Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38697045

ABSTRACT

Whole-body counters (WBC) are used in internal dosimetry forin vivomonitoring in radiation protection. The calibration processes of a WBC set-up include the measurement of a physical phantom filled with a certificate radioactive source that usually is referred to a standard set of individuals determined by the International Commission on Radiological Protection (ICRP). The aim of this study was to develop an anthropomorphic and anthropometric female physical phantom for the calibration of the WBC systems. The reference female computational phantom of the ICRP, now called RFPID (Reference Female Phantom for Internal Dosimetry) was printed using PLA filament and with an empty interior. The goal is to use the RFPID to reduce the uncertainties associated within vivomonitoring system. The images which generated the phantom were manipulated using ImageJ®, Amide®, GIMP®and the 3D Slicer®software. RFPID was split into several parts and printed using a 3D printer in order to print the whole-body phantom. The newly printed physical phantom RFPID was successfully fabricated, and it is suitable to mimic human tissue, anatomically similar to a human body i.e., size, shape, material composition, and density.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Whole-Body Counting , Humans , Female , Whole-Body Counting/methods , Calibration , Radiation Protection/methods , Radiation Protection/instrumentation , Radiometry/methods , Radiometry/instrumentation , Anthropometry
2.
J Appl Clin Med Phys ; 24(5): e13917, 2023 May.
Article in English | MEDLINE | ID: mdl-36840512

ABSTRACT

The purpose of this study was to evaluate the deformable image registration (DIR) accuracy using various CT scan parameters with deformable thorax phantom. Our developed deformable thorax phantom (Dephan, Chiyoda Technol Corp, Tokyo, Japan) was used. The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm, which simulates the chest wall. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges with 48 Lucite beads and 48 nylon cross-wires which simulate the vascular and bronchial bifurcations of the lung. Peak-exhale and peak-inhale images of the deformable phantom were acquired using a CT scanner (Aquilion LB, TOSHIBA). To evaluate the impact of CT scan parameters on DIR accuracy, we used the four tube voltages (80, 100, 120, and 135 kV) and six reconstruction algorithms (FC11, FC13, FC15, FC41, FC44, and FC52). Intensity-based DIR was performed between the two images using MIM Maestro (MIM software, Cleveland, USA). Fiducial markers (beads and cross-wires) based target registration error (TRE) was used for quantitative evaluation of DIR. In case with different tube voltages, the range of average TRE were 4.44-5.69 mm (reconstruction algorithm: FC13). In case with different reconstruction algorithms, the range of average TRE were 4.26-4.59 mm (tube voltage: 120 kV). The TRE were differed by up to 3.0 mm (3.96-6.96 mm) depending on the combination of tube voltage and reconstruction algorithm. Our result indicated that CT scan parameters had moderate impact of TRE, especially for reconstruction algorithms for the deformable thorax phantom.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Software , Algorithms , Thorax , Phantoms, Imaging
3.
Med Phys ; 50(2): 750-762, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36310346

ABSTRACT

PURPOSE: Aim of this study is to assess the repeatability of radiomic features on magnetic resonance images (MRI) and their stability to variations in time of repetition (TR), time of echo (TE), slice thickness (ST), and pixel spacing (PS) using vegetable phantoms. METHODS: The organic phantom was realized using two cucumbers placed inside a cylindrical container, and the analysis was performed using T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted images. One dataset was used to test the repeatability of the radiomic features, whereas other four datasets were used to test the sensitivity of the different MRI sequences to image acquisition parameters (TR, TE, ST, and PS). Four regions of interest (ROIs) were segmented: two for the central part of each cucumber and two for the external parts. Radiomic features were extracted from each ROI using Pyradiomics. To assess the effect of preprocessing on the reduction of variability, features were extracted both before and after the preprocessing. The coefficient of variation (CV) and intra-class correlation coefficient (ICC) were used to evaluate variability. RESULTS: The use of intensity standardization increased the stability for the first-order statistics features. Shape and size features were always stable for all the analyses. Textural features were particularly sensitive to changes in ST and PS, although some increase in stability could be obtained by voxel size resampling. When images underwent image preprocessing, the number of stable features (ICC > 0.75 and mean absolute CV < 0.3) was 33 for apparent diffusion coefficient (ADC), 52 for T1w, and 73 for T2w. CONCLUSIONS: The most critical source of variability is related to changes in voxel size (either caused by changes in ST or PS). Preprocessing increases features stability to both test-retest and variation of the image acquisition parameters for all the types of analyzed MRI (T1w, T2w, and ADC), except for ST.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Phantoms, Imaging , Reference Standards , Image Processing, Computer-Assisted/methods
4.
Med Phys ; 49(9): 5819-5829, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35838056

ABSTRACT

BACKGROUND: Hybrid imaging (e.g., positron emission tomography [PET]/computed tomography [CT], PET/magnetic resonance imaging [MRI]) helps one to visualize and quantify morphological and physiological tumor characteristics in a single study. The noninvasive characterization of tumor heterogeneity is essential for grading, treatment planning, and following-up oncological patients. However, conventional (CONV) image-based parameters, such as tumor diameter, tumor volume, and radiotracer activity uptake, are insufficient to describe tumor heterogeneities. Here, radiomics shows promise for a better characterization of tumors. Nevertheless, the validation of such methods demands imaging objects capable of reflecting heterogeneities in multi-modality imaging. We propose a phantom to simulate tumor heterogeneity repeatably in PET, CT, and MRI. METHODS: The phantom consists of three 50-ml plastic tubes filled partially with acrylic spheres of S1: 1.6 mm, S2: 50%(1.6 mm)/50%(6.3 mm), or S3: 6.3-mm diameter. The spheres were fixed to the bottom of each tube by a plastic grid, yielding one sphere free homogeneous region and one heterogeneous (S1, S2, or S3) region per tube. A 3-tube phantom and its replica were filled with a fluorodeoxyglucose (18F) solution for test-retest measurements in a PET/CT Siemens TPTV and a PET/MR Siemens Biograph mMR system. A number of 42 radiomic features (10 first order and 32 texture features) were calculated for each phantom region and imaging modality. Radiomic features stability was evaluated through coefficients of variation (COV) across phantoms and scans for PET, CT, and MRI. Further, the Wilcoxon test was used to assess the capability of stable features to discriminate the simulated phantom regions. RESULTS: The different patterns (S1-S3) did present visible heterogeneity in all imaging modalities. However, only for CT and MRI, a clear visual difference was present between the different patterns. Across all phantom regions in PET, CT, and MR images, 10, 16, and 21 features out of 42 evaluated features in total had a COV of 10% or less. In particular, CONV, histogram, and gray-level run length matrix features showed high repeatability for all the phantom regions and imaging modalities. Several of repeatable texture features allowed the image-based discrimination of the different phantom regions (p < 0.05). However, depending on the feature, different pattern discrimination capabilities were found for the different imaging modalities. CONCLUSION: The proposed phantom appears suitable for simulating heterogeneities in PET, CT, and MRI. We demonstrate that it is possible to select radiomic features for the readout of the phantom. Most of these features had been shown to be relevant in previous clinical studies.


Subject(s)
Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Phantoms, Imaging , Plastics , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography
5.
Med Phys ; 49(4): 2582-2589, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35191035

ABSTRACT

PURPOSE: The purpose of this work was to characterize and improve the ability of fused filament fabrication to create anthropomorphic physical phantoms for CT research. Specifically, we sought to develop the ability to create multiple levels of X-ray attenuation with a single material. METHODS: CT images of 3D printed cylinders with different infill angles and printing patterns were assessed by comparing their 2D noise power spectra to determine the conditions that produced minimal and uniform noise. A backfilling approach in which additional polymer was extruded into an existing 3D printed background layer was developed to create multiple levels of image contrast. RESULTS: A print with nine infill angles and a rectilinear infill pattern was found to have the best uniformity, but the printed objects were not as uniform as a commercial phantom. An HU dynamic range of 600 was achieved by changing the infill percentage from 40% to 100%. The backfilling technique enabled control of up to eight levels of contrast within one object across a range of 200 HU, similar to the range of soft tissue. A contrast detail phantom with six levels of contrast and an anthropomorphic liver phantom with four levels of contrast were printed with a single material. CONCLUSION: This work improves the uniformity and levels of contrast that can be achieved with fused filament fabrication, thereby enabling researchers to easily create more detailed physical phantoms, including realistic, anthropomorphic textures.


Subject(s)
Printing, Three-Dimensional , Tomography, X-Ray Computed , Abdomen , Phantoms, Imaging , Tomography, X-Ray Computed/methods
6.
Biomed Phys Eng Express ; 8(5)2022 07 13.
Article in English | MEDLINE | ID: mdl-34736235

ABSTRACT

A phantom is a highly specialized device, which mimic human body, or a part of it. There are three categories of phantoms: physical phantoms, physiological phantoms, and computational phantoms. The phantoms have been utilized in medical imaging and radiotherapy for numerous applications. In radiotherapy, the phantoms may be used for various applications such as quality assurance (QA), dosimetry, end-to-end testing, etc In thoracic radiotherapy, unique QA problems including tumor motion, thorax deformation, and heterogeneities in the beam path have complicated the delivery of dose to both tumor and organ at risks (OARs). Also, respiratory motion is a major challenge in radiotherapy of thoracic malignancies, which can be resulted in the discrepancies between the planned and delivered doses to cancerous tissue. Hence, the overall treatment procedure needs to be verified. Anthropomorphic thorax phantoms, which are made of human tissue-mimicking materials, can be utilized to obtain the ground truth to validate these processes. Accordingly, research into new anthropomorphic thorax phantoms has accelerated. Therefore, the review is intended to summarize the current status of the commercially available and in-house-built anthropomorphic physical/physiological thorax phantoms in radiotherapy. The main focus is on anthropomorphic, deformable thorax motion phantoms. This review also discusses the applications of three-dimensional (3D) printing technology for the fabrication of thorax phantoms.


Subject(s)
Radiometry , Thorax , Humans , Motion , Phantoms, Imaging , Printing, Three-Dimensional , Radiometry/methods
7.
Magn Reson Med ; 87(1): 292-301, 2022 01.
Article in English | MEDLINE | ID: mdl-34435698

ABSTRACT

PURPOSE: Diffusion MRI provides a valuable tool for imaging tissue microstructure. However, due to the lack of related experimental methods and specially designed phantoms, no experimental study has been conducted yet to quantitatively assess the effects of membrane permeability, intracellular volume fraction (IVF), and intracellular diffusivity on the apparent diffusion coefficient (ADC) obtained from diffusion weighted imaging (DWI), and the effects of membrane permeability on the apparent exchange rate (AXR) obtained from filter exchange imaging (FEXI). METHODS: A series of phantoms with three adjustable parameters was designed to mimic tissue microstructural properties including membrane permeability, IVF, and intracellular diffusivity. Quantitative experiments were conducted to assess the effects of these properties on ADC and AXR. DWI scans were performed to obtain axial and radial ADC values. FEXI scans were performed to obtain AXR values. RESULTS: Axial ADC values range from 1.148 µm2 /ms to 2.157 µm2 /ms, and radial ADC values range from 0.904 µm2 /ms to 2.067 µm2 /ms. Radial ADC decreased with a decrease in fiber permeability. Decreased axial and radial ADC values with increased intra-fiber volume fraction, and increased polyvinylpyrrolidone (PVP) concentration of the intra-fiber space were observed. AXR values range from 2.1 s-1 to 4.9 s-1 . AXR increases with fiber permeability. CONCLUSION: The proposed phantoms can quantitatively evaluate the effects of mimicking tissue microstructural properties on ADC and AXR. This new phantom design provides a potential method for further understanding the biophysical mechanisms underlying the change in ADC and diffusion exchange.


Subject(s)
Diffusion Magnetic Resonance Imaging , Cell Membrane Permeability , Diffusion , Phantoms, Imaging
8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-965557

ABSTRACT

@#The radiation risk caused by CT examination is of great concern. Organ dose is considered to be the most significant technical parameter for quantifying the patient radiation dose and assessing the corresponding risk. At present, the methods to obtain patient organ dose caused by CT examination mainly include physical phantom measurement, direct human body measurement, dose conversion coefficient, Monte Carlo simulation, and dose calculation software. Although different methods have their own characteristics and application, the individualization of organ dose is always the goal of radiation protection and dosimetry research. Patient-specific phantom developed with artificial intelligence and GPU-accelerated Monte Carlo simulation make it possible to calculate the patient-specific organ dose, and the patient-specific organ dose extrapolated by the CT detector signal provides a new solution.

9.
J Appl Clin Med Phys ; 22(7): 255-265, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34159719

ABSTRACT

PURPOSE: This study aimed to develop a physical geometric phantom for the deformable image registration (DIR) credentialing of radiotherapy centers for a clinical trial and tested the feasibility of the proposed phantom at multiple domestic and international institutions. METHODS AND MATERIALS: The phantom reproduced tumor shrinkage, rectum shape change, and body shrinkage using several physical phantoms with custom inserts. We tested the feasibility of the proposed phantom using 5 DIR patterns at 17 domestic and 2 international institutions (21 datasets). Eight institutions used the MIM software (MIM Software Inc, Cleveland, OH); seven used Velocity (Varian Medical Systems, Palo Alto, CA), and six used RayStation (RaySearch Laboratories, Stockholm, Sweden). The DIR accuracy was evaluated using the Dice similarity coefficient (DSC) and Hausdorff distance (HD). RESULTS: The mean and one standard deviation (SD) values (range) of DSC were 0.909 ± 0.088 (0.434-0.984) and 0.909 ± 0.048 (0.726-0.972) for tumor and rectum proxies, respectively. The mean and one SD values (range) of the HD value were 5.02 ± 3.32 (1.53-20.35) and 5.79 ± 3.47 (1.22-21.48) (mm) for the tumor and rectum proxies, respectively. In three patterns evaluating the DIR accuracy within the entire phantom, 61.9% of the data had more than a DSC of 0.8 in both tumor and rectum proxies. In two patterns evaluating the DIR accuracy by focusing on tumor and rectum proxies, all data had more than a DSC of 0.8 in both tumor and rectum proxies. CONCLUSIONS: The wide range of DIR performance highlights the importance of optimizing the DIR process. Thus, the proposed method has considerable potential as an evaluation tool for DIR credentialing and quality assurance.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Credentialing , Humans , Radiotherapy Planning, Computer-Assisted , Sweden , Tomography, X-Ray Computed
10.
J Med Imaging (Bellingham) ; 8(1): 013503, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532513

ABSTRACT

Purpose: Brain image volumetric measurements (BVM) methods have been used to quantify brain tissue volumes using magnetic resonance imaging (MRI) when investigating abnormalities. Although BVM methods are widely used, they need to be evaluated to quantify their reliability. Currently, the gold-standard reference to evaluate a BVM is usually manual labeling measurement. Manual volume labeling is a time-consuming and expensive task, but the confidence level ascribed to this method is not absolute. We describe and evaluate a biomimetic brain phantom as an alternative for the manual validation of BVM. Methods: We printed a three-dimensional (3D) brain mold using an MRI of a three-year-old boy diagnosed with Sturge-Weber syndrome. Then we prepared three different mixtures of styrene-ethylene/butylene-styrene gel and paraffin to mimic white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The mold was filled by these three mixtures with known volumes. We scanned the brain phantom using two MRI scanners, 1.5 and 3.0 Tesla. Our suggestion is a new challenging model to evaluate the BVM which includes the measured volumes of the phantom compartments and its MRI. We investigated the performance of an automatic BVM, i.e., the expectation-maximization (EM) method, to estimate its accuracy in BVM. Results: The automatic BVM results using the EM method showed a relative error (regarding the phantom volume) of 0.08, 0.03, and 0.13 ( ± 0.03 uncertainty) percentages of the GM, CSF, and WM volume, respectively, which was in good agreement with the results reported using manual segmentation. Conclusions: The phantom can be a potential quantifier for a wide range of segmentation methods.

11.
MAGMA ; 34(4): 569-580, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33484366

ABSTRACT

OBJECTIVE: To develop a robust amine chemical exchange saturation transfer (CEST) physical phantom, validate the temporal stability, and create a supporting software for automatic image processing and quality assurance. MATERIALS AND METHODS: The phantom was designed as an assembled laser-cut acrylic rack and 18 vials of phantom solutions, prepared with different pHs, glycine concentrations, and gadolinium concentrations. We evaluated glycine concentrations using ultraviolet absorbance for 70 days and measured the pH, relaxation rates, and CEST contrast for 94 days after preparation. We used Spearman's correlation to determine if glycine degraded over time. Linear regression and Bland-Altman analysis were performed between baseline and follow-up measurements of pH and MRI properties. RESULTS: No degradation of glycine was observed (p > 0.05). The pH and MRI measurements stayed stable for 3 months and showed high consistency across time points (R2 = 1.00 for pH, R1, R2, and CEST contrast), which was further validated by the Bland-Altman plots. Examples of automatically generated reports are provided. DISCUSSION: We designed a physical phantom for amine CEST-MRI, which is easy to assemble and transfer, holds 18 different solutions, and has excellent short-term chemical and MRI stability. We believe this robust phantom will facilitate the development of novel sequences and cross-scanners validations.


Subject(s)
Amines , Magnetic Resonance Imaging , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted , Phantoms, Imaging
12.
Radiol Med ; 126(1): 106-116, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32350795

ABSTRACT

PURPOSE: To study the accuracy of deformable registration algorithm for CT and cone beam CT (CBCT) using a combination of physical and digital phantoms. MATERIALS AND METHODS: The physical phantoms consisted of objects over a range of electron densities, shape and sizes. The system was tested for simple and complex scenarios including performance in the presence of metallic artefacts. Clinically present deformations were simulated using a set of five geometric and anatomic virtual phantoms. RESULTS: The system could not account for large changes in size, shape and Hounsfield units. Deformations of low intensity structures and small objects were highly inaccurate, and errors were prominent for volume reduction scenario than volume growth. The presence of artefacts did alter the performance of the algorithm. Objects of low density and that close to artefacts were affected the most. Overall, deformations to CBCT were poor. In virtual phantoms, the system could not handle gas pockets and deformation errors in inverse direction were higher than that in forward direction. CONCLUSION: The algorithm was tested for several non-clinical and clinical scenarios. The performance was acceptable for realistic and clinically present deformations. However, it is necessary to tread cautiously for structures with small volumes and large reductions in volume.


Subject(s)
Algorithms , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Artifacts , Equipment Design , Humans , Radiographic Image Interpretation, Computer-Assisted
13.
Phys Med ; 77: 100-107, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32823209

ABSTRACT

The purpose of this study was to develop a novel dynamic deformable thorax phantom for deformable image registration (DIR) quality assurance (QA) and to verify as a tool for commissioning and DIR QA. The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges. To evaluate the physical characteristics of the phantom, we evaluated its image quality and deformation. DIR accuracies were evaluated using the three types of commercially DIR software (MIM, RayStation, and Velocity AI) to test the feasibility of this phantom. We used different DIR parameters to test the impact of parameters on DIR accuracy in various phantom settings. To evaluate DIR accuracy, a target registration error (TRE) was calculated using the anatomical landmark points. The three locations (i.e., distal, middle, and proximal positions) had different displacement amounts. This result indicated that the inner phantom was not moved but deformed. In cases with different phantom settings and marker settings, the ranges of the average TRE were 0.63-15.60 mm (MIM). In cases with different DIR parameters settings, the ranges of the average TRE were as follows: 0.73-7.10 mm (MIM), 8.25-8.66 mm (RayStation), and 8.26-8.43 mm (Velocity). These results suggest that our phantom could evaluate the detailed DIR behaviors with TRE. Therefore, this is indicative of the potential usefulness of our phantom in DIR commissioning and QA.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Thorax/diagnostic imaging , Tomography, X-Ray Computed
14.
NMR Biomed ; 33(2): e4217, 2020 02.
Article in English | MEDLINE | ID: mdl-31742802

ABSTRACT

Numerous human diseases involve abnormal metabolism, and proton exchange is an effective source of magnetic resonance imaging (MRI) contrast for assessing metabolism. One MRI technique that capitalizes on proton exchange is R1 relaxation in the rotating frame (R1ρ ). Here, we investigated the sensitivity of R1ρ to various proton-exchange mechanisms at spin-lock pulses within Food and Drug Administration (FDA) safety guidelines for radiofrequency-induced heating. We systematically varied pH known to change the rate of proton exchange as well as the glucose and lysine concentrations, thus changing the number of amide, hydroxyl and amine exchangeable sites in a series of egg-white albumin phantoms. The resulting effects on quantitative relaxation time measurements of R1ρ , R1 and R2 were observed at 3 T. Using spin-lock amplitudes available for human imaging (less than 23.5 µT) at near physiologic temperatures, we found R1ρ was more sensitive to physiologic changes in pH than to changes in glucose and lysine concentrations. In addition, R1ρ was more sensitive to pH changes than R1 and R2 . Models of proton exchange fitted to the relaxation measurements suggest that amide groups were the primary source of pH sensitivity. Together, these experiments suggest an optimal spin-lock amplitude for measuring pH changes while not exceeding FDA-subject heating limitations.


Subject(s)
Albumins/metabolism , Magnetic Resonance Imaging , Spin Labels , Animals , Chickens , Circular Dichroism , Egg White , Glucose/metabolism , Hydrogen-Ion Concentration , Lysine/metabolism , Models, Biological , Phantoms, Imaging
15.
Sensors (Basel) ; 19(19)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590209

ABSTRACT

This paper presents a complete and detailed description of the fabrication and measurement of the electromagnetic properties of water-based semi-solid phantoms with emphasis on the analysis of the time evolution of the complex permittivity of several samples stored in different conditions. A known recipe for a 2/3 muscle equivalent phantom is used as test material, and the several phantom sample properties are measured with an in-house developed coaxial probe technique. It is shown that the storing condition is of paramount importance to extend the lifetime of a given phantom. This behavior stems from the way the storing condition affects the water evaporation rate of the sample. In particular, while an unprotected sample can preserve its electromagnetic properties only for a few days, a very well-sealed one can last at least up to a year.

16.
Phys Med ; 58: 8-20, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30824154

ABSTRACT

PURPOSE: to develop a channelized model observer (CHO) that matches human reader (HR) scoring of a physical phantom containing breast simulating structure and mass lesion-like targets for use in quality control of digital breast tomosynthesis (DBT) imaging systems. METHODS: A total of 108 DBT scans of the phantom was acquired using a Siemens Inspiration DBT system. The detectability of mass-like targets was evaluated by human readers using a 4-alternative forced choice (4-AFC) method. The percentage correct (PC) values were then used as the benchmark for CHO tuning, again using a 4-AFC method. Three different channel functions were considered: Gabor, Laguerre-Gauss and Difference of Gaussian. With regard to the observer template, various methods for generating the expected signal were studied along with the influence of the number of training images used to form the covariance matrix for the observer template. Impact of bias in the training process on the observer template was evaluated next, as well as HR and CHO reproducibility. RESULTS: HR performance was most closely matched by 8 Gabor channels with tuned phase, orientation and frequency, using an observer template generated from training image data. Just 24 DBT image stacks were required to give robust CHO performance with 0% bias, although a bias of up to 33% in the training images also gave acceptable performance. CHO and HR reproducibility were similar (on average 3.2 PC versus 3.4 PC). CONCLUSIONS: The CHO algorithm developed matches human reader performance and is therefore a promising candidate for automated readout of phantom studies.


Subject(s)
Breast Neoplasms/diagnostic imaging , Mammography/instrumentation , Phantoms, Imaging , Image Processing, Computer-Assisted , Observer Variation , Radiation Dosage
17.
Magn Reson Med ; 81(2): 1165-1171, 2019 02.
Article in English | MEDLINE | ID: mdl-30221790

ABSTRACT

PURPOSE: The purpose of this project was to construct a physical brain phantom for MRI, mimicking structure and T1 relaxation properties of white matter (WM) and gray matter (GM). METHODS: The phantom design comprised 2 compartments, 1 resembling the WM and 1 resembling the GM. Their T1 relaxation times, as assessed using an inversion recovery turbo spin echo sequence, were reproduced using an agar gel doped with contrast agent (CA) and their folding patterns were simulated through a molding-casting procedure using 3D-printed casts and flexible silicone molds. Three versions of the assembling procedure were adopted to build: Phantom1 without any separation; Phantom2 with a varnish layer; and Phantom3 with a thin wax layer between the compartments. RESULTS: Phantom1 was characterized by an immediate diffusion of CA between the 2 compartments. Phantom2 and Phantom3, instead, showed relaxation times and shape comparable with the target ones identified in a healthy control subject (WM: 754 ± 40 ms; GM: 1277 ± 96 ms). Moreover, both compartments revealed intact gyri and sulci. However, the diffusion of CA made Phantom2 stable only for a short period of time. Phantom3 showed stability within a time window of several days but the wax layer between the WM and GM was visible in the MRI. CONCLUSION: Structural and intensity properties of the constructed phantoms are useful in evaluating and validating steps from image acquisition to image processing. Moreover, the described constructing procedure and its modular design make it adjustable to a variety of applications.


Subject(s)
Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging , Phantoms, Imaging , White Matter/diagnostic imaging , Agar , Anthropometry , Contrast Media , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Printing, Three-Dimensional
18.
Healthc Technol Lett ; 6(6): 191-196, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32038856

ABSTRACT

Neurovascular surgery aims to repair diseased or damaged blood vessels in the brain or spine. There are numerous procedures that fall under this category, and in all of them, the direction of blood flow through these vessels is crucial information. Current methods to determine this information intraoperatively include static pre-operative images combined with augmented reality, Doppler ultrasound, and injectable fluorescent dyes. Each of these systems has inherent limitations. This study includes the proposal and preliminary validation of a technique to identify the direction of blood flow through vessels using only video segments of a few seconds acquired from routinely used surgical microscopes. The video is enhanced to reveal subtle colour fluctuations related to blood pulsation, and these rhythmic signals are further analysed in Fourier space to reveal the direction of blood flow. The proposed method was validated using a novel physical phantom and retrospective analysis of surgical videos and demonstrated high accuracy in identifying the direction of blood flow.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-755020

ABSTRACT

Objective To study the method of dose reconstruction in human body under the photon external radiation accident condition,and to verify the accuracy of the method for the local dose distribution.Methods Based on the open source Monte Carlo tool kit Geant 4 and using the human voxel phantom recommended by ICRP Publication 103,the dose reconstruction method under the condition of external radiation accident was studied to evaluate the average absorbed dose,organ absorbed dose and local dose distribution.To validate the code,several irradiation experiments were implemented in some standard radiation fields by putting TLDs in the tissue equivalent physical phantom ART.A voxel phantom was used to reconstruct the radiation doses,which was created based on the CT scan image of the ART phantom with resolution of 1.57 mm× 1.57 mm× 10.00 mm.The result of experiment were compared with those of dose reconstruction simulation.Results The relative uncertainty of the measured values was 10.9%.The relative uncertainty of the dose reconstruction simulation values was 7.10% at the non-tissueinterface area and 16.6% at the tissue-interface area.For 451 measuring points,the average of the simulated value divided by the measured value was 0.972,with the standard deviation of 0.083 8.In the range of 0.95-1.05,0.90-1.10 and 0.80-1.20,and the proportions were 49.2%,79.4% and 96.4%,respectively.Conclusions The method of Monte Carlo dose reconstruction based on human voxel phantom meets the accuracy requirement of actual uses both at the whole body or organ level and at the local dose distribution level.It can be used as a powerful tool for dose assessment of the exposed people in an external radiation accidents and provide support for diagnosis and treatment.

20.
J Radiat Res ; 58(5): 755-760, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28992232

ABSTRACT

Quantification of pathological progression of radiation-induced injury is essential in development of treatment methods, and a proper animal model is necessary for relevant radiological and medical studies. A minipig is a current animal model selected because of its similarities to humans in anatomy and pathology. In the present study, a minipig physical phantom was developed using computed tomography (CT) data. For dosimetry purposes, the minipig physical phantom was constructed on a slice-by-slice basis, with an array of holes to accommodate dosimeters. The phantom is constituted of three major organs, i.e. bone, lung, and remaining soft tissue, and the organs are clearly distinguishable on each 20-mm-thick axial slice. The quality of the tissue-equivalent (TE) substitutes was analyzed in terms of the atomic compositions and Hounsfield units (HUs). The density (in g/cm3) and effective atomic number of TE substitutes for the bone, lung, and soft tissue are 1.4 and 7.9, 0.5 and 10.0, and 1.0 and 5.9, respectively. Although the TE substitutes have slightly different physical properties, we think the phantom is acceptable because the HU values of the TE substitutes lie in the HU range of real tissues.


Subject(s)
Phantoms, Imaging , Tomography, X-Ray Computed , Animals , Imaging, Three-Dimensional , Organ Specificity , Radiometry , Stereolithography , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL
...