconstruction capacity of the infant. Here, using phylogenomics, we examined the genomic capacities of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each phylogroup contained differences in their genomic capacities to deconstruct HMOs, and representative strains of each phylogroup were able to grow using HMOs. These Akkermansia-HMO interactions potentially influence gut microbial ecology in early life, a critical time for the development of the gut microbiome and infant health.


Subject(s)
Gastrointestinal Microbiome , Milk, Human , Akkermansia , Female , Humans , Infant , Oligosaccharides , Verrucomicrobia
18.
Microorganisms ; 11(1)2022 12 23.
Article in English | MEDLINE | ID: mdl-36677337

ABSTRACT

Periodontal disease is caused by different gram-negative anaerobic bacteria; however, Escherichia coli has also been isolated from periodontitis and its role in periodontitis is less known. This study aimed to determine the variability in virulence genotype, antibiotic resistance phenotype, biofilm formation, phylogroups, and serotypes in different emerging periodontal strains of Escherichia coli, isolated from patients with periodontal disease and healthy controls. E. coli, virulence genes, and phylogroups, were identified by PCR, antibiotic susceptibility by the Kirby-Bauer method, biofilm formation was quantified using polystyrene microtiter plates, and serotypes were determined by serotyping. Although E. coli was not detected in the controls (n = 70), it was isolated in 14.7% (100/678) of the patients. Most of the strains (n = 81/100) were multidrug-resistance. The most frequent adhesion genes among the strains were fimH and iha, toxin genes were usp and hlyA, iron-acquisition genes were fyuA and irp2, and protectin genes were ompT, and KpsMT. Phylogroup B2 and serotype O25:H4 were the most predominant among the strains. These findings suggest that E. coli may be involved in periodontal disease due to its high virulence, multidrug-resistance, and a wide distribution of phylogroups and serotypes.

19.
Arch Microbiol ; 204(1): 32, 2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34923609

ABSTRACT

We investigated the 16S-23S rRNA intergenic spacer region (ISR)-PCR and the phylogenetic PCR analyses of 150 Escherichia coli isolates as tools to explore their diversity, according to their sampling origins, and their relative dominance in these sampling sources. These genetic markers are used to explore phylogenetic and genetic relationships of these 150 E. coli isolates recovered from different environmental sources (water, food, animal, human and vegetables). These isolates are tested for their biochemical pattern and later genotyped through the 16S-23S rRNA intergenic spacer PCR amplification and their polymorphism investigation of PCR-amplified 16S-23S rDNA ITS. The main results of the pattern band profile revealed one to four DNA fragments. Distributing 150 E. coli isolates according to their ITS and using RS-PCR, revealed four genotypes and four subtypes. The DNA fragment size ranged from 450 to 550 bp. DNA band patterns analysis revealed considerable genetic diversity in interspecies. Thus, the 450 and 550 bp sizes of the common bands in all E. coli isolates are highly diversified. Genotype I appeared as the most frequent with 77.3% (116 isolates), genotype II with 12% (18 isolates); genotype III with 9.7% (14 isolates), and the IV rarely occurred with 4% (2 isolates). Distributing the E. coli phylogroups showed 84 isolates (56%) of group A, 35 isolates (23.3%) of group B1, 28 isolates (18.7%) of group B2 and only three isolates (2%) of group D.


Subject(s)
Escherichia coli , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Escherichia coli/classification , Escherichia coli/genetics , Food Microbiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Tunisia , Vegetables/microbiology , Water Microbiology
20.
Microb Drug Resist ; 27(11): 1525-1534, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33956516

ABSTRACT

In Gabon, few data exist on extended-spectrum beta-lactamases-producing Enterobacteriaceae (ESBL-PE). This study investigated ESBL-PE prevalence and the associated resistance genes in clinical samples (n = 5,956) and anal swabs (n = 78) analyzed in eight hospitals and a medical analysis laboratory in Gabon from January 2016 to March 2018. Matrix-Assisted Laser Desorption Ionization-Time Of Flight (MALDI-TOF) mass spectrometry analysis identified 790 Enterobacteriaceae isolates (n = 712 clinical samples and n = 78 fecal samples). ESBL-PE prevalence (Müller-Hinton agar disk diffusion method and double-disk synergy test) was 11.8% (84/712) in clinical samples (15.5% from inpatients and 7.1% from outpatients; p < 0.05) and 16.7% (13/78) in carriage isolates. Most ESBL-PE were isolated from urine samples (46/84). In clinical and carriage ESBL-PE isolates, Escherichia coli was predominant (42.8% and 61.5%; phylogroups A, B1, B2, and D), followed by Klebsiella pneumoniae (41.7% and 23.1%). Multiplex PCR and bi-directional sequencing showed that CTX-M group 1 (blaCTX-M-15) was predominant in clinical and carriage ESBL-PE (94% and 92.3%) among which 85.7% and 92.3% also harbored one to three ß-lactamase-encoding genes (blaTEM-1, blaOXA-1, or blaSHV-1). Resistance genes were detected in all hospitals in Gabon. ESBL-PE prevalence in Gabon has not reached alarming levels yet, but corrective and monitoring measures are needed to curb their emergence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , beta-Lactamases/genetics , Aged , Female , Gabon , Genes, Bacterial , Humans , Male , Microbial Sensitivity Tests , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...