Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39190203

ABSTRACT

Potentially toxic elements (PTE) pollution in water bodies is an emerging problem in recent decades due to uncontrolled discharges from human activities. Copper, zinc, arsenic, cadmium, lead, mercury, and uranium are considered potentially toxic and carcinogenic elements that threaten human health. Microalgae-based technologies for the wastewater treatment have gained importance in recent years due to their biomass high growth rates and effectiveness. Also, these microalgae-bacteria systems are cost-effective and environmentally friendly, utilize sunlight and CO2, and simultaneously address multiple environmental challenges, such as carbon mitigation, bioremediation, and generation of valuable biomass useful for biofuel production. Additionally, microalgae possess a diverse array of extracellular and intracellular mechanisms that enable them to remove and mitigate the toxicity of PTE present in wastewater. Therefore, photobioreactors are promising candidates for practical applications in bioremediation of wastewater containing toxic elements. Despite the increasing amount of research in this field in recent years, most studies are conducted in laboratory scale and there is a scarcity of large-scale studies under real and variable environmental conditions. Besides, the limited understanding of the multiple mechanisms controlling PTE biosorption in wastewater containing high organic matter loads and potentially toxic elements requires further studies. This chapter provides a schematic representation of the mechanisms and factors involved in the remediation of potentially toxic elements by microalgae, as well as the main results obtained in recent years.

2.
Bioresour Technol ; 406: 131055, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944316

ABSTRACT

Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.


Subject(s)
Microalgae , Wastewater , Animals , Wastewater/microbiology , Microalgae/metabolism , Swine , Bacteria/metabolism , Water Purification/methods , Waste Disposal, Fluid/methods , Microbial Consortia/physiology , Biodegradation, Environmental
3.
Environ Res ; 257: 119329, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851372

ABSTRACT

Conventional methods, such as freshwater dilution and ammonia stripping, have been widely employed for microalgae-based piggery wastewater (PW) treatment, but they cause high freshwater consumption and intensive ammonia loss, respectively. This present work developed a novel fast microbial nitrogen-assimilation technology by integrating nitrogen starvation, zeolite-based adsorption, pH control, and co-culture of microalgae-yeast for the PW treatment. Among them, the nitrogen starvation accelerated the nitrogen removal and shortened the treatment period, but it could not improve the tolerance level of microalgal cells to ammonia toxicity based on oxidative stress. Therefore, zeolite was added to reduce the initial total ammonia-nitrogen concentration to around 300 mg/L by ammonia adsorption. Slowly releasing ammonia at the later phase maintained the total ammonia-nitrogen concentration in the PW. However, the pH increase could cause lots of ammonia loss air and pollution and inhibit the desorption of ammonia from zeolite and the growth and metabolism of microalgae during the microalgae cultivation. Thus, the highest biomass yield (3.25 g/L) and nitrogen recovery ratio (40.31%) were achieved when the pH of PW was controlled at 6.0. After combining the co-cultivation of microalgae-yeast, the carbon-nitrogen co-assimilation and the alleviation of pH fluctuation further enhanced the nutrient removal and nitrogen migration to high-protein biomass. Consequently, the fast microbial nitrogen-assimilation technology can help update the industrial system for high-ammonia wastewater treatment by improving the treatment and nitrogen recovery rates.


Subject(s)
Ammonia , Microalgae , Nitrogen , Wastewater , Nitrogen/metabolism , Wastewater/chemistry , Wastewater/microbiology , Ammonia/metabolism , Microalgae/metabolism , Microalgae/growth & development , Animals , Zeolites/chemistry , Waste Disposal, Fluid/methods , Swine , Water Pollutants, Chemical , Animal Husbandry/methods , Dietary Proteins
4.
Bioresour Technol ; 403: 130866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777231

ABSTRACT

Attachment of microalgae on the inner surfaces of photobioreactors impacts the efficiency of swine wastewater treatment by reducing the light intensity, which has been overlooked in previous studies. This study investigated the relationship between microalgal attachment biomass and light intensity in photobioreactors, determined the optimal attachment time for effective pollutant removal, and clarified the mechanisms of microalgal attachment in swine wastewater. After 9 days of treatment, the attached biomass in the photobioreactor increased from 0 to 6.4 g/m2, decreasing the light intensity from 2,000 to 936 lux. At the 24 h optimal attachment time, the concentrations of chemical oxygen demand, ammonia nitrogen, and total phosphorus decreased from 2725.1, 396.4, and 87.2 mg/L to 361.2, 4.9, and 0.8 mg/L, respectively. Polysaccharides in the extracellular polymeric substances released by microalgae play a significant role in facilitating microalgae attachment. Optimizing the microalgal attachment time within photobioreactors effectively mitigates pollutant concentrations in swine wastewater.


Subject(s)
Microalgae , Photobioreactors , Wastewater , Animals , Wastewater/chemistry , Microalgae/metabolism , Swine , Water Purification/methods , Biomass , Phosphorus , Nitrogen , Biological Oxygen Demand Analysis , Light
5.
Environ Pollut ; 351: 124028, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677456

ABSTRACT

Microalgae is an effective bioremediation technique employed for treating piggery effluent. However, there is insufficient study on how the presence of microplastics (MPs) in wastewater affects the ability of microalgae to remove heavy metals from piggery effluent. This study aims to investigate the influence of two prevalent heavy metals found in piggery wastewater, Cu2+ (2 mg/L) and Zn2+ (2 mg/L), on their removal by microalgae (Desmodesmus sp. CHX1) in the presence of four types of MPs: polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET). The results revealed that smaller particle size MPs promoted chlorophyll accumulation, while larger particles inhibits it. Additionally, higher concentrations of MPs promoted chlorophyll accumulation, while lower concentrations inhibited it. As for heavy metals, the presence of microplastics reduced the removal efficiency of Cu2+ and Zn2+ by Desmodesmus sp. CHX1. The highest inhibition of Cu2+ was 30%, 10%, 19%, and 16% of the control (CK), and the inhibition of Zn2+ was 7%, 4%, 4%, and 13%, respectively, under the treatments of PE, PVC, PP and PET MPs. Furthermore, Desmodesmus sp. CHX1 can secrete more extracellular polymeric substances (EPS) and form heterogeneous aggregates with MPs to counteract their pressure. These findings elucidate the impact of MPs on microalgae in bioremediation settings and offer useful insights into the complex relationships between microalgae, MPs, and heavy metals in the environment.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Microalgae , Microplastics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Microalgae/metabolism , Metals, Heavy/metabolism , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Animals , Waste Disposal, Fluid/methods , Swine
6.
Environ Res ; 251(Pt 2): 118664, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38499222

ABSTRACT

The extensive use of mineral fertilizers has a negative impact on the environment, whereas wastewater and microalgal biomass can provide crops with nutrients such as nitrogen, phosphorus, and potassium, and have the potential to be used as a source of fertilizers in circular agriculture. In this study, a step-by-step resource utilization study of algae-containing wastewater generated from microalgae treatment of swine wastewater was carried out. When wheat seedlings were cultivated in the effluent after microalgae separation, the root fresh weight, seedling fresh weight, and total seedling length were increased by 3.44%, 14.45%, and 13.64%, respectively, compared with that of the algae-containing wastewater, and there was no significant difference in seedling fresh weight, total seedling length, maximum quantum yields of PSII photochemistry (Fv/Fm), and performance index (PIABS) from that of the Hogland solution group, which has the potential to be an alternative liquid fertilizer. Under salt stress, microalgae extract increased the contents of GA3, IAA, ABA, and SA in wheat seedlings, antioxidant enzymes maintained high activity, and the PIABS value increased. Low-dose microalgae extract (1 mL/L) increased the root fresh weight, seedling fresh weight, longest seedling length, and total seedling length by 30.73%, 31.28%, 16.43%, and 28.85%, respectively. Algae extract can act as a plant biostimulant to regulate phytohormone levels to attenuate the damage of salt stress and promote growth.


Subject(s)
Biomass , Microalgae , Seedlings , Triticum , Wastewater , Triticum/growth & development , Triticum/drug effects , Microalgae/growth & development , Microalgae/drug effects , Seedlings/growth & development , Seedlings/drug effects , Animals , Wastewater/chemistry , Swine , Salt Tolerance , Fertilizers/analysis , Waste Disposal, Fluid/methods
7.
Sci Total Environ ; 905: 167031, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37714352

ABSTRACT

Antibiotic resistance residual in piggery wastewater poses serious threat to environment and human health. Biological treatment process is commonly installed to remove nutrient from piggery wastewater and also effective in removing antibiotics to varying degrees. But the specific pathways and mechanisms involved in the removal of antibiotic resistance are not yet well-understood. An integrated anaerobic-aerobic biofilm reactor (IAOBR) has been demonstrated efficient in removing conventional nutrients. It is here shown that the IAOBR effectively removed 79.0% of Sulfonamides, 55.7% of Tetracyclines and 53.6% of Quinones. Antibiotic resistance bacteria (ARB) were simultaneously inactivated by ~0.5 logs. Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) were decreased by 0.51 logs and 0.42 logs, respectively. The antibiotics were mainly removed through aerobic compartments of the IAOBR. The mass loss of antibiotics in the reactor was achieved by biodegradation and adsorption, accounting for 52.1% and 47.9%, respectively. An obvious accumulation of ARGs was observed in the activated sludge. The potential host of ARGs was analyzed via microbial community and network. Partial least squares-structural equation model and correlation analysis revealed that the enrichment of ARGs was positively affected by MGEs, followed by bacterial community and ARBs, but the effect of antibiotics on ARGs was negative. Outcomes of this study provide valuable insights into the mechanisms of antibiotic resistance removal in biological treatment processes.


Subject(s)
Angiotensin Receptor Antagonists , Wastewater , Humans , Angiotensin Receptor Antagonists/pharmacology , Genes, Bacterial , Anaerobiosis , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics , Sewage , Anti-Bacterial Agents/pharmacology
8.
Bioresour Technol ; 387: 129671, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37579862

ABSTRACT

Integration of zeolite-based ammonia adsorption and algae-yeast consortia was developed to remediate piggery wastewater (PW) containing high concentrations of total ammonia nitrogen (TAN) and total organic carbon (TOC). After optimizing the conditions of ammonia adsorption in the PW. Zeolite addition mitigated ammonia toxicity, allowing zeolites to gradually release ammonia while effectively attenuating algal oxidative stress caused by high TAN concentration. Coupling zeolite-based adsorption and yeast co-incubation further increased TOC degradation and available C/N ratio, thus improving biomass (4.51 g/L), oil yield (2.11 g/L), and nutrient removal (84.18%-99.14%). The integrated microalgae-based PW treatment exhibited higher carbon migration into biomass (46.14%) and reduced treatment costs than conventional approaches. Simultaneously, the lowest carbon migration to wastewater also meant the smallest carbon emission into water bodies. These findings demonstrate that this novel strategy can remove nutrients in raw PW effectively and produce high oil-rich biomass in a sustainable and environmentally-friendly manner.


Subject(s)
Microalgae , Zeolites , Wastewater , Ammonia/metabolism , Saccharomyces cerevisiae/metabolism , Nitrogen/metabolism , Carbon , Biomass , Microalgae/metabolism
9.
Environ Sci Pollut Res Int ; 30(36): 85733-85745, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37392298

ABSTRACT

The discharge of livestock wastewater without appropriate treatment causes severe harm to the environment and human health. In the pursuit of finding solutions to this problem, the cultivation of microalgae as feedstock for biodiesel and animal feed additive using livestock wastewater coupled with the removal of nutrients from wastewater has become a hot research topic. In this study, the cultivation of Spirulina platensis using piggery wastewater for the production of biomass and the removal of nutrients were studied. The results of single factor experiments confirmed that Cu2+ seriously inhibit the growth of Spirulina platensis, while the influences of nitrogen, phosphorous, and zinc on the growth of Spirulina platensis can all be described as "low promotes high inhibits." Spirulina platensis grew well in the 4-fold dilution of piggery wastewater supplemented with moderate sodium bicarbonate, which indicated that it is the limiting nutrients for Spirulina platensis growth in piggery wastewater. The biomass concentration of Spirulina platensis reached 0.56 g/L after 8 days of culture at the optimal conditions proposed by the response surface method, which were as follows: 4-fold dilution of piggery wastewater, 7 g/L sodium bicarbonate, pH of 10.5, initial OD560 of 0.63, light intensity of 3030 lx, and light time/dark time of 16 h/8 h. Spirulina platensis cultured in the diluted piggery wastewater contained 43.89% protein, 9.4% crude lipid, 6.41 mg/g chlorophyll a, 4.18% total sugar, 27.7 mg/kg Cu, and 246.2 mg/kg Zn. The removal efficiency for TN, TP, COD, Zn, and Cu from the wastewater by Spirulina platensis was 76%, 72%, 93.1%, 93.5%, and 82.5%, respectively. These results demonstrated the feasibility of piggery wastewater treatment by the cultivation of Spirulina platensis.


Subject(s)
Microalgae , Spirulina , Animals , Humans , Wastewater , Chlorophyll A , Sodium Bicarbonate , Nutrients , Biomass
10.
Bioresour Technol ; 385: 129382, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37352991

ABSTRACT

The remediation effects of living Chlorella sp. HL on zinc and manganese in swine wastewater was investigated, and the responses of algal cells and the mechanism were explored. In the wastewater with Zn(II) concentration of 1.85 mg/L and Mn(II) of 1 or 6 mg/L, the highest removal of Zn(II) by Chlorella reached 86.72% and 97.16%, respectively, and the Mn(II) removal were 42.74% and 30.33%, respectively. The antioxidant system of cells was activated by a significant increase in superoxide dismutase and catalase enzyme activities and a significant decrease in malondialdehyde in the mixed system compared to the single system. The presence of Mn(II) could positively regulate the differentially expressed genes related to catalytic activity and metabolic processes between the single Zn system and the mixed systems, reducing the stress of Zn(II) on Chlorella and more favorable to chlorophyll synthesis. The heavy metal-containing microalgal biomass obtained has the potential as feed additives.


Subject(s)
Chlorella , Microalgae , Animals , Swine , Zinc , Manganese , Wastewater , Biodegradation, Environmental , Biomass
11.
Enzyme Microb Technol ; 165: 110194, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36682097

ABSTRACT

An S-shaped photobioreactor was designed by adding grooves and baffles in the traditional photobioreactor to improve the culture efficiency of microalgae. After that, the parameters of the characterization of the S-shaped photobioreactor, such as the mixing time, gas holdup, and gas-liquid mass transfer coefficient, were determined. The biomass, lipid production rate, and average CO2 capture rate of microalgae were then analyzed under different culture modes. Finally, the feasibility of using digested piggery wastewater combined with simulated flue gas was explored as a culture mode for the microalgae and the lipid properties of the microalgae were analyzed. The results revealed that, at a flow rate of 0.08 vvm, the mixing time was reduced by 8.5 s, the gas hold-up increased by 44.6% and the gas-liquid mass transfer ability was also improved. Improvements were also observed in the biomass values, lipid production rate, and average CO2 capture rate of the microalgae under different culture conditions, with respective values reaching 0.23 g·(L·d)-1, 70.28 mg·(L·d)-1, and 0.43 g·(L·d)-1 under the mixotrophic mode. Additionally, digested piggery wastewater combined with the simulated microalgae flue gas culture was determined to be feasible. The biomass, lipid production rate, and the average CO2 capture rate of microalgae, the values of which were 0.22 g·(L·d)-1, 52.55 mg·(L·d)-1, and 0.41 g·(L·d)-1, respectively. Lipid was observed to have the potential to produce high-quality biofuel.


Subject(s)
Microalgae , Photobioreactors , Carbon Dioxide , Wastewater , Biomass , Lipids
12.
Environ Technol ; 44(5): 579-590, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34503402

ABSTRACT

A packed-bed anaerobic-aerobic reactor (PBAOR) with two anaerobic and two aerobic compartments was constructed to treat manure-free piggery wastewater which was characterized by high ammonium (NH4+-N) and low ratio of chemical oxygen demand (COD) to total nitrogen (TN). Performed for 60 days at the normal atmospheric temperature of 25 °C with a constant hydraulic retention time of 32 h and reflux ratio of 2.0, a stable state in pollutants removal was obtained in the PBAOR. Within the next routine operation process, the removal of COD, NH4+-N and TN was above 85.7%, 98.2% and 85.8%, with a residual less than 81.7, 7.2 and 39.9 mg L-1 in effluent, respectively. Twelve veterinary antibiotics classified into tetracyclines (TCs), sulphonamides (SAs) and fluoroquinolones (FQs) were detected from the piggery wastewater. The PBAOR was effective in removing TCs and SAs with an average removal of 74.8% and 93.3%, respectively, but presented a negative removal for FQs. Most COD in the piggery wastewater was mainly removed in the first two anaerobic compartments along with an obvious removal of TCs and SAs, while the TN were mainly removed in the last two aerobic compartments with the negative removal of FQs.


Subject(s)
Waste Disposal, Fluid , Wastewater , Anti-Bacterial Agents , Manure , Temperature , Bioreactors , Nitrogen/analysis , Fluoroquinolones , Nutrients
13.
Bioprocess Biosyst Eng ; 46(1): 1-13, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36525130

ABSTRACT

In this study, an improved system called the completely autotrophic nitrogen removal over nitrite (CANON) process was presented and coupled with denitrification for the treatment of digested piggery wastewater (DPW). The effects of operating parameters, including hydraulic retention time (HRT) (1.6 d → 1.0 d), influent NH4+-N concentration (350 mg L-1 → 600 mg L-1), and temperature (41 â„ƒ → 17 â„ƒ), on the nitrogen removal performance and response characteristics of microbial population were investigated. Results showed that all considered parameters caused a remarkable effect on NH4+-N and total nitrogen removal efficiencies, and the chemical oxygen demand was more markedly affected by temperature. Candidatus_Kuenenia, Candidatus_Brocadia, Denitratisoma, norank_o_Xanthmonadales, norank_p_WWE3, and SM1A02 were the dominant genera influencing nitrogen removal in the improved CANON system for treating DPW. Redundancy discriminant analysis showed that the biological structure was positively correlated with the influent ammonium concentration, temperature, and HRT. The relative abundance of Candidatus_Kuenenia was perfectly correlated with HRT and temperature. However, environmental factors did not affect Candidatus_Brocadia and norank_p_WWE3. norank_c_Ardenticatenia, SM1A02, and norank_f_SJA-28 were all positively correlated with influent ammonium nitrogen concentration, but not correlated with HRT and temperature. The improved CANON process realized the nitrogen removal under high ammonium (NH4+-N) concentration and low C/N wastewater.


Subject(s)
Ammonium Compounds , Microbiota , Wastewater , Ammonium Compounds/chemistry , Nitrites/chemistry , Denitrification , Nitrogen/chemistry , Temperature , Bioreactors , Waste Disposal, Fluid/methods
14.
J Environ Manage ; 330: 117146, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36586372

ABSTRACT

Bioaugmentation is considered as an attractive method for nitrogen removal in water treatment, but its effectiveness in actual high-strength piggery wastewater has not been adequately verified and the mechanism of bioaugmentation in actual wastewater treatment system is not very clear especially from the perspectives of microbial communities and functional genes. This study investigated the mechanisms of a heterotrophic nitrifying-aerobic denitrifying strain Alcaligenes aquatilis AS1 in the bioaugmentation of continuous biological nitrogen removal of actual piggery wastewater at laboratory scale. The addition of strain AS1 significantly improved the nitrogen removal efficiency (more than 95% of NH4+-N and 75% of TN were removed) and raised the activated sludge resistance to shock loading. AS1 addition also significantly shifted the microbiota structure and interactions among microbial networks were enhanced to obtain the stable bacterial communities. Moreover, strain AS1 achieved effective proliferation and long-term colonization in activated sludge with a relative abundance of genus Alcaligenes more than 70% during the whole operation process and played a dominant role in biological nitrogen removal, while different genera were respectively enriched and involved in pollutants removal at different stages in the control group. In addition, the abundances of most functional genes involved in carbon (C) degradation, carbon fixation and nitrogen (N), phosphorus (P), sulfur (S) cycling in activated sludge were significantly increased in reactor AS1, indicating that strain AS1 not only relied on its unique C and N metabolic activities, but also recruited microorganisms with diverse functions to jointly remove pollutants in wastewater, which could be a common bioaugmentation mechanism in open reactors. This study proves the promising application prospect of strain AS1 in the treatment of high-strength piggery wastewater and shows great importance for guiding bioaugmentation application of functional strains in practical wastewater treatment systems.


Subject(s)
Environmental Pollutants , Microbiota , Wastewater , Sewage/chemistry , Denitrification , Nitrogen/analysis , Bioreactors/microbiology , Alcaligenes/metabolism , Nitrification
15.
Microbiome ; 10(1): 142, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045433

ABSTRACT

BACKGROUND: Monitoring microbial communities especially focused on pathogens in newly developed wastewater treatment systems is recommended for public health. Thus, we investigated the microbial community shift in a pilot-scale microalgal treatment system for piggery wastewater. RESULTS: Microalgae showed reasonable removal efficiencies for COD and ammonia, resulting in higher transparency of the final effluent. Metagenome and microbial diversity analyses showed that heterotrophic microalgal cultivation barely changed the bacterial community; however, the mixotrophic microalgal cultivation induced a sudden change. In addition, an evaluation of risk groups (RGs) of bacteria showed that raw piggery wastewater included abundant pathogens, and the microalgal treatment of the raw piggery wastewater decreased the RG2 pathogens by 63%. However, co-cultivation of microalgae and the most dominant RG2 pathogen, Oligella, showed no direct effects between them. CONCLUSIONS: Thus, a microbial interaction network was constructed to elucidate algae-bacteria interrelationships, and the decrease in Oligella was indirectly connected with microalgal growth via Brevundimonas, Sphingopyxis, and Stenotrophomonas. In a validation test, 3 among 4 connecting bacterial strains exhibited inhibition zones against Oligella. Therefore, we showed that microalgal wastewater treatment causes a decrease in RG2 bacteria, which is an indirect impact of microalgae associated with bacteria. Video abstract.


Subject(s)
Microalgae , Water Purification , Biomass , Nitrogen , Wastewater
16.
Bioresour Technol ; 358: 127402, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35667534

ABSTRACT

The effects of adjusting the nitrogen-phosphorus (N/P) ratio of wastewater and indigenous bacteria on swine wastewater treatment by Chlorella sp. HL were investigated. The optimal N/P ratio of Chlorella in swine wastewater was 20 by adjusting the phosphorus concentration. The participation of indigenous bacteria increased total extracellular polymeric substances content, which was beneficial to maintain the stability of the algal-bacterial consortium, and improved the algal density and the removal rate of total nitrogen, total phosphorus, and chemical oxygen demand by 47.8%, 24.0%, 30.7%, and 326.7%, respectively. Proteobacteria was the dominant phylum with the relative abundance of 71.58% in the algal-bacterial system at optimal N/P ratio, and Brevundimonas, Chryseobacterium, and Pseudomonas played positive roles in the establishment of symbiotic systems at the genus level. These results provide a theoretical basis for the construction of an efficient algal-bacterial symbiotic system in swine wastewater treatment and support for commercial scale-up.


Subject(s)
Chlorella , Microalgae , Animals , Bacteria , Nitrogen , Phosphorus , Swine , Wastewater/chemistry
17.
Bioresour Technol ; 354: 127176, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35439558

ABSTRACT

A novel strain AS1 with heterotrophic nitrifying-aerobic denitrifying capacity in the species of Alcaligenes aquatilis was isolated from the aerobic activated sludge. It showed a great capability of ammonia removal, and the aerobic metabolic pathways to yield gaseous-nitrogen by hydroxylamine oxidation and nitrite denitrification were proposed. AS1 could efficiently remove ammonia under a wide range of environmental conditions, including the ratio of chemical oxygen demand to total nitrogen: 15-30, pH: 6-10, NaCl: 0-60 g/L, shaking speed of 0-180 rpm, and succinate, acetate, or citrate as carbon source. In the treatment of actual piggery wastewater, 95.3%, 95.1% and 84.9% of NH4+-N was removed by AS1 when the initial ammonia concentration was 500, 1300, and 2000 mg/L, respectively, with the maximum NH4+-N removal rate of 30.5 mg/L/h and 569.7 mg/L/d. Furthermore, plate colony-counting showed that AS1 achieved an efficient proliferation. These results imply the application potential of AS1 in treating high-ammonia wastewater.


Subject(s)
Nitrification , Wastewater , Aerobiosis , Alcaligenes , Ammonia/metabolism , Denitrification , Heterotrophic Processes , Nitrites/metabolism , Nitrogen/metabolism , Wastewater/chemistry
18.
Bioresour Technol ; 345: 126494, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34883191

ABSTRACT

A novel combined sequencing batch reactor (SBR) - up-flow microaerobic sludge reactor (UMSR) process was developed to treat manure-free piggery wastewater characterized by low COD/TN ratio and high NH4+-N. The front-end SBR was designed to get an effluent with COD/TN ≤ 1 by removing COD, allowing the back-end UMSR to practice anammox for the simultaneous removal of TN and NH4+-N. Fed with the raw piggery wastewater, the combined SBR-UMSR process was started up at 27℃ with a reflux ratio of 15:1 in the UMSR. After 230-days running, the removal of COD, TN, and NH4+-N in the combined SBR-UMSR process reached 78.41%,85.05%, and 92.21%, respectively. 50.22% of COD in the wastewater was removed in the SBR, while 87.11% of NH4+-N and 79.69% of TN were removed in the UMSR. Stoichiometry and bacterial function analysis revealed that the partial nitrification - anammox process was the dominant nitrogen removal approach in the UMSR.


Subject(s)
Nitrogen , Wastewater , Anaerobic Ammonia Oxidation , Bioreactors , Denitrification , Manure , Nitrogen/analysis , Waste Disposal, Fluid
19.
J Environ Manage ; 302(Pt B): 114069, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34763191

ABSTRACT

A biofilm-based anaerobic-aerobic (A2O2) reactor was constructed to treat manure-free piggery wastewater. The reactor contained four compartments, among which the first two were anaerobic (A phase) and the last two were aerobic (O phase). Throughout around one-year operation, high-level nutrient removal was demonstrated. At an optimal reflux ratio of 100%, the average NH4+-N, TN, and COD removal efficiencies were high as 99.4%, 91.7%, and 79.4%, respectively, with the influent concentration of 220.6, 231.6 and 332 mg/L, respectively. The NH4+-N, TN, and COD concentrations in the final effluent were only 1.4, 18.5 and 65 mg/L, respectively. COD and nitrogen removal were mainly removed in the A phase and O phase, respectively. This result revolutionizes the previous perception that nitrogen is only removed in the A phase of conventional A-O configuration. Achievement of PN/A in the O phase was critical to the efficient nitrogen removal. Heterotrophic denitrification in the anaerobic compartments removed the nitrate produced by anammox, ensuring the high-level nitrogen removal. Anaerobic organic degradation was a major pathway for COD removal, as abundant methanogens detected in the A phase. This study provides a feasible technical scheme for the efficient nutrient removal from ammonium-rich wastewater.


Subject(s)
Nitrification , Wastewater , Anaerobic Ammonia Oxidation , Bioreactors , Denitrification , Nitrogen , Oxidation-Reduction
20.
Bioresour Technol ; 341: 125825, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481299

ABSTRACT

The traditional anoxic/aerobic process (A/O) process is widely used for treating digested piggery wastewater, but the lack of carbon sources leads to poor efficiency. Therefore, the process needs optimization to achieve high-efficiency and low-cost operation mode. In this study, an improved A/O system with bionic aquatic weed and Myriophyllum sp. was established to decontaminate digested piggery wastewater. The average removal efficiencies of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) by the improved A/O system was satisfactory. The average removal efficiencies of COD, NH4+-N, and TN were 62.1%, 87.5%, and 61.9%, respectively. High-throughput sequencing identified a number of dominant microorganisms. The relative abundance of Nitrosomonas (ammonia-oxidizing bacteria) and Nitrospira (nitrite-oxidizing bacteria) was 0.07%-3.52% and 0.32%-1.30%, respectively. Combining bionic aquatic weed and Myriophyllum sp. altered the microbial community structure and metabolic pathways. The results demonstrate a cost-effective method for treating digested piggery wastewater.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biological Oxygen Demand Analysis , Bionics , Bioreactors , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL