Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.496
Filter
1.
J Ethnopharmacol ; : 118522, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971345

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Labisia pumila (Blume) Fern.-Vill, also known as Kacip Fatimah, is a traditional medicinal herb common throughout Southeast Asia. It is primarily used to facilitate childbirth and postpartum recovery in women. Additionally, it can also be used to treat dysentery, rheumatism, gonorrhea, and as an anti-flatulent. AIM OF THIS REVIEW: This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application. MATERIALS AND METHODS: The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science). RESULTS: This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, antiinflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement. CONCLUSIONS: LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.

2.
Nat Prod Res ; : 1-16, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949575

ABSTRACT

Crotalaria burhia (Family: Fabaceae) is an important medicinal plant widely distributed in arid parts of the world, including Pakistan, India, and Afghanistan. This plant has enormous ethnobotanical values and is used to treat various common ailments such as swelling, infections, cancer, hydrophobia, pain and skin diseases. Moreover, it is also utilised as food for goats, to make sheds for animals and as a suitable soil binder. This review article is an attempt to analyse critically and to provide updated and categorised information about C. burhia including comprehensive knowledge of the botanical description, traditional/folklore uses, phytochemistry, pharmacological/biological potential, and to facilitate scientific basis for future work. The phytochemical studies (qualitative and quantitative) on C. burhia have indicated the presence of important phytochemical classes, namely alkaloids, flavonoids, glycosides, saponins, phenolics, tannins, steroids, and terpenoids. Pharmacological studies such as anti-inflammatory/analgesic, antioxidant, anti-microbial, anti-tumour, anti-nociceptive, enzyme inhibition, and termiticidal activities were reported from different parts of this plant. Most of the bioassays from this plant have been done on the crude extract. Minimal information about the phytochemicals (responsible for biological activities), except a few compounds has been reported. The potential chemical compounds may need to be purified and tested for the biological potential from isolated compounds in future.

3.
J Ethnopharmacol ; : 118542, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992404

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dried roots of Peucedanum decursivum, a traditional Chinese medicine (TCM), has historically respiratory diseases such as cough, thick phlegm, headache, fever, and gynecological diseases, rheumatoid arthritis, and nasopharyngeal carcinoma. AIM OF THE STUDY: Made an endeavor to evaluate the research trajectory of P. decursivum, comprehensively discern its developmental status, and offer a guideline for future investigations. MATERIALS AND METHODS: A meticulous search of literatures and books from 1955 to 2024 via databases like PubMed, Web of Science and CNKI was conducted, including topics and keywords of " P. decursivum" "Angelica decursivum" and "Zihua Qianhu". RESULTS: P. decursivum and its prescriptions have traditionally been used for treating phlegm-heat cough, wind-heat cough, gastrointestinal diseases, pain relief and so on. It contains 234 identified compounds, encompassing coumarins, terpenes, volatile oils, phenolic acids, fatty acids and derivatives. It exhibits diverse pharmacological activities, including anti-asthmatic, anti-inflammatory, antioxidant effects, anti-hypertensive, anti-diabetic, anti-Alzheimer, and anti-cancer properties, primarily attributed to coumarins. Microscopic identification, HPLC fingerprinting, and bioinformatics identification are the primary methods currently used for the quality control. CONCLUSION: P. decursivum demonstrates anti-asthmatic, anti-inflammatory, and antioxidant effects, aligning with its traditional use. However, experimental validation of its efficacy against phlegm and viruses is needed. Additionally, analgesic effects mentioned in historical texts lack modern pharmacological studies. Numerous isolated compounds exhibit highly valuable medicinal properties. Future research can delve into exploring these substances further. Rigorous of heavy metal contamination, particularly Cd and Pb, is necessary. Simultaneously, investigating its pharmacokinetics and toxicity in humans is crucial for the safety.

4.
Heliyon ; 10(12): e32402, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975151

ABSTRACT

Introduction: Waltheria indica Linn (Malvaceae) is a widely distributed plant in West Africa. It is commonly used in Burkina Faso to treat inflammation-related diseases, including asthma. Previous reviews have focused on the ethnobotanical, traditional uses, phytochemistry, and pharmacological properties of Waltheria indica. This report aims to compile the biological and pharmacological activities that highlight the anti-asthmatic properties of Waltheria indica L. (W. indica). Method: Electronic databases, such as PubMed, Scopus, Hinari, SciFinder, Google Scholar, and ScienceDirect, were used to gather data on Watheria indica. Data on the toxicological, anti-inflammatory, antioxidant, and bronchorelaxant effects of W. indica were collected. Results: Twenty-three studies describing the biological and pharmacological activities relevant to assessing the anti-asthmatic properties of W. indica were found. Nine articles investigated the anti-inflammatory effects, and three manuscripts were found to have bronchorelaxant activity. Five publications reported the antioxidant activity of the plant extracts. Research on the extracts revealed a tolerable safety profile in rats and mice with an LD50 ranging from 300 to 5000 mg/kg body weight, depending on the parts of the plant used. Phenolic compounds, particularly flavonoids, alkaloids, and saponins, were found to be responsible for the activities involved in the assessment of anti-asthmatic properties. Conclusion: The results of this review suggest that W. indica could be a valuable resource for the treatment of asthma and other respiratory diseases. However, further chemical and pharmacological investigations are needed to understand its mechanism of action in treating asthma.

5.
Article in English | MEDLINE | ID: mdl-38984573

ABSTRACT

Lamiaceae (Labiatae) is a medicinally significant plant family featuring key species like Salvia aegyptiaca, S. cabulica, S. coccinea, S. glutinosa, S. officinalis, S. haematodes, S. hians, S. lanata, S. macrosiphon, S. moorcroftiana, S. spinosa, S. sclarea, and S. plebeia. These species exhibit diverse pharmacological activities attributed to essential oils and phytochemi-cals, including antioxidant, antiasthmatic, antitumor, anti-inflammatory, analgesic, etc. This re-view covers extensive phytomedicinal aspects of some important plants of the genus Salvia.

6.
Front Pharmacol ; 15: 1407140, 2024.
Article in English | MEDLINE | ID: mdl-39045046

ABSTRACT

Nandina domestica: Thunb. is a traditional Chinese herbal drug that has long been used in China and Japan for the treatment of colds, fevers, asthma, chronic bronchitis, conjunctivitis, whooping cough, pharyngeal tumors, etc. Published data have reported at least 366 constituents from N. domestica, including alkaloids, flavonoids, lignans, terpenoids, phenolic acids and their derivatives, fatty acids, and others. Of these, the isoquinoline alkaloids are considered characteristic markers for N. domestica. These alkaloids also showed the most promising bioactivities. The crude extracts or semi-purified constituents of N. domestica exhibit a variety of activities, including antitumor, dermatological, anti-inflammatory, antioxidant, antimicrobial, and detoxification activities, as well as effects on respiratory system, etc. The fruit is considered poisonous when eaten raw, with nausea, vomiting, diarrhea, and abdominal pain as side effects after ingestion. Most traditional uses are supported by biological activities demonstrated in modern experimental studies, suggesting a potential medicinal value of N. domestica. However, more information is needed on its mechanisms of activity, pharmacokinetic profile of the constituents, and its safety and efficacy profile in humans.

7.
J Tradit Complement Med ; 14(4): 355-380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035692

ABSTRACT

Dittrichia viscosa is a perennial herb that has been used for generations in traditional medicine to address a variety of diseases, including diabetes, hypertension, cancer, microbial disorders, inflammatory conditions, and wound healing. The objective of this review is to provide an overview of existing knowledge on D. viscosa with regards to its botanical description, ethnomedicinal uses, and pharmacological properties. Databases such as Scopus, Wiley-Online, PubMed, Springer, Google Scholar, and ScienceDirect were used to select relevant articles based on their title and abstract. The reviewed studies found a strong correlation between D. viscosa's traditional uses and its observed biological effects. Pharmacological research has shown that the essential oils and extracts from D. viscosa possess a variety of biological activities, such as anti-inflammatory, anticancer, antibacterial, antifungal, analgesic, and antioxidant properties. The chemical compounds found in D. viscosa include sesquiterpenes, monoterpenes, flavonoids, and phenolic acids; some of these compounds, such as tometosin and inuviscolide, have been isolated and displayed promising cytotoxic and anti-inflammatory activity. The present review suggests that the pharmacological properties of D. viscosa align well with its ethnomedicinal uses. These findings support the traditional use of D. viscosa in treating various illnesses. Additionally, toxicological examinations of D. viscosa extracts and essential oil have demonstrated the plant's safety, which supports the need for comprehensive pharmacological studies, in vivo studies, and clinical trials to evaluate the best doses for optimal medicinal effects. This work underscores the medicinal value of D. viscosa and its potential in developing new pharmacological agents to address major health challenges like antibiotic resistance and cancers.

8.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998918

ABSTRACT

The Brassicaceae family, commonly referred to as cruciferous plants, is globally cultivated and consumed, with the Brassica genus being particularly renowned for its functional components. These vegetables are rich sources of nutrients and health-promoting phytochemicals, garnering increased attention in recent years. This study presents a comprehensive microscopic, chromatographic, and spectroscopic characterization of Brassica napus L. seeds from Kazakhstan aimed at elucidating their morphological features and chemical composition. Microscopic analysis revealed distinct localization of flavonoids, total lipids, and alkaloids. High-performance thin-layer chromatography (HPTLC) analysis of seed extracts demonstrated a complex chemical profile with significant quantities of non-polar compounds in the hexane extracts. Additionally, methanolic extracts revealed the presence of diverse chemical compounds, including alkaloids, flavonoids, and glucosinolates. The chemical composition exhibited varietal differences across different Brassica species, with B. napus L. seeds showing higher concentrations of bioactive compounds. Furthermore, liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QToF-MS) analysis provided insights into the chemical composition, with sinapine isomers, feruloyl, and sinapoyl choline derivatives as major compounds in the seeds. This study contributes to a better understanding of the chemical diversity and quality control methods' approximations of B. napus L. seeds, highlighting their importance in functional food and nutraceutical applications.


Subject(s)
Brassica napus , Seeds , Brassica napus/chemistry , Seeds/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Phytochemicals/analysis , Phytochemicals/chemistry , Chromatography, Thin Layer/methods , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Flavonoids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Glucosinolates/analysis , Glucosinolates/chemistry
9.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999021

ABSTRACT

Cancer represents one of the most significant health challenges currently facing humanity, and plant-derived antitumour drugs represent a prominent class of anticancer medications in clinical practice. Isovaleryl sucrose esters, which are natural constituents, have been identified as having potential antitumour effects. However, the mechanism of action remains unclear. In this study, 12 isovaleryl sucrose ester components, including five new (1-5) and seven known compounds (6-12), were isolated from the roots of Atractylodes japonica. The structures of the compounds were elucidated using 1D and 2D-NMR spectroscopy, complemented by HR-ESI-MS mass spectrometry. The cytotoxic activities of all the compounds against human colon cancer cells (HCT-116) and human lung adenocarcinoma cells (A549) were also evaluated using the CCK8 assay. The results demonstrated that compounds 2, 4, and 6 were moderately inhibitory to HCT-116 cells, with IC50 values of 7.49 ± 0.48, 9.03 ± 0.21, and 13.49 ± 1.45 µM, respectively. Compounds 1 and 6 were moderately inhibitory to A549, with IC50 values of 8.36 ± 0.77 and 7.10 ± 0.52 µM, respectively. Molecular docking revealed that compounds 1-9 exhibited a stronger affinity for FGFR3 and BRAF, with binding energies below -7 kcal/mol. Compound 2 exhibited the lowest binding energy of -10.63 kcal/mol to FGFR3. We screened the compounds with lower binding energies, and the protein-ligand complexes already obtained after molecular docking were subjected to exhaustive molecular dynamics simulation experiments, which simulated the dynamic behaviour of the molecules in close proximity to the actual biological environment, thus providing a deeper understanding of their functions and interaction mechanisms. The present study provides a reference for the development and use of iso-valeryl sucrose esters in the antitumour field.


Subject(s)
Atractylodes , Esters , Molecular Docking Simulation , Sucrose , Humans , Sucrose/chemistry , Sucrose/analogs & derivatives , Sucrose/pharmacology , Esters/chemistry , Esters/pharmacology , Atractylodes/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , HCT116 Cells , Cell Line, Tumor , Plant Extracts/chemistry , Plant Extracts/pharmacology , A549 Cells , Molecular Dynamics Simulation , Cell Proliferation/drug effects
10.
J Ethnopharmacol ; 334: 118589, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39025163

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: NOTOPTERYGII RHIZOMA ET RADIX (NRR), a traditional Chinese medicine (TCM), has been utilized in China for millennia. Thriving in high-altitude regions with cold climates, wild NRR has been heavily exploited for its significant economic worth, particularly in the medical sector. THE AIM OF THE REVIEW: This paper presents a comprehensive review of the botany, traditional uses, phytochemistry, analytical methods, quality control, processing methods, pharmacological effects, and pharmacokinetics of NRR. These findings offer valuable insights for future research endeavors and establish a solid groundwork for the judicious clinical utilization of NRR. MATERIALS AND METHOD: The related information for NRR comes from scientific databases (such as Baidu Scholar, CNKI, Google Scholar, PubMed, Science Direct, Web of Science, SciFinder Scholar, Chinese Herb Classics, Chinese Pharmacopoeia, PhD and MSC Dissertations, etc.). RESULTS: Currently, components isolated from NRR are identified as coumarins, volatile oils, organic acids, flavonoids, glycosides, polyacetylenes, and trace elements. Most compounds are analyzed using HPLC and GC techniques. NRR exhibits a broad spectrum of pharmacological effects, such as anti-inflammatory, analgesic, antipyretic, antitumor, antiviral, antibacterial, immunosuppressive activities, as well as promoting blood circulation, removing blood stasis, providing neuroprotection, and liver protection. CONCLUSION: The research on NRR in phytochemistry and pharmacology has made great progress, and some traditional uses have been proven by modern pharmacology. However, because the complex chemical composition of NRR has not been effectively related to its pharmacological action, its mechanism of action has not been clearly expounded. In this review, the processing methods of NRR are summarized, and the exploration of further strengthening the processing mechanism of NRR is put forward, which provides some theoretical help for the clinical application of NRR. Furthermore, the complex chemical composition of NRR makes quality control difficult, so we must study its quality control thoroughly. In order to better develop and utilize NRR, we should establish a reasonable, reliable, and accurate quality control standard, and focus on the relationship between its active components and pharmacodynamic indicators and the study of its mechanism of pharmacological effects.

11.
Front Pharmacol ; 15: 1427333, 2024.
Article in English | MEDLINE | ID: mdl-39021829

ABSTRACT

Background: Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods: Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results: Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion: Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.

12.
J Ethnopharmacol ; 334: 118543, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986752

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Abrus cantoniensis Hance (ACH), known as Jigucao (Chinese: ) has been used in ethnopharmacology for a long history with therapeutic effects for clearing heat, soothing the liver, especially in treating acute and chronic hepatitis which was very effective. In southern China, such as Guangdong and Guangxi, people often use ACH in soup or herbal tea as dietetic therapy. AIM OF THE REVIEW: This paper aims to review ACH's ethnopharmacology, phytochemistry, and pharmacological activity systematically, at the same time, we also hope to provide more research avenues between traditional uses and pharmacological properties. MATERIAL AND METHODS: Through PubMed, Wan Fang Database, CNKI, Web of Science, EBSCO Database, and Google Scholar search for relevant literature in both Chinese and English, the keywords "Abrus cantoniensis, Abrus cantoniensis Hance, Jigucao, pharmacology, chemical constituents, clinical application, network pharmacology" were used alone or combination. RESULTS: Traditionally, ACH was believed to have the effect of soothing the liver, clearing heat, and detoxifying, often used to treat diseases of the liver and inflammation. Modern pharmacological research indicates that ACH has liver protection, anti-inflammation, anti-oxidant, immunomodulation, anti-tumor effects and so on. Whether it was a single chemical compound or an extract from ACH, studies have found that it has abundant pharmacological activities, these were the fundamental sources of traditional uses, like liver protection and anti-inflammation. CONCLUSIONS: A systematic review found that modern phytochemistry and pharmacodynamic research reports on ACH are closely related to its traditional uses, especially its hepatoprotective and anti-inflammatory effects. Modern research has also further explored and expanded the effects of ACH, such as its anti-tumor effect. And all these efforts are gradually filling the gap between traditional uses and modern pharmacology. In general, the current research on the pharmacodynamic mechanism of ACH still needs further in-depth research, and the strategies adopted must also be further strengthened.

13.
Fitoterapia ; 177: 106121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992476

ABSTRACT

BACKGROUND: Myrsine (the family Primulaceae) contains flowering species. Pharmacologically, the plants of this genus belong to a list of medicinal plants that induce infectious and inflammatory treatments. There are no scientific publications that review phytochemistry and pharmacological activities. OBJECTIVE: The compilation and classification of phytochemicals, chromatographic information, essential oils, and pharmacological reviews are the ultimate aim. METHODS: References on phytochemical and pharmacological investigations of Myrsine species were collected from various sources, such as Google Scholar, PubMed, and Web of Science from the 1990s to present. The main keyword "Myrsine" was used alone or in combination with others to search for references. RESULTS: Chromatographic procedure of Myrsine extracts led to the purification of 134 compounds. Flavonoids, mono-phenols, saponins, quinones, megastigmanes, and lignans were the main phytochemical classes. Myrsine Volatile compounds are monoterpenoids, sesquiterpenoids, and aliphatic compounds. Myrsine constituents established a widespread panel of pharmacological activities, such as cytotoxicity, antioxidant, antimicrobial, anti-parasite, tyrosine inhibition, and hepatoprotection, especially anti-inflammation. Novel flavonoids myrsininones A-B are better than the standard triclosan against bacteria Staphylococcus warneri, S. mutan, S. sanguis, and Actinomyces naeslundii. M. seguinii aerial part ethanolic extract inhibited LPS (lipopolysaccharide)-stimulated inflammatory Raw 264.7 cells via Src/Syk/NF-κB (sarcoma kinase/spleen tyrosine kinase/ nuclear factor-kappa B) and IRAK-1/AP-1 (interleukin-1 receptor-associated kinase-1/activating protein-1) signaling inhibition. Generally, Myrsine plant extracts showed no toxicity. CONCLUSION: Myrsine constituents are good antimicrobial, antioxidative, and anti-inflammatory agents. However, the majority of earlier research focuses on the pharmacological analyses of M. africana. Thus, comprehensive findings for the remaining species are needed.

14.
J Enzyme Inhib Med Chem ; 39(1): 2360063, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38873930

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.


Subject(s)
Dose-Response Relationship, Drug , Enzyme Inhibitors , Gynostemma , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Gynostemma/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Molecular Structure , Structure-Activity Relationship , alpha-Glucosidases/metabolism , Humans , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Models, Molecular , Crystallography, X-Ray , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification
15.
BMC Complement Med Ther ; 24(1): 230, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867199

ABSTRACT

BACKGROUND: Diabetes affects 75% of people in low-income countries, where conventional drugs like metformin are available, but newer drugs like alpha-glucosidase inhibitors are not accessible to most Southern African patients. AIM: To evaluate the α-glucosidase and α-amylase inhibitory activities of fractionated aqueous extracts of Kigelia africana fruit (KAFE) and their phytochemical fingerprints using gas chromatography-mass spectrometry (GC-MS). MATERIALS AND METHODS: We studied K. africana fruit fractions' inhibitory effects on alpha-glucosidase and alpha-amylase using bioassay-guided fractionation, and analyzed their phytochemical profiles with GC-MS. KEY FINDINGS: Both the aqueous extract and ethyl acetate fraction of the aqueous extract exhibited a low dose-dependent inhibition of alpha-amylase activity (p < 0.0001). At a concentration of 500 µg/mL, the aqueous extract caused an alpha-glucosidase inhibition of 64.10 ± 2.7%, with an estimated IC50 of 193.7 µg/mL, while the ethyl acetate fraction had an inhibition of 89.82 ± 0.8% and an estimated IC50 of 10.41 µg/mL. The subfraction G, which had the highest alpha-glucosidase inhibitory activity at 85.10 ± 0.7%, had significantly lower activity than the ethyl acetate fraction. The most bioactive fraction was found to contain 11"(2-cyclopenten-1-yl) undecanoic acid, ( +)- and cyclopentane undecanoic acid as well as the indole alkaloids Akuammilan-17-ol-10-methoxy, N-nitroso-2-methyl-oxazolidine and epoxide Oxirane2.2″ -(1.4-butanediyl) bis-. CONCLUSION: The K. africana fruit fraction demonstrated significant alpha-glucosidase inhibitory activity, while its alpha-amylase inhibitory activity was limited. This study suggests a potential natural alpha-glucosidase inhibitor and phytocompounds that could serve as leads for developing antidiabetic agents.


Subject(s)
Fruit , Glycoside Hydrolase Inhibitors , Plant Extracts , Glycoside Hydrolase Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , Gas Chromatography-Mass Spectrometry , Humans , Phytochemicals/pharmacology , Phytochemicals/chemistry
16.
Food Sci Nutr ; 12(6): 3872-3882, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873442

ABSTRACT

Coriander (Coriandrum sativum L.) is an annual herb belonging to the Apiaceae family that is grown worldwide. This aromatic herb has been used for its nutritional value and biological properties. In this study, we compared the essential oil composition and antibacterial activity of coriander seeds from nine Iranian and Iraqi populations for the first time. The seed oils were extracted using a Clevenger-type apparatus, and their chemical composition was determined using GC and GC/MS Agilent apparatuses. The antimicrobial activity of the oils was tested against three infectious bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) using the agar well diffusion method. The experiments were repeated three times, and the results were analyzed using PAST, SAS, and SPSS software. The results showed that oxygenated monoterpenes, especially linalool, were the major compounds in the oils, followed by α-pinene, γ-terpinene, and geranyl acetate. The proportions of these compounds varied among the populations. Trace amounts of other compounds were also detected, some of which were only found in certain populations. The populations were detected as linalool chemotype, and classified into four groups based on their chemical constituents in the UPGMA tree. The PCA-Biplot showed that these groups were characterized by the presence and percentage of specific compounds. The essential oils showed bacterial growth inhibitory properties only at 100% concentration. S. aureus was the most sensitive bacterium to the coriander essential oil, while the essential oils of all populations inhibited the growth of this bacterium. Additionally, the essential oils were more effective than antibiotics against E. coli. These findings contribute to our understanding of coriander seed essential oil by providing data on antibacterial activity and chemical characteristics. Furthermore, the study highlights the importance of selecting populations based on their specific essential oil profiles for antibacterial applications.

17.
Molecules ; 29(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893436

ABSTRACT

Volatile oil serves as a traditional antipyretic component of Bupleuri Radix. Bupleurum marginatum var. stenophyllum (Wolff) Shan et Y. Li belongs to the genus Bupleurum and is distinguished for its high level of saikosaponins and volatile oils; nonetheless, prevailing evidence remains inconclusive regarding its viability as an alternative resource of other official species. This study aims to systematically compare the volatile oil components of both dried and fresh roots of B. marginatum var. stenophyllum and the four legally available Bupleurum species across their chemical, molecular, bionics, and anatomical structures. A total of 962 compounds were determined via GC-MS from the dried roots; B. marginatum var. stenophyllum showed the greatest differences from other species in terms of hydrocarbons, esters, and ketones, which was consistent with the results of fresh roots and the e-nose analysis. A large number of DEGs were identified from the key enzyme family of the monoterpene synthesis pathway in B. marginatum var. stenophyllum via transcriptome analysis. The microscopic observation results, using different staining methods, further showed the distinctive high proportion of phloem in B. marginatum var. stenophyllum, the structure which produces volatile oils. Together, these pieces of evidence hold substantial significance in guiding the judicious development and utilization of Bupleurum genus resources.


Subject(s)
Bupleurum , Oils, Volatile , Plant Roots , Oils, Volatile/chemistry , Bupleurum/chemistry , Plant Roots/chemistry , Gas Chromatography-Mass Spectrometry , Plants, Medicinal/chemistry
18.
Fitoterapia ; 177: 106081, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936673

ABSTRACT

BACKGROUND: Buxus plants have been used in traditional medicine for a very long time. The Buxus genus has been used to cure a variety of illnesses. OBJECTIVE: This review aimed to provide a literature review on the genus Buxus including its biological and phytochemical properties. MATERIALS AND METHODS: The current study was conducted using several scientific databases. Correct plant names were verified from plantlist.org. The results of this search were interpreted, analyzed, and documented based on the obtained bibliographic information. RESULTS: Within all the species of the family Buxaceae, 5 species of the genus Buxus are reported to be antibacterial, 3 species have been found to be antioxidant, 5 species are cytotoxic, 1 species is anti-inflammatory, 1 species is antidiabetic, and 4 species are antifungal. Alkaloids, terpenoids, tannins, flavonoids, peptides, and phenolic compounds are the main chemical components of this genus. The study of >11 Buxuss pecies has identified >201 compounds. Pharmacological research has demonstrated that crude extracts and some pure compounds obtained from Buxus have several pharmacological activities such as antibacterial, antioxidant, cytotoxic, anti-inflammatory, antidiabetic, and antifungal. Based on the study of the phytochemistry of Buxus species, it was concluded that all the studied plants have active compounds, among which 55 molecules showed interesting activities. CONCLUSIONS: The numerous traditional uses of Buxus species have been supported by several studies. Before Buxus plants can be fully employed clinically, further research is necessary.

19.
Biomedicine (Taipei) ; 14(2): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38939094

ABSTRACT

Herpes simplex, varicella-zoster lesions, skin rashes, diabetes, snake bites and insect bites have all been treated by using Clinacanthus nutans (C. nutans). The pharmacological effects of C. nutans are influenced by the presence of terpenoids, flavonoids, alkaloids, phenolic acids, saponins, glycosides, steroids and tannins. This review focused on the phytochemical makeup, which varies geographically and is a subject of scarcely existing knowledge. C. nutans served as the primary search term, while the keywords "phytochemicals", "chemical component" and "phytochemistry" were used to search the literature in the Google Scholar, PubMed, Scopus and Web of Science databases. The articles pertinent to the subject were found and reviewed. The phytochemical composition of C. nutans varied depending on the region it was cultivated in, and was influenced by the environmental conditions, genetics, air temperature and postharvest practices.

20.
Am J Chin Med ; 52(4): 1087-1135, 2024.
Article in English | MEDLINE | ID: mdl-38864547

ABSTRACT

Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.


Subject(s)
Flavonoids , Prenylation , Sophora , Sophora/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Humans , Structure-Activity Relationship , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Animals , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Phytotherapy , Sophora flavescens
SELECTION OF CITATIONS
SEARCH DETAIL
...