Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Pain ; 24(10): 1759-1797, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37356604

ABSTRACT

This systematic review and meta-analysis investigated the effects of non-pharmacological manipulations on experimentally induced secondary hypersensitivity in pain-free humans. We investigated the magnitude (change/difference in follow-up ratings from pre-manipulation ratings) of secondary hypersensitivity (primary outcome), and surface area of secondary hypersensitivity (secondary outcome), in 27 studies representing 847 participants. Risk of bias assessment concluded most studies (23 of 27) had an unclear or high risk of performance and detection bias. Further, 2 (of 27) studies had a high risk of measurement bias. Datasets were pooled by the method of manipulation and outcome. The magnitude of secondary hypersensitivity was decreased by diverting attention, anodal transcranial direct current stimulation, or emotional disclosure; increased by directing attention toward the induction site, nicotine deprivation, or negative suggestion; and unaffected by cathodal transcranial direct current stimulation or thermal change. Area of secondary hypersensitivity was decreased by anodal transcranial direct current stimulation, emotional disclosure, cognitive behavioral therapy, hyperbaric oxygen therapy, placebo analgesia, or spinal manipulation; increased by directing attention to the induction site, nicotine deprivation, or sleep disruption (in males only); and unaffected by cathodal transcranial direct current stimulation, thermal change, acupuncture, or electroacupuncture. Meta-analytical pooling was only appropriate for studies that used transcranial direct current stimulation or hyperbaric oxygen therapy, given the high clinical heterogeneity among the studies and unavailability of data. The evidence base for this question remains small. We discuss opportunities to improve methodological rigor including manipulation checks, structured blinding strategies, control conditions or time points, and public sharing of raw data. PERSPECTIVE: We described the effects of several non-pharmacological manipulations on experimentally induced secondary hypersensitivity in humans. By shedding light on the potential for non-pharmacological therapies to influence secondary hypersensitivity, it provides a foundation for the development and testing of targeted therapies for secondary hypersensitivity.

2.
Neurosci Bull ; 36(7): 685-695, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32221845

ABSTRACT

Noxious mechanical information is transmitted through molecularly distinct nociceptors, with pinprick-evoked sharp sensitivity via A-fiber nociceptors marked by developmental expression of the neuropeptide Y receptor 2 (Npy2r) and von Frey filament-evoked punctate pressure information via unmyelinated C fiber nociceptors marked by MrgprD. However, the molecular programs controlling their development are only beginning to be understood. Here we demonstrate that Npy2r-expressing sensory neurons are in fact divided into two groups, based on transient or persistent Npy2r expression. Npy2r-transient neurons are myelinated, likely including A-fiber nociceptors, whereas Npy2r-persistent ones belong to unmyelinated pruriceptors that co-express Nppb. We then showed that the transcription factors NFIA and Runx1 are necessary for the development of Npy2r-transient A-fiber nociceptors and MrgprD+ C-fiber nociceptors, respectively. Behaviorally, mice with conditional knockout of Nfia, but not Runx1 showed a marked attenuation of pinprick-evoked nocifensive responses. Our studies therefore identify a transcription factor controlling the development of myelinated nociceptors.


Subject(s)
NFI Transcription Factors , Nociceptors , Animals , Core Binding Factor Alpha 2 Subunit/physiology , Female , Ganglia, Spinal/physiology , Male , Mice , Mice, Knockout , NFI Transcription Factors/physiology , Nerve Fibers, Unmyelinated/physiology , Nociceptors/physiology , Receptors, Neuropeptide Y/physiology , Sensory Receptor Cells/physiology
3.
Neuroscience Bulletin ; (6): 685-695, 2020.
Article in English | WPRIM (Western Pacific) | ID: wpr-826786

ABSTRACT

Noxious mechanical information is transmitted through molecularly distinct nociceptors, with pinprick-evoked sharp sensitivity via A-fiber nociceptors marked by developmental expression of the neuropeptide Y receptor 2 (Npy2r) and von Frey filament-evoked punctate pressure information via unmyelinated C fiber nociceptors marked by MrgprD. However, the molecular programs controlling their development are only beginning to be understood. Here we demonstrate that Npy2r-expressing sensory neurons are in fact divided into two groups, based on transient or persistent Npy2r expression. Npy2r-transient neurons are myelinated, likely including A-fiber nociceptors, whereas Npy2r-persistent ones belong to unmyelinated pruriceptors that co-express Nppb. We then showed that the transcription factors NFIA and Runx1 are necessary for the development of Npy2r-transient A-fiber nociceptors and MrgprD C-fiber nociceptors, respectively. Behaviorally, mice with conditional knockout of Nfia, but not Runx1 showed a marked attenuation of pinprick-evoked nocifensive responses. Our studies therefore identify a transcription factor controlling the development of myelinated nociceptors.

4.
Neuron ; 93(1): 179-193, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27989460

ABSTRACT

Painful mechanical stimuli activate multiple peripheral sensory afferent subtypes simultaneously, including nociceptors and low-threshold mechanoreceptors (LTMRs). Using an optogenetic approach, we demonstrate that LTMRs do not solely serve as touch receptors but also play an important role in acute pain signaling. We show that selective activation of neuropeptide Y receptor-2-expressing (Npy2r) myelinated A-fiber nociceptors evokes abnormally exacerbated pain, which is alleviated by concurrent activation of LTMRs in a frequency-dependent manner. We further show that spatial summation of single action potentials from multiple NPY2R-positive afferents is sufficient to trigger nocifensive paw withdrawal, but additional simultaneous sensory input from LTMRs is required for normal well-coordinated execution of this reflex. Thus, our results show that combinatorial coding of noxious and tactile sensory input is required for normal acute mechanical pain signaling. Additionally, we established a causal link between precisely defined neural activity in functionally identified sensory neuron subpopulations and nocifensive behavior and pain.


Subject(s)
Action Potentials , Acute Pain/genetics , Mechanoreceptors/metabolism , Nerve Fibers, Myelinated/metabolism , Neurons/metabolism , Nociception/physiology , Nociceptors/metabolism , Postsynaptic Potential Summation , Animals , Behavior, Animal , Ganglia, Spinal/cytology , Immunohistochemistry , Mice , Nerve Fibers, Myelinated/physiology , Nociceptive Pain , Optogenetics , Pain , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism , Reflex , Reverse Transcriptase Polymerase Chain Reaction , Touch/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...