Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Animal ; 14(11): 2246-2252, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32580803

ABSTRACT

Phytase has long been used to decrease the inorganic phosphorus (Pi) input in poultry diet. The current study was conducted to investigate the effects of Pi supplementation on laying performance, egg quality and phosphate-calcium metabolism in Hy-Line Brown laying hens fed phytase. Layers (n = 504, 29 weeks old) were randomly assigned to seven treatments with six replicates of 12 birds. The corn-soybean meal-based diet contained 0.12% non-phytate phosphorus (nPP), 3.8% calcium, 2415 IU/kg vitamin D3 and 2000 FTU/kg phytase. Inorganic phosphorus (in the form of mono-dicalcium phosphate) was added into the basal diet to construct seven experimental diets; the final dietary nPP levels were 0.12%, 0.17%, 0.22%, 0.27%, 0.32%, 0.37% and 0.42%. The feeding trial lasted 12 weeks (hens from 29 to 40 weeks of age). Laying performance (housed laying rate, egg weight, egg mass, daily feed intake and feed conversion ratio) was weekly calculated. Egg quality (egg shape index, shell strength, shell thickness, albumen height, yolk colour and Haugh units), serum parameters (calcium, phosphorus, parathyroid hormone, calcitonin and 1,25-dihydroxyvitamin D), tibia quality (breaking strength, and calcium, phosphorus and ash contents), intestinal gene expression (type IIb sodium-dependent phosphate cotransporter, NaPi-IIb) and phosphorus excretion were determined at the end of the trial. No differences were observed on laying performance, egg quality, serum parameters and tibia quality. Hens fed 0.17% nPP had increased (P < 0.01) duodenum NaPi-IIb expression compared to all other treatments. Phosphorus excretion linearly increased with an increase in dietary nPP (phosphorus excretion = 1.7916 × nPP + 0.2157; R2 = 0.9609, P = 0.001). In conclusion, corn-soybean meal-based diets containing 0.12% nPP, 3.8% calcium, 2415 IU/kg vitamin D3 and 2000 FTU/kg phytase would meet the requirements for egg production in Hy-Line Brown laying hens (29 to 40 weeks of age).


Subject(s)
6-Phytase , Chickens/physiology , 6-Phytase/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Female , Phosphates , Phosphorus
2.
Probiotics Antimicrob Proteins ; 10(4): 647-653, 2018 12.
Article in English | MEDLINE | ID: mdl-28936766

ABSTRACT

Phytate is a potent inhibitor of mineral absorption in humans occurring in plant-based food. Application of lactobacilli that produce phytate-degrading enzymes (phytases) to reduce phytate is an interesting yet a not much explored sector of research. Therefore, phytate dephosphorylation by Lactobacillus plantarum MTCC 1325 was evaluated. Cells at stationary phase showed phytase activity which was maximal at 24 h of growth. Glucose concentration and the type of phosphorous source in the media modulated the enzyme activity. Fermentation of cereal and/or legume flours with the strain resulted in phytate reduction with the highest in sorghum (73%) and the lowest in horse gram (34%). Further, the strain showed tolerance to acid, bile, and simulated gastrointestinal fluid. Significant phytase activity in the presence of simulated gastrointestinal fluids along with the ability to produce phytases post-exposure to simulated gastrointestinal fluids is of interest. To the best of our knowledge, this is the first report on the effect of simulated gastrointestinal fluid on cell-associated phytases of lactobacilli. The results of the investigation indicate that L. plantarum MTCC 1325 could be used as a starter in cereal-legume fermentation and as potential probiotics to achieve phytate hydrolysis in food matrices and also in gastrointestinal tract.


Subject(s)
Edible Grain/microbiology , Fabaceae/microbiology , Lactobacillus plantarum/metabolism , Phytic Acid/metabolism , Probiotics/metabolism , 6-Phytase/genetics , 6-Phytase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fermentation , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Humans , Hydrolysis , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/genetics , Lactobacillus plantarum/growth & development
3.
Prep Biochem Biotechnol ; 46(7): 725-33, 2016 Oct 02.
Article in English | MEDLINE | ID: mdl-26760722

ABSTRACT

The development of stable enzymes is a key issue in both the food and feed industries. Consequently, the aim of the current study is to evaluate the impact of various additives (sodium chloride, sodium citrate, mannitol, methylparaben, polyethylene glycol 3350, ethylenediaminetetraacetic acid disodium salt, and a serine protease inhibitor) on the stability of a mushroom phytase produced by solid-state cultivation and recovery. Also observed was the effect of the additives on microbial growth inhibition by monitoring both the change in optical density over 30 days of storage and proteolytic activity. Initially, eight experimental formulations were prepared along with a control. After screening, a 3(2) factorial design was applied to define suitable concentrations of the selected additives. Among the eight formulations tested, the formulation containing NaCl, PEG 3350, and methylparaben retained all of the initial phytase activity after 50 days of storage, with no detected interference from protease activity. Sodium citrate, a metal chelation agent, presented the unusual effect of reducing protease activity in the formulations. Although all formulations presented better phytase stability when compared to the control, NaCl and PEG were both able to prolong the stability of the enzyme activity and also to inhibit microbial growth during storage, making them favorable for application as food and feed additives.


Subject(s)
6-Phytase/metabolism , Agaricales/enzymology , Drug Compounding , Phytic Acid/metabolism , Proteolysis
4.
Braz. arch. biol. technol ; 58(5): 711-717, tab, graf
Article in English | LILACS | ID: lil-764476

ABSTRACT

ABSTRACTIn this study, 154 isolates capable of producing extracellular phytate-degrading activity were isolated from four soil samples from volcanic areas in Central Java, Indonesia. Six strains with high phytate-degrading activity were selected for strain identification and characterization of the corresponding phytate-degrading enzyme. Blast analysis of 16S rRNA gene sequences revealed high similarities for all the six isolates to reference sequences belonging to the genusBacillus. Isolates MS5, MC6, D10 and D16 showed 99% sequence identity toB. cereus, while isolate MC8 exhibited 99% sequence identity toB. aryabhatti and D6 99% sequence identity toB. psychrotolerans. The crude extracellular phytase preparations from the isolates showed following optimal conditions for phytate dephosphorylation: pH 4.0 and 50°C (isolate D10), pH 5.0 and 60°C (isolate MC6, and isolate MS5), pH 6.0 and 50°C (isolate D16) and pH 6.0 and 60°C (isolate D6) and pH 6.0 and 40°C (isolate MC8). Zn2+ and Fe3+ strongly inhibited phytate dephosphorylation with all phytase preparations studied. In the presence of Ca2+, an increase in phytase activity of 10-15% was obtained.

5.
Braz. j. microbiol ; 40(4): 795-807, Oct.-Dec. 2009. graf, tab
Article in English | LILACS | ID: lil-528162

ABSTRACT

An extracellular phytase from Aspergillus niger 11T53A9 was purified about 51-fold to apparent homogeneity with a recovery of 20.3 percent referred to the phytase activity in the crude extract. Purification was achieved by ammonium sulphate precipitation, ion chromataography and gel filtration. The purified enzyme behaved as a monomeric protein with a molecular mass of about 85 kDa and exhibited maximal phytate-degrading activity at pH 5.0. Optimum temperature for the degradation of phytate was 55ºC. The kinetic parameters for the hydrolysis of sodium phytate were determined to be K M = 54 µmol l-1 and k cat = 190 sec-1 at pH 5.0 and 37ºC. The purified enzyme was rather specific for phytate dephosphorylation. It was shown that the phytase preferably dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6)P5, D-Ins(1,2,5,6)P4, D-Ins(1,2,6)P3, D-Ins(1,2)P2 to finally Ins(2)P.


Subject(s)
Aspergillus niger/enzymology , Aspergillus niger/isolation & purification , Chromatography, Gel , Enzymes/analysis , Ammonium Sulfate/analysis , Enzyme Activation , Methods , Methods
6.
Braz J Microbiol ; 40(4): 795-807, 2009 Oct.
Article in English | MEDLINE | ID: mdl-24031427

ABSTRACT

An extracellular phytase from Aspergillus niger 11T53A9 was purified about 51-fold to apparent homogeneity with a recovery of 20.3% referred to the phytase activity in the crude extract. Purification was achieved by ammonium sulphate precipitation, ion chromataography and gel filtration. The purified enzyme behaved as a monomeric protein with a molecular mass of about 85 kDa and exhibited maximal phytate-degrading activity at pH 5.0. Optimum temperature for the degradation of phytate was 55°C. The kinetic parameters for the hydrolysis of sodium phytate were determined to be KM = 54 µmol l(-1) and kcat = 190 sec(-1) at pH 5.0 and 37°C. The purified enzyme was rather specific for phytate dephosphorylation. It was shown that the phytase preferably dephosphorylates myo-inositol hexakisphosphate in a stereospecific way by sequential removal of phosphate groups via D-Ins(1,2,4,5,6)P5, D-Ins(1,2,5,6)P4, D-Ins(1,2,6)P3, D-Ins(1,2)P2 to finally Ins(2)P.

SELECTION OF CITATIONS
SEARCH DETAIL
...