Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Chin Med ; 19(1): 89, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909250

ABSTRACT

BACKGROUND: Rising resistance to antimicrobials, particularly in the case of methicillin-resistant Staphylococcus aureus (MRSA), represents a formidable global health challenge. Consequently, it is imperative to develop new antimicrobial solutions. This study evaluated 68 Chinese medicinal plants renowned for their historical applications in treating infectious diseases. METHODS: The antimicrobial efficacy of medicinal plants were evaluated by determining their minimum inhibitory concentration (MIC) against MRSA. Safety profiles were assessed on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cells. Mechanistic insights were obtained through fluorescence and transmission electron microscopy (FM and TEM). Synergistic effects with vancomycin were investigated using the Fractional Inhibitory Concentration Index (FICI). RESULTS: Rheum palmatum L., Arctium lappa L. and Paeonia suffructicosaas Andr. have emerged as potential candidates with potent anti-MRSA properties, with an impressive low MIC of 7.8 µg/mL, comparable to the 2 µg/mL MIC of vancomycin served as the antibiotic control. Crucially, these candidates demonstrated significant safety profiles when evaluated on Caco-2 and HepG2 cells. Even at 16 times the MIC, the cell viability ranged from 83.3% to 95.7%, highlighting their potential safety. FM and TEM revealed a diverse array of actions against MRSA, such as disrupting the cell wall and membrane, interference with nucleoids, and inducing morphological alterations resembling pseudo-multicellular structures in MRSA. Additionally, the synergy between vancomycin and these three plant extracts was evident against MRSA (FICI < 0.5). Notably, aqueous extract of R. palmatum at 1/4 MIC significantly reduced the vancomycin MIC from 2 µg/mL to 0.03 µg/mL, making a remarkable 67-fold decrease. CONCLUSIONS: This study unveil new insights into the mechanistic actions and pleiotropic antibacterial effectiveness of these medicinal plants against resistant bacteria, providing robust evidence for their potential use as standalone or in conjunction with antibiotics, to effectively combat antimicrobial resistance, particularly against MRSA.

2.
Biomater Adv ; 162: 213924, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38875802

ABSTRACT

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.


Subject(s)
Alendronate , Drug Carriers , Ivermectin , Lactoferrin , Humans , Animals , Drug Carriers/chemistry , Lactoferrin/chemistry , Lactoferrin/pharmacology , Lactoferrin/administration & dosage , Alendronate/chemistry , Alendronate/pharmacology , Alendronate/administration & dosage , Ivermectin/chemistry , Ivermectin/analogs & derivatives , Ivermectin/pharmacology , Ivermectin/administration & dosage , Ivermectin/pharmacokinetics , K562 Cells , Nanoparticles/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Bone and Bones/drug effects , Bone and Bones/metabolism , Lipids/chemistry , Apoptosis/drug effects
3.
Adv Colloid Interface Sci ; 331: 103205, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38875805

ABSTRACT

Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-ß-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.

4.
Int J Pharm ; 656: 124086, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38580074

ABSTRACT

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.


Subject(s)
Drug Carriers , Ivermectin , Lipids , Nanostructures , Humans , Ivermectin/administration & dosage , Ivermectin/chemistry , Ivermectin/pharmacokinetics , Ivermectin/pharmacology , Animals , Drug Carriers/chemistry , Lipids/chemistry , K562 Cells , Nanostructures/administration & dosage , Nanostructures/chemistry , Drug Synergism , Drug Liberation , Cell Survival/drug effects , Male , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Limonins/administration & dosage , Limonins/pharmacology , Limonins/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Rats
5.
Mitochondrion ; 76: 101868, 2024 May.
Article in English | MEDLINE | ID: mdl-38462158

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia around the globe. The disease's genesis is multifaceted, and its pathophysiology is complicated. Malfunction of mitochondria has been regarded as one of the intracellular events that are substantially damaged in the onset of AD and are likely a common trait of other neurodegenerative illnesses. Several mitochondrial characteristics begin to diminish with age, eventually reaching a state of significant functional failure concurrent with the beginning of neurodegenerative diseases, however, the exact timing of these processes is unknown. Mitochondrial malfunction has a multitude of negative repercussions, including reduced calcium buffering and secondary excitotoxicity contributing to synaptic dysfunction, also free radical production, and activation of the mitochondrial permeability transition. Hence mitochondria are considered a therapeutic target in neurodegenerative disorders such as Alzheimer's. Traditional medicinal systems practiced in different countries employing various medicinal plants postulated to have potential role in the therapy and management of memory impairment including amnesia, dementia as well as AD. Although, the preclinical and clinical studies using these medicinal plants or plant products have demonstrated the therapeutic efficacy for AD, the precise mechanism of action is still obscure. Therefore, this review discusses the contribution of mitochondria towards AD pathogenesis and considering phytotherapeutics as a potential therapeutic strategy.


Subject(s)
Alzheimer Disease , Mitochondria , Phytotherapy , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Animals , Plants, Medicinal
7.
Int J Pharm ; 649: 123637, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38008234

ABSTRACT

Pancreatic cancer is an aggressive malignancy that remains a major cause of cancer-related deaths. Research for innovative anticancer therapeutic options is thus imperative. In this regard, phytotherapeutics offer great promise as efficient treatment modalities, especially leveraging nanodrug delivery. Herein, we innovatively coloaded the flavonoid genistein (Gen) and frankincense essential oil (FO) within cubosomes, which were then coated with the bioactive ligand hyaluronic acid (HA/Gen-FO-Cub) for active-targeting of pancreatic cancer. The novel HA/Gen-FO-Cub displayed optimum nanosize (198.2 ± 4.5 nm), PDI (0.27 ± 0.01), zeta-potential (-34.7 ± 1.2 mV), Gen entrapment (99.3 ± 0.01 %), and controlled Gen release (43.7 ± 1.2 % after 120 h). HA/Gen-FO-Cub exerted selective anticancer activity on pancreatic cancer cells (PANC-1; 8-fold drop in IC50), cellular uptake and anti-migratory effect compared to Gen solution. HA/Gen-FO-Cub revealed prominent cytocompatibility (100 ± 5.9 % viability of human dermal fibroblast). Moreover, HA/Gen-FO-Cub boosted the in vivo anticancer activity of Gen in an orthotopic cancer model, affording tumor growth suppression (2.5-fold drop) and downregulation of NFκB and VEGF (2.9- and 1.8-fold decrease, respectively), compared to Gen suspension. Antimetastatic efficacy and Bcl-2-downexpression was histologically confirmed. Our findings demonstrate the promising anticancer aptitude of HA/Gen-FO-Cub as an effective phytotherapeutic nanodelivery system for pancreatic cancer therapy.


Subject(s)
Frankincense , Pancreatic Neoplasms , Humans , Genistein/pharmacology , Frankincense/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Drug Delivery Systems , Drug Carriers , Hyaluronic Acid
8.
Med Chem ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37907487

ABSTRACT

BACKGROUND: Antimicrobial resistance development poses a significant danger to the efficacy of antibiotics, which were once believed to be the most efficient method for treating infections caused by bacteria. Antimicrobial resistance typically involves various mechanisms, such as drug inactivation or modification, drug target modification, drug uptake restriction, and drug efflux, resulting in decreased antibiotic concentrations within the cell. Antimicrobial resistance has been associated with efflux Pumps, known for their capacity to expel different antibiotics from the cell non-specifically. This makes EPs fascinating targets for creating drugs to combat antimicrobial resistance (AMR). The varied structures of secondary metabolites (phytomolecules) found in plants have positioned them as a promising reservoir of efflux pump inhibitors. These inhibitors act as modifiers of bacterial resistance and facilitate the reintroduction of antibiotics that have lost clinical effectiveness. Additionally, they may play a role in preventing the emergence of multidrug resistant strains. OBJECTIVE: The objective of this review article is to discuss the latest studies on plant-based efflux pump inhibitors such as terpenoids, alkaloids, flavonoids, glycosides, and tetralones. It highlighted their potential in enhancing the effectiveness of antibiotics and combating the development of multidrug resistance. strains. RESULTS: Efflux pump inhibitors (EPIs) derived from botanical sources, including compounds like lysergol, chanaoclavine, niazrin, 4-hydroxy-α-tetralone, ursolic acid, phytol, etc., as well as their partially synthesized forms, have shown significant potential as practical therapeutic approaches in addressing antimicrobial resistance caused by efflux pumps. Further, several phyto-molecules and their analogs demonstrated superior potential for reversing drug resistance, surpassing established agents like reserpine, niaziridin, etc. strains. CONCLUSION: This review found that while the phyto-molecules and their derivatives did not possess notable antimicrobial activity, their combination with established antibiotics significantly reduced their minimum inhibitory concentration (MIC). Specific molecules, such as chanaoclavine and niaziridin, exhibited noteworthy potential in reversing the effectiveness of drugs, resulting in a reduction of the MIC of tetracycline by up to 16 times against the tested strain of bacteria. These molecules inhibited the efflux pumps responsible for drug resistance and displayed a stronger affinity for membrane proteins. By employing powerful EPIs, these molecules can selectively target and obstruct drug efflux pumps. This targeted approach can significantly augment the strength and efficacy of older antibiotics against various drug resistant bacteria, given that active drug efflux poses a susceptibility for nearly all antibiotics.

9.
Curr Drug Targets ; 24(13): 1046-1054, 2023.
Article in English | MEDLINE | ID: mdl-37861036

ABSTRACT

Advancements in biological sciences revealed the significant role of angiotensin-converting enzyme 2 (ACE2), a key cell surface receptor in various human pathologies. ACE2 is a metalloproteinase that not only functions in the regulation of Angiotensin II but also possesses some non-catalytic roles in the human body. There is considerable uncertainty regarding its protein expression, despite its presence in virtually all organs. The level of ACE2 expression and its subcellular localisation in humans may be a key determinant of susceptibility to various infections, symptoms, and outcomes of numerous diseases. Therefore, we summarize the distribution and expression pattern of ACE2 in different cell types related to all major human tissues and organs. Moreover, this review constitutes accumulated evidences of the important resources for further studies on ACE2 Inhibitory capacity via different natural compounds in order to understand its mechanism as the potential drug target in disease pathophysiology and to aid in the development of an effective therapeutic approach towards the various diseases.


Subject(s)
Peptidyl-Dipeptidase A , Renin-Angiotensin System , Humans , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin II/metabolism
10.
Int J Pharm ; 645: 123397, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37690657

ABSTRACT

Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.

11.
Front Nutr ; 10: 1194283, 2023.
Article in English | MEDLINE | ID: mdl-37469550

ABSTRACT

Manilkara zapota "chicozapote" is an autochthonous evergreen tree from the Southern regions of Mexico, Belize, and Guatemala. Currently, it is widely distributed and extensively grown in Mexico and Southeast Asia. Traditionally, different structures of the plant have been used for medical purposes; seeds have diuretic and purgative properties, aiding in digestive complications and eliminating bladder and kidney stones. Tree bark has antidiarrheal, antipyretic, antibiotic, and astringent properties. Fruits and leaves have been used to treat cold, cough, diarrhea, indigestion, fever, hemorrhages, wounds, and ulcers. Chicozapote fruit is yellow and brown, with an oval shape and rough peel, it is an excellent source of nutrients, such as sugars, proteins, amino acids, and minerals, and is rich in phytochemical components, such as flavonoids, phenolic acids, and tannins. These bioactive compounds exert several biological activities, i.e., as an antioxidant, antidiabetic, antimicrobial, anti-inflammatory, cytotoxic, and anti-arthritic agents, to name a few. These beneficial properties assist in preventing chronic and degenerative diseases, such as cancer, diabetes, neurological, infectious, and cardiovascular diseases. The use of chicozapote is still limited to its fresh form, and its non-edible structures produce a lot of waste. Therefore, an alternative valorizing and preserving strategy is to use the fruit as a raw source to design functional foods and pharmacological products. Here, the nutritional and phytochemical profiles and the current view regarding methodologies and conditions, for the extraction and characterization of its bioactive compounds, are described, and focus is placed on their multiple biological effects and specific functional mechanisms.

12.
Int J Pharm ; 642: 123163, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37353100

ABSTRACT

Breast cancer remains the leading cause of cancer-associated mortality in women. Research investigating novel therapeutic approaches is thus crucial, including phytotherapeutics. Pterostilbene (PTS) is a phytochemical agent with promising efficacy against breast cancer. Poor solubility, low bioavailability and chemical instability are major drawbacks compromising PTS functionality. Herein, novel PTS-loaded solid lipid nanoparticles (PTS-SLNs) were fabricated using the ultrasonication technique. Dual-functionalization with lactoferrin (Lf) and chondroitin-sulfate (CS; CS/Lf/PTS-SLNs) was adopted as active-targeting approach. CS/Lf/PTS-SLNs demonstrated nanoparticle-size (223.42 ± 18.71 nm), low PDI (0.33 ± 0.017), acceptable zeta potential (-11.85 ± 0.07 mV) and controlled release (72.93 ± 2.93% after 24 h). In vitro studies on triple-negative MDA-MB-231 revealed prominent cytotoxicity of CS/Lf/PTS-SLNs (2.63-fold IC50 reduction), higher anti-migratory effect and cellular uptake relative to PTS-solution. The in vivo anti-tumor efficacy in an orthotopic cancer model verified the superiority of CS/Lf/PTS-SLNs; achieving 2.4-fold decrease in tumor growth compared to PTS-solution. On the molecular level, CS/Lf/PTS-SLNs enhanced suppression of VEGF, down-regulated cyclin D1 and upregulated caspase-3 and BAX, compared to PTS-solution. Also, immunohistochemical assay confirmed the higher anti-tumorigenic effect of CS/Lf/PTS-SLNs (5.87-fold decrease in Bcl-2 expression) compared to PTS-solution. Our findings highlight CS/Lf/PTS-SLNs as a promising nanoplatform for phytotherapeutic targeted-breast cancer therapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Lactoferrin/chemistry , Chondroitin/therapeutic use , Lipids/chemistry , Nanoparticles/chemistry , Drug Carriers/therapeutic use , Particle Size
13.
Pharmaceuticals (Basel) ; 16(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37242544

ABSTRACT

Vascular aging is linked to reduce NO bioavailability, endothelial dysfunction, oxidative stress, and inflammation. We previously showed that a 4-week treatment of middle-aged Wistar rats (MAWRs, 46 weeks old) with Moringa oleifera seed powder (MOI, 750 mg/kg/day) improved vascular function. Here, we investigated the involvement of SIRT1 in MOI-induced vascular improvement. MAWRs were treated with a standard or MOI-containing diet. Young rats (YWR, 16 weeks old) were the controls and received a standard diet. The hearts and aortas were harvested to evaluate SIRT1 and FOXO1 expression via Western blot and/or immunostaining, SIRT1 activity via a fluorometric assay, and oxidative stress using the DHE fluorescent probe. In the hearts and aortas, SIRT1 expression, reduced in MAWRs compared to YWRs, was enhanced in MOI MAWRs. In the hearts, SIRT1 activity did not differ between YWRs and MAWRs, whereas it was increased in MOI MAWRs compared with them. In the aortas, SIRT1 activity decreased in MAWRs, and it was similar in the MOI MAWRs and YWRs. FOXO1 expression increased in the nuclei of MAWR aortas compared to YWR and was reversed in MOI MAWRs. Interestingly, MOI treatment normalized oxidative stress enhanced in MAWRs, in both the heart and aorta. These results demonstrate the protective role of MOI against cardiovascular dysfunction due to aging via enhanced SIRT1 function and subsequently reduced oxidative stress.

14.
Pharmaceutics ; 15(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36839955

ABSTRACT

Flavonoids are natural compounds that are attracting great interest in the biomedical field thanks to the wide spectrum of their biological properties. Their employment as anticancer, anti-inflammatory, and antidiabetic drugs, as well as for many other pharmacological applications, is extensively investigated. One of the most successful ways to increase their therapeutic efficacy is to encapsulate them into a polymeric matrix in order to control their concentration in the physiological fluids for a prolonged time. The aim of this article is to provide an updated overview of scientific literature on the polymeric systems developed so far for the controlled release of flavonoids. The different classes of flavonoids are described together with the polymers most commonly employed for drug delivery applications. Representative drug delivery systems are discussed, highlighting the most common techniques for their preparation. The flavonoids investigated for polymer system encapsulation are then presented with their main source of extraction and biological properties. Relevant literature on their employment in this context is reviewed in relationship to the targeted pharmacological and biomedical applications.

15.
J Pers Med ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836568

ABSTRACT

More than two years after the onset of the COVID-19 pandemic, healthcare providers are facing an emergency within an emergency, the so-called long COVID or post-COVID-19 syndrome (PCS). Patients diagnosed with PCS develop an extended range of persistent symptoms and/or complications from COVID-19. The risk factors and clinical manifestations are many and various. Advanced age, sex/gender, and pre-existing conditions certainly influence the pathogenesis and course of this syndrome. However, the absence of precise diagnostic and prognostic biomarkers may further complicate the clinical management of patients. This review aimed to summarize recent evidence on the factors influencing PCS, possible biomarkers, and therapeutic approaches. Older patients recovered approximately one month earlier than younger patients, with higher rates of symptoms. Fatigue during the acute phase of COVID-19 appears to be an important risk factor for symptom persistence. Female sex, older age, and active smoking are associated with a higher risk of developing PCS. The incidence of cognitive decline and the risk of death are higher in PCS patients than in controls. Complementary and alternative medicine appears to be associated with improvement in symptoms, particularly fatigue. The heterogeneous nature of post-COVID symptoms and the complexity of patients with PCS, who are often polytreated due to concomitant clinical conditions, suggest a holistic and integrated approach to provide useful guidance for the treatment and overall management of long COVID.

16.
3 Biotech ; 13(2): 62, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36714551

ABSTRACT

Amyotrophic lateral sclerosis" (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.

17.
Drug Chem Toxicol ; 46(3): 597-608, 2023 May.
Article in English | MEDLINE | ID: mdl-35509154

ABSTRACT

Diclofenac is a widely prescribed anti-inflammatory drug having cardiovascular complications as one of the main liabilities that restrict its therapeutic use. We aimed to investigate for any role of rutin against diclofenac-induced cardiac injury with underlying mechanisms as there is no such precedent to date. The effect of rutin (10 and 20 mg/kg) was evaluated upon concomitant oral administration for fifteen days with diclofenac (10 mg/kg). Rutin significantly attenuated diclofenac-induced alterations in the serum cardiac markers (LDH, CK-MB, and SGOT), serum cytokine levels (TNF-α and IL-6), and oxidative stress markers (MDA and GSH) in the cardiac tissue. Histopathological examination and Scanning Electron Microscopy (SEM) findings displayed a marked effect of rutin to prevent diclofenac-mediated cardiac injury. Altered protein expression of myocardial injury markers (cTnT, FABP3, and ANP) and apoptotic markers (Bcl-2 and Caspase-3) in the cardiac tissue upon diclofenac treatment was considerably shielded by rutin treatment. MYL3 was unaffected due to diclofenac or rutin treatment. Rutin also significantly improved diclofenac-induced gastrointestinal and hepatic alterations based on the observed ameliorative effects in key mediators, oxidative stress markers, histopathology examination, and SEM findings. Overall results suggest that rutin can protect the diclofenac-induced cardiac injury by lowering oxidative stress, inhibiting inflammation, and reducing apoptosis. Further research work directs toward the development of phytotherapeutics for cardioprotection.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antioxidants , Diclofenac , Inflammation , Rutin , Animals , Rats , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Diclofenac/pharmacology , Diclofenac/toxicity , Fatty Acid Binding Protein 3/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/prevention & control , Myosin Light Chains/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rutin/metabolism , Rutin/pharmacology , Rutin/therapeutic use
18.
Appl Biochem Biotechnol ; 195(4): 2618-2635, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35157239

ABSTRACT

The recent pandemic due to the COVID-19 virus has caused a global catastrophe. ACE2 and TMPRSS2 are recognized as key targets for viral entry into the host cells. The pandemic has led to the utilization of many synthetic drugs; however, due to various side effects, there is still no effective drug available against the virus. Several natural approaches have been devised, including herbal and ayurvedic medicines, that have proven to be effective against the COVID-19 virus. In the present study, the effect of phytocompounds of Piper longum and Ocimum sanctum on ACE2 and TRMPSS2 proteins has been studied. The in silico study is done using computational tools of networks of protein-protein interaction, molecular docking, and drug assessment in terms of physicochemical properties, drug-likeness, lipophilicity, water solubility, and pharmacokinetics. Out of selected phytoconstituents, vicenin 2, rosmarinic acid, and orientin were found to have the highest efficacy in terms of molecular interaction and drug-likeness properties against ACE2 and TMPRSS2 host receptor proteins. Our in silico study proposes the therapeutic potential of phytocompounds from Piper longum and Ocimum sanctum in modulating ACE2 and TMPRSS2 expression. Targeting ACE2 and TMPRSS2 against the SARS-CoV2 by phytomolecules can serve as a rational approach for designing future anti-COVID drugs.


Subject(s)
COVID-19 , Piper , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Molecular Docking Simulation , Ocimum sanctum , RNA, Viral
19.
J Am Nutr Assoc ; 42(7): 691-699, 2023.
Article in English | MEDLINE | ID: mdl-36441141

ABSTRACT

INTRODUCTION: Polycystic Ovary Syndrome (PCOS) is an endocrine disorder which accounts for infertility around the world. The disease is characterized by elevated secretion of androgens in the women which results in enlargement of ovaries with accumulation of fluid filled cysts, irregular menstrual cycles, and hirsutism. This study reports the efficacy of a patented, standardized Trigonella foenum-graecum extract (Furocyst®) as an effective phytotherapeutic for effective management of PCOS. OBJECTIVE: This randomized one-arm study assessed the efficacy of Furocyst® in 107 female volunteers over a period of 12 consecutive weeks. METHOD: Following approvals of the Institutional Ethical Committee and clinicaltrials.gov, 107 female volunteers (age: 18-45 years) were recruited. Subjects consumed Furocyst® capsules (1,000 mg/day p.o.) over a period of 12 consecutive weeks. Physical (Sonographic scan, Hirsutism Score, Menstrual cycle, Body Weight, BMI, Height, Waist Circumference and Blood Pressure) and biochemical parameters (LH/FSH ratio, TSH, Prolactin, Fasting insulin, Fasting Glucose, triglyceride, cholesterol, HOMA Index, free and total testosterone, 2-hour GTT, DHEAS) were assessed at the beginning of the study as well as at intervals of 4 weeks till 12 weeks to determine the efficacy of Furocyst® on PCOS induced damage on reproductive and endocrine system. RESULTS: Furocyst® treatment induced >40% reduction of mean cyst sizes in both ovaries with corresponding reduction of in ovarian volumes. LH:FSH ratio was also significantly improved with corresponding reduction in total testosterone and prolactin levels. As a result of improvement in endocrine function, menstrual cycle became regular in the subjects. Furocyst® also reduced the severity of other associated ailments such as insulin resistance, dyslipidemia, and improved liver function significantly. CONCLUSIONS: This study reinstated the efficacy of Furocyst® as a safe phytotherapeutic to reverse the effects of PCOS inflicted damage on the female reproductive system without any adverse events.

20.
3 Biotech ; 12(11): 324, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36276448

ABSTRACT

This paper reports various types of cancer, their incidence, and prevalence all over the globe. Along with the discovery of novel natural drugs for cancer treatment, these present a promising option which are eco-friendly, safe, and provide better acceptability in comparison to synthetic agents that carries multiple side effects. This paper provides an idea about various nanocarriers and phytochemicals, along with how their solubility and bioavailability can be enhanced in nanocarrier system. This report combines the data from various literature available on public domain including PubMed on research articles, reviews, and along with report from various national and international sites. Specialized metabolites (polyphenols, alkaloids, and steroids etc) from medicinal plants are promising alternatives to existing drugs. Studies have suggested that the treatment of cancer using plant products could be an alternative and a safe option. Studies have shown with the several cell lines as well as animal models, that phytomolecules are important in preventing/treating cancer. Phytochemicals often outperform chemical treatments by modulating a diverse array of cellular signaling pathways, promoting cell cycle arrest, apoptosis activation, and metastatic suppression, among others. However, limited water solubility, bioavailability, and cell penetration limit their potential clinical manifestations. The development of plant extract loaded nanostructures, rendering improved specificity and efficacy at lower concentrations could prove effective. Nanocarriers, such as liposomes, nanostructured lipids, polymers, and metal nanoparticles, have been tested for the delivery of plant products with enhanced effects. Recent advances have achieved improvement in the the stability, solubility, bioavailability, circulation time, and target specificity by nanostructure-mediated delivery of phytochemicals. Nanoparticles have been considered and attempted as a novel, targeted, and safe option. Newer approaches such as phyto-nanocarriers with carbohydrates, lignin, and polymers have been considered even more selective and effective modes of drug delivery in biomedical or diagnostic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...