Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
1.
Environ Sci Pollut Res Int ; 31(38): 50372-50387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090300

ABSTRACT

Potentially harmful element (PHE) bioavailability is important to environmental contamination and must be checked under several soil conditions. This study aimed to assess Fe, Mn, and PHE uptake by rice (Oryza sativa) grown on flooded and non-flooded Fe tailings collected from the Doce River basin after its collapse in Brazil. After 65 days of sowing, shoots and roots were harvested to determine PHE concentrations. The mean concentrations of Mn in shoots and Fe in the roots of rice grown on the flooded tailings were 2140 mg kg-1 and 15,219 mg kg-1, respectively. Mn was extensively translocated from roots to shoots (translocation factor (TF) = 2). Conversely, Fe accumulated in roots (TF = 0.015) and caused morphological damage to this rice organ. The application of macro and micronutrients lessened Fe toxicity in the roots of rice cultivated on the flooded tailings. The flooding of tailings influenced more Fe accumulation than Mn accumulation by rice plants. The PHE Ag, As, Cd, Ni, Hg, Pb, and Sb exhibited low total concentrations (maximum of 9 mg kg-1 for Ni and a minimum of 0.2 mg kg-1 for Cd, Hg, and Sb), and it was not observed an increase in their availability under tailings flooding conditions.


Subject(s)
Iron , Manganese , Oryza , Rivers , Brazil , Iron/metabolism , Floods , Soil Pollutants/metabolism , Environmental Monitoring , Plant Roots/metabolism
2.
Environ Sci Pollut Res Int ; 31(29): 41953-41963, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856851

ABSTRACT

Various plant species can be selected for environmental testing, including pearl millet (Pennisetum glaucum (L.) R. Br), a globally significant cereal crop. This study aims to assess millet's suitability as a species for ecotoxicological tests, examining (1) germination and initial development dynamics, (2) the minimum seed quantity for reliable sampling, (3) optimal experimental design with replication numbers, (4) suitability of positive control, and (5) the effectiveness of the protocol in evaluating toxic effects of environmental pollutants. Millet exhibited rapid and uniform germination as well as consistent initial seedling development. To establish the minimum number of seeds required for reliable experimentation, germination, and seedling growth were compared across plots containing 10, 25, and 50 seeds. Consequently, 10 seeds per plot were chosen for subsequent experiments to reduce labor and costs while maintaining reliability. To validate the selected experimental design, and to establish a positive control for assays, aluminum was used as a toxic element at concentrations ranging from 10-2 to 10-6 M. While aluminum did not affect the final percentage of germinated seeds, it did exhibit an impact on the Germination Speed Index (GSI). Significant differences in root and aerial growth, and with fresh weight, were observed. The 10-3M concentration was chosen as the positive control as the 10-2 concentration showed extreme toxicity. To assess the applicability of the established protocol in determining the toxic effects of environmental pollutants, millet roots were exposed to the toxic agents atrazine, cadmium, methyl methane sulfonate (MMS), and Spent pot liner (SPL). Millet demonstrated sensitivity and efficiency in response to these tests. In conclusion, millet proves to be an effective species for the toxicological risk assessment of environmental pollutants.


Subject(s)
Ecotoxicology , Germination , Pennisetum , Pennisetum/drug effects , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development
3.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38922465

ABSTRACT

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Subject(s)
Benzimidazoles , Carbamates , Fungicides, Industrial , Lactuca , Phaseolus , Strobilurins , Phaseolus/drug effects , Strobilurins/toxicity , Benzimidazoles/toxicity , Fungicides, Industrial/toxicity , Carbamates/toxicity , Lactuca/drug effects , Pyrimidines/toxicity , Chlorophyll/metabolism
4.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38884257

ABSTRACT

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Subject(s)
Acetamides , Herbicides , Lactuca , Zea mays , Zea mays/drug effects , Herbicides/toxicity , Lactuca/drug effects , Lactuca/growth & development , Acetamides/toxicity , Germination/drug effects , Seeds/drug effects , Seeds/growth & development
5.
Environ Sci Pollut Res Int ; 31(23): 34258-34270, 2024 May.
Article in English | MEDLINE | ID: mdl-38700772

ABSTRACT

The impact of adding biogas waste (BW) to green waste (GW) composting to increase nitrogen supplementation and improve mature compost quality was investigated. Conducted over 90 days using static windrows, the experiment compared treatments with GW alone (T1) and GW supplemented with BW (T2 and T3). The results showed that the addition of BW increased temperatures, improved the C/N ratio, and expedited the stabilization process compared to T1. Furthermore, the addition of BW led to significant degradation of hemicellulose (up to 39.98%) and cellulose (up to 27.63%) compared to GW alone. Analysis of Fourier-transform infrared (FTIR) spectra revealed the presence of aromatic, phenolic, aliphatic, and polysaccharide structures in the compost, with BW supplementation enhancing these characteristics. Importantly, the germination index (GI) assessment indicated that the compounds produced were not toxic and instead exhibited stimulatory effects on seed germination. Overall, the findings suggest that supplementing GW composting with BW can enhance the quality and efficacy of the composting process, resulting in compost with desirable properties for agricultural use.


Subject(s)
Biofuels , Composting , Germination/drug effects , Soil/chemistry
6.
Chemosphere ; 357: 142074, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657693

ABSTRACT

The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 µg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-ß and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.


Subject(s)
Insecticides , Larva , Malathion , Photolysis , Malathion/chemistry , Malathion/toxicity , Animals , Insecticides/chemistry , Insecticides/toxicity , Insecticides/pharmacology , Larva/drug effects , Aedes/drug effects , Aedes/growth & development , Acetylcholinesterase/metabolism , Ecotoxicology , Biomarkers/metabolism , Lactuca/drug effects , Glutathione Transferase/metabolism , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism
7.
Molecules ; 29(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542863

ABSTRACT

From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 5-7 and 9-10 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed.


Subject(s)
Alkaloids , Diterpenes , Lung Neoplasms , Salvia , Humans , Abietanes/pharmacology , Abietanes/chemistry , Salvia/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Cell Line, Tumor , Molecular Structure
8.
Sci Total Environ ; 918: 170449, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38290672

ABSTRACT

This study investigated the quality of anaerobic (AnE) and oxic/anoxic (O/A) effluents from a continuous-feed structured-bed hybrid baffled reactor (SBHBR) treating dairy wastewater impacts on lettuce and cucumber germination. While sustainable technologies like SBHBR have successfully removed organic matter and total nitrogen from dairy wastewater, residual concentrations may still represent a risk to water resources. Therefore, phytotoxicity bioassays were conducted with lettuce and cucumber seeds in contact with effluent during early stages to evaluate the potential implications of dairy wastewater reuse in agriculture. The study also explored the potential of SBHBR technology in promoting water resource preservation and creating a sustainable energy and nutrient cycling system. The physicochemical parameters of both effluents were characterized, and the phytotoxicity was evaluated by measuring the germination index (GI), root length (RL), the number of germinated seeds (SG), and epicotyl elongation (EE) for both lettuce and cucumber. The study revealed that the O/A effluent demonstrated lower phytotoxicity than the AnE effluent. The mean results indicate that the O/A zone wastewater was more conducive to cucumber germination than the AnE zone. Moreover, a positive influence of organic matter in the effluent on root growth and epicotyl elongation in cucumber, as well as the presence of nitrogen on the germination index, in both plant species. These findings emphasize the importance of considering effluent characteristics for suitable irrigation, highlighting SBHBR's potential as an effective solution for treating and reusing dairy wastewater in agriculture. This approach helps conserve water resources and promote a sustainable energy and nutrient cycling system.


Subject(s)
Cucumis sativus , Wastewater , Germination , Plants , Agriculture , Nitrogen/pharmacology
9.
Environ Sci Pollut Res Int ; 31(9): 13270-13283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38243029

ABSTRACT

The seed germination, as well as root and shoot growth effect of HKUST-1 MOF, and its derived linear polymer ([Cu2(OH)(BTC)(H2O)]n·2nH2O) were herein examined. These effects were studied for seven higher plant species: sweet corn (Zea mays L.), black bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), lettuce (Lactuca sativa L.), celosia (Celosia argentea L.), Aztec marigold (Tagetes erecta L.), and gypsophila (Gypsophila paniculata L.). The studied concentrations of MOFs were 10, 100, 500, or 1000 mg/L, enhancing the percentage of germination and growth of plants in most species. In general, the growth of the root is lower compared to the controls due to the capacity of the MOF to adsorb water and provide micronutrients such as C, O, and Cu, acting as a reserve for the plant. Shoot system growths are more pronounced with HKUST-1 compared with control, and linear polymer, due to the 3D structure adsorbs major water contents. It was found that all studied species are tolerant not only to Cu released from the material, but more evident to Cu structured in MOFs, and this occurs at high concentrations compared to many other systems. Finally, copper fixation was not present, studied by EDX mapping, banning the possibility of metallic phytotoxicity to the tested cultivars.


Subject(s)
Germination , Metal-Organic Frameworks , Copper/pharmacology , Seeds , Plants , Lactuca , Water
10.
Environ Monit Assess ; 196(1): 64, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38112861

ABSTRACT

Pig farming is recognized as an activity with great polluting potential. The aim was to investigate possible environmental risks of effluents from the stabilization pond (SP) and the raw effluent (RE) from the biodigestion process of swine residues, in different concentrations in the models Lactuca sativa and Allium cepa. Seeds were germinated in different dilutions, 100% (C1), 50% (C2), 25% (C3), 12.5% (C4), 6.25% (C5), 3.12% (C6), 0.78% (C7), and 0.39% (C8). Distilled water was used as the negative control (CN) and trifluralin (0.84 g/L-1) as the positive control. Germination (GR), root growth (RG), cell cycle, and oxidative stress (OS) were analyzed. To assess OS, the activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and the quantification of glutathione (GSH) and lipid peroxidation (LPO) were analyzed. Data were submitted to ANOVA (one way), followed by the Kruskal-Wallis mean test (P ≤ 0.05). Chemical analysis showed high values of Cu, Fe, Mn, and Zn. Dilutions (C1, C2, C3 RE) and (C1 and C2 SP) inhibited GR and RG of L. sativa and A. cepa than other concentrations. The mitotic index showed a reduction in C5 (RE), C6, and C7 (SP) of L. sativa and C3 and C4 (SP) of A. cepa in relation to CN and higher frequencies of chromosomal alterations. Regarding the OS, only the concentrations of SP treatment showed statistical difference in relation to the NC: in L. sativa model, GSH at (C5 and C8) concentrations and LPO (C7); in A. cepa model, SOD (C3 and C4), GST (C4, C5 and C6), GSH (C5 and C8), and CAT (C3 and C7). The alterations in metabolism are possibly related to the metals, such as zinc and copper, observed in high amounts in the raw waste. The results allowed us to conclude that the raw and stabilization pond effluents offer environmental risks, requiring caution and monitoring in the use of these effluents.


Subject(s)
Lactuca , Onions , Animals , Swine , Environmental Monitoring , Copper/toxicity , Superoxide Dismutase , Glutathione/metabolism
11.
Plants (Basel) ; 12(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895989

ABSTRACT

Weed management in areas adjacent to coffee plantations makes herbicide drift a constant concern, especially with the use of nonselective products such as dicamba. The objective of this study was to evaluate the phytotoxic effects of the herbicide dicamba alone and mixed with glyphosate as a result of simulated drift in a coffee-producing area. The study was conducted in duplicate at two different coffee cherry development stages. The study was performed with a randomized block design and a 2 × 5 + 1 factorial scheme with four replications using two herbicide spray solutions (dicamba and dicamba + glyphosate) and five low doses (0.25; 1; 5; 10; and 20%). Additionally, a control treatment without herbicide application was also employed. In this study, we evaluated the phytotoxic damage and biometric and productive parameters. Visual damages were observed with the use of dicamba and dicamba + glyphosate doses reduced by 0.25% to 5% in the first days after application. The main symptoms were new leaf epinasty, changes in the internodal distance, and plagiotropic branch curvature. Low doses led to reduced plant height and branch length. The treatments did not reduce productivity and performance but altered the physical classifications of grains.

12.
Environ Sci Pollut Res Int ; 30(52): 112117-112131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37824048

ABSTRACT

In this study, we investigate the toxicity of commercial formulations based on glyphosate, 2,4-D, imidacloprid, and iprodione, in isolation and mixed, on Allium cepa. The mixtures consisted of combinations in the lowest (M1), intermediate (M2), and highest concentrations (M3) of each pesticide. We measured physiological (germination rate, germination speed, and radicular length) and cyto-genotoxic (mitotic index and frequency of aberrant cells) parameters. In addition, we analyzed the cell cycle progression and cell death induction by flow cytometry. When applied in isolation, the pesticides changed the parameters evaluated. M1 and M2 inhibited root length and increased the frequency of aberrant cells. Their genotoxic effect was equivalent to that of pesticides applied in isolation. Furthermore, M1 and M2 caused cell death and M2 changed the cell cycle progression. M3 had the greatest deleterious effect on A. cepa. This mixture inhibited root length and promoted an additive or synergistic effect on the mitotic index. In addition, M3 changed all parameters analyzed by flow cytometry. This research clearly demonstrates that the pesticides tested, and their mixtures, may pose a risk to non-target organisms.


Subject(s)
Pesticides , Toxins, Biological , Pesticides/toxicity , Onions , Mitotic Index , Plant Roots , DNA Damage , Chromosome Aberrations
13.
Braz J Microbiol ; 54(3): 2319-2331, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37578738

ABSTRACT

Sulfentrazone (STZ) is an efficient tool for the pre- and post-emergence control of monocotyledonous and dicotyledonous weeds in fields of crops such as pineapple, coffee, sugarcane, citrus, eucalyptus, tobacco, and soybean. However, this herbicide persists in the soil, causing phytotoxicity in the subsequent crop. Therefore, it is important to use efficient strategies for the remediation of STZ-contaminated areas. The aim of this study was to evaluate the effects of Crotalaria juncea L. on the remediation of STZ-contaminated soil and on the microbial activity and bacterial community structure therein. The study was conducted in three stages: (i) cultivation of C. juncea in soil contaminated with 200, 400, and 800 g ha-1 STZ; (ii) determination of the soil microbial activity (basal respiration, microbial biomass carbon, and bacterial community structure); and (iii) cultivation of a bioindicator species and determination of the residual fraction of STZ. The soil microbial activity was impacted by the soil type and STZ dose. Soil previously cultivated with C. juncea (rhizospheric soil) displayed higher CO2 and lower qCO2 values than non-rhizospheric soil (no previous C. juncea cultivation). Increasing doses of STZ reduced the activity and lowered the diversity indices of the soil microorganisms. The bacterial community structure was segregated between the rhizospheric and non-rhizospheric soils. Regardless of soil type, the bioindicator of remediation (Pennisetum glaucum R.Br.) grew only at the STZ dose of 200 g ha-1, and the plant intoxication level was also lower in rhizospheric soil treated with this herbicide dose. All P. glaucum plants died in the soils treated with 400 and 800 g ha-1 STZ. Previous cultivation of C. juncea in soils contaminated with 200, 400, and 800 g ha-1 STZ reduced the residual fraction of the herbicide by 4.8%, 12.5%, and 17.4%, respectively, compared with that in the non-rhizospheric soils. In conclusion, previous cultivation with C. juncea promoted increases in the soil bacterial activity and diversity indices, mitigated the deleterious effects of STZ on the bioindicator crop, and reduced the residual fraction of the herbicide in the soil.


Subject(s)
Crotalaria , Soil Microbiology , Sulfonamides , Triazoles , Crotalaria/metabolism , Biodegradation, Environmental , Sulfonamides/metabolism , Triazoles/metabolism
14.
J Agric Food Chem ; 71(36): 13255-13262, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37651710

ABSTRACT

Extracting practical information from the large amounts of data gathered during the live imaging analysis of plant organs is a challenging issue. The present work investigates the use of the logistic growth model to analyze experimental data from root elongation assays performed in milli-fluidic devices with in situ imaging. Lactuca sativa was used as a bioindicator and was subjected to wide concentration ranges of four different herbicides: 2,4-D, atrazine, glyphosate, and paraquat. The model parameters were directly connected to standard indicators of toxicity and plant development, such as the LD50 and the absolute growth rate, respectively. In addition, it was found that realistic predictions of the maximum root length can be achieved about 60 h before the bioassay end point, which could significantly shorten the turnaround time. The combination of milli-fluidic devices, real-time imaging, and model-based data analysis becomes a powerful tool for environmental studies and ecotoxicity testing.


Subject(s)
Atrazine , Herbicides , Herbicides/pharmacology , Lactuca , Diagnostic Imaging , Paraquat
15.
Environ Technol ; : 1-20, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37452562

ABSTRACT

In this work, the synthesis of activated carbon from the bark of the Magonia pubescens (known as Tingui) and its efficiency in the removal of diclofenac sodium through batch adsorption tests and physical-chemical characterizations were investigated. The phytotoxicity of this material was also evaluated through germination and root growth of Lactuca sativa seeds. According to the experimental design performed for the synthesis of Tingui carbon, the optimized temperature and residence time for the production of this adsorbent were 550 °C and 120 min, respectively. The equilibrium time was reached in 600 min and the theoretical model that best fitted the kinetic data was the Elovich model. The BET was the best fit for the adsorption isotherm dataThis indicates that the adsorption process of sodium diclofenac by activated carbon can occur by two different mechanisms, monolayer and/or multilayer adsorption, depending on the conditions employed in the process, such as temperature and adsorbate concentration. The thermodynamic study showed that the process was favourable and spontaneous in the temperature range evaluated. Furthermore, the characterizations showed by TG/DTG and FTIR analyses that the temperature throughout the process had a marked impact on the degradation of the organic constituents of the biomass and the appearance of distinct functional groups that contributed to the adsorption process of diclofenac sodium. Finally, the toxicity tests recognized that this adsorbent does not affect the germination of L. sativa species. Thus, this adsorbent may become a novel and viable option to be used in the removal of sodium diclofenac.

16.
Bull Environ Contam Toxicol ; 110(6): 116, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318661

ABSTRACT

The particle size reduction technology is used in several segments, including sunscreens and new techniques and product improvement. One of the main particles used in the sunscreens formulation is titanium dioxide (TiO2). This formulation allows for better characteristics of these products. Perspectives like incorporation of the particles by other biological systems beyond humans and their effects should be observed. This work aimed to evaluate the titanium dioxide microparticles phytotoxicity on Lactuca sativa L. plants through tests of germination, growth, and weight analysis using microscopy techniques: optical microscopy (OM) and scanning electron microscopy (SEM). Some of the results showed cellular and morphological damage, mainly in the roots and 50 mg L-1 TiO2 concentration, confirmed by SEM. Additionally, anatomical damages like vascular bundle disruption and irregularity in the cortex cells were confirmed by SEM. Additionally, anatomical damages were observed on the three main organs (root, hypocotyl, and leaves) evidenced by the OM. Perspectives to confirm new hypotheses of the interaction of nanomaterials with biological systems are necessary.


Subject(s)
Lactuca , Seedlings , Humans , Lactuca/metabolism , Sunscreening Agents , Germination , Seeds , Plant Roots
17.
Semina ciênc. agrar ; 44(2): 841-858, mar.-abr. 2023. graf, tab
Article in English | VETINDEX | ID: biblio-1511545

ABSTRACT

Herbicide selectivity is the basis for chemical control of weeds; however, it depends on the interactions between herbicide, crop, and edaphoclimatic conditions. The objective of this work was to evaluate the selectivity of herbicides applied at the pre-emergence stage of soybean cultivars with different maturation times grown in different locations. The experiment was conducted under field conditions, in two crop seasons (2019/2020 and 2020/2021), in Lages and Curitibanos, state of Santa Catarina, Brazil. A randomized block experimental design was used, with treatments organized in 4×3 (2019/2020) and 4×4 (2020/2021) factorial arrangements, with four replications. The treatments consisted of interactions between four soybean cultivars: BMX Raio IPRO® (Raio), BMX Zeus IPRO® (Zeus), MONSOY 5947 IPRO® (Monsoy), and BMX Fibra IPRO® (Fibra) and three or four herbicide treatments: control with no herbicides, sulfentrazone + diuron, and diclosulam in 2019/2020; and control with no herbicide, sulfentrazone + diuron, diclosulam, and pyroxasulfone + flumioxazin in 2020/2021. The plots were evaluated for phytotoxicity of herbicides, canopy closure, plant height, stand of plants, number of pods per plant, one-thousand grain weight, and grain yield. The phytotoxicity of herbicides on the soybean plants was mild, under 11%, regardless of the cultivar and growth location. The soybean plants fully recovered from the injuries at 14 days after herbicide application. In Curitibanos, the cultivar Zeus presented higher grain yield in both crop seasons. The herbicide factor showed that sulfentrazone + diuron and diclosulam decreased the grain yield of the cultivars Raio and Zeus in 2019/2020. In the following crop season, only the cultivar Raio presented decreases in grain yield due to the application of diclosulam and pyroxasulfone + flumioxazin. In Lages, the soybean cultivar factor affected the grain yield; the cultivars Monsoy and Fibra were the most productive.(AU)


A seletividade de herbicidas é a base para o controle químico de plantas daninhas, entretanto, esta depende da interação entre o herbicida, a cultura e as condições edafoclimáticas. O objetivo desta pesquisa foi avaliar a seletividade de herbicidas aplicados em pré-emergência de cultivares de soja de ciclos contrastantes, em diferentes regiões de Santa Catarina. O experimento foi conduzido em condições de campo, em duas safras (2019/2020 e 2020/2021), nos municípios de Lages e Curitibanos, Santa Cataria, Brasil. O delineamento experimental utilizado foi de blocos ao acaso com tratamentos organizados em esquema fatorial 4 x 3 (2019/2020) e 4 x 4 (2020/2021), com quatro repetições. Os tratamentos resultaram da interação de quatro cultivares de soja: BMX Raio IPRO® (Raio), BMX Zeus IPRO® (Zeus), MONSOY 5947 IPRO® (Monsoy) e BMX Fibra IPRO® (Fibra), com três tratamentos: testemunha sem herbicida, sulfentrazone + diuron e diclosulam em 2019/2020; e testemunha sem herbicida, sulfentrazone + diuron, diclosulam e pyroxasulfone + flumioxazin em 2020/21. As avaliações realizadas foram fitointoxicação, fechamento de entrelinhas, altura de plantas, estande, número de vagens por planta, peso de mil grãos e produtividade de grãos. A fitointoxicação das plantas de soja foi leve, não ultrapassando os 11% independente da cultivar e do município. A soja se recuperou totalmente das injúrias aos 14 dias após a aplicação (DAA). Em Curitibanos, a cultivar Zeus apresentou maior produtividade de grãos nas duas safras. Para o fator herbicida observou-se que a mistura sulfentrazone + diuron e diclosulam reduziram a produtividade das cultivares Raio e Zeus em 2019/2020. Na safra seguinte, apenas a cultivar Raio teve a produtividade reduzida com a aplicação de diclosulam e pyroxasulfone + flumioxazin. Em Lages houve diferença na produtividade de grãos apenas para o fator cultivares de soja, onde as cultivares Monsoy e Fibra foram as mais produtivas.(AU)


Subject(s)
Glycine max/physiology , 24444 , Herbicides
18.
Molecules ; 28(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36985605

ABSTRACT

The essential oils (EOs) of Guatteria schomburgkiana (Gsch) and Xylopia frutescens (Xfru) (Annonaceae) were obtained by hydrodistillation, and their chemical composition was evaluated by gas chromatography-mass spectrometry (GC/MS). Herbicide activity was measured by analyzing the seed germination percentage and root and hypocotyl elongation of two invasive species: Mimosa pudica and Senna obtusifolia. The highest yield was obtained for the EO of Xfru (1.06%). The chemical composition of Gsch was characterized by the presence of the oxygenated sesquiterpenes spathulenol (22.40%) and caryophyllene oxide (14.70%). Regarding the EO of Xfru, the hydrocarbon monoterpenes α-pinene (35.73%) and ß-pinene (18.90%) were the components identified with the highest concentrations. The germination of seeds of S. obtusifolia (13.33 ± 5.77%) showed higher resistance than that of seeds of M. pudica (86.67 ± 5.77%). S. obtusifolia was also more sensitive to the EO of Xfru in terms of radicle (55.22 ± 2.72%) and hypocotyl (71.12 ± 3.80%) elongation, while M. pudica showed greater sensitivity to the EO of Gsch. To screen the herbicidal activity, the molecular docking study of the major and potent compounds was performed against 4-hydroxyphenylpyruvate dioxygenase (HPPD) protein. Results showed good binding affinities and attributed the strongest inhibitory activity to δ-cadinene for the target protein. This work contributes to the study of the herbicidal properties of the EOs of species of Annonaceae from the Amazon region.


Subject(s)
Annonaceae , Guatteria , Oils, Volatile , Xylopia , Annonaceae/chemistry , Xylopia/chemistry , Guatteria/chemistry , Oils, Volatile/chemistry , Brazil , Molecular Docking Simulation , Plant Leaves/chemistry
19.
Environ Monit Assess ; 195(3): 359, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36735091

ABSTRACT

Zinc (Zn) is an essential micronutrient for plants and an important component for maintaining soil quality. Commonly found in the soil due to anthropogenic activities, such as industrialization and application of organic waste as fertilizers, in high concentrations, Zn may induce soil toxicity, affecting important communities, such as edaphic fauna. Despite its high concentrations found in the environment, Zn bioavailability can be affected by the type of soil, organic matter content and pH. In this work, Zn had its toxicity evaluated in a natural tropical soil, sampled in São Paulo-Brazil, for two soil invertebrates (Folsomia candida, Enchytraeus crypticus) and two seeds (Lactuca sativa and Phaseolus vulgaris), through ecotoxicological tests. The invertebrate E. crypticus was exposed to Zn concentrations of 10.0 (T1); 100.0 (T2); 150.0 (T3); 200.0 (T4); 400.0 (T5) mg Zn kg-1 of dry soil, while F. candida, L. sativa and P. vulgaris were exposed to Zn concentrations of 100.0; 200.0; 400.0; 800.0 (t6); 1600.0 (t7); and 2000.0 (t8) mg Zn kg-1 of dry soil. The outcome evaluated were seed germination, for L. sativa and P. vulgaris, and reproduction, for F. candida and E. crypticus. The EC50 obtained for E. crypticus, F. candida, L. sativa, and P. vulgaris were 261.5, 1089.7, 898.5, and 954.5 mg Zn kg-1 of dry soil, respectively, being E. crypticus the most sensitive organism, and only at the highest Zn's concentrations the organisms' reproduction and seeds' germination showed a statistically significant inhibitory effect (p < 0.05). Therefore, this work's results showed that Zn does not present significant toxicity for the tested soil organisms and seeds and that at 100 mg Zn kg-1 of dry soil it can be beneficial to F. candida and E. crypticus' reproduction and L. sativa's germination. These results imply that the presence of Zn in low concentrations, both in soil and biofertilizers, such as sewage sludge, not only is not a concern, but it can even benefit certain crops and functions of edaphic organisms, which may contribute to the engagement of sustainable agricultural practices and the quest for food security.


Subject(s)
Arthropods , Coleoptera , Oligochaeta , Phaseolus , Soil Pollutants , Animals , Sewage , Lactuca , Zinc , Brazil , Environmental Monitoring , Soil/chemistry , Soil Pollutants/analysis
20.
J Plant Res ; 136(5): 729-742, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35179661

ABSTRACT

Monothioarsenate (MTA) is a newly discovered arsenic (As) compound that can be formed under reduced sulfur conditions, mainly in paddy soil pore waters. It is structurally similar to arsenate As(V) and inorganic phosphate (Pi), which is taken up through phosphate transporters. Due to the similarity between As(V) and Pi, As(V) enters into plants instead of Pi. The important role played by phytochelatin (PC), glutathione (GSH), and the PC-vacuolar transporters ABCC1 and ABCC2 under As stress in plants is well known. However, the plant uptake and mechanisms surrounding MTA still have not been completely addressed. This investigation was divided in two stages: first, several hydroponic assays were set up to establish the sensibility-tolerance of wild-type Arabidopsis thaliana (accession Columbia-0, Col-0). Then Col-0 was used as a control plant to evaluate the effects of As(V) or MTA in (PC)-deficient mutant (cad1-3), glutathione biosynthesis mutant (cad2), and PC transport (abcc1-2). The inhibitory concentration (IC50) root length was calculated for both As species. According to the results, both arsenic species (As(V) and MTA) exhibited high toxicity for the genotypes evaluated. This could mean that these mechanisms play a constitutive role in MTA detoxification. Second, for the Pi-MTA and As(V)-Pi competition assays, a series of experiments on hydroponic seedlings of A. thaliana were carried out using Col-0 and a pht1;1. The plants were grown under increasing Pi concentrations (10 µM, 0.1 mM, or 1 mM) at 10 µM As(V) or 50 µM MTA. The total As concentration in the roots was significantly lower in plants exposed to MTA, there being less As content in the pht1;1 mutant at the lowest Pi concentrations tested compared with the As(V)/Pi treatments. In addition, a higher rate of As translocation from the roots to the shoots under MTA was observed in comparison to the As(V)-treatments.


Subject(s)
Arabidopsis , Arsenic , Arsenicals , Arsenic/pharmacology , Phosphates/pharmacology , Hydroponics , Biological Transport , Arsenicals/pharmacology , Plants , Arabidopsis/genetics , Plant Roots , Glutathione
SELECTION OF CITATIONS
SEARCH DETAIL