Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 947: 174542, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977096

ABSTRACT

Studies on the toxicity of micro- and nanomaterials in plants have primarily focused on their intrinsic effects. However, there is often oversight when considering the potential perceptual responses that plants may exhibit in response to these materials. In this investigation, we assessed the impact of three commercially available persistent luminescence materials (PLMs) that emit red, green, or blue light under various environmental conditions. We subjected rice (Oryza sativa L.), a short-day plant, to nine distinct treatments, including exposure to particles in isolation, their nocturnal afterglow, or a combination of both. We thoroughly examined rice seedling morphology, photosynthesis patterns, metabolite dynamics, and flowering gene expression to determine the biological responses of plants to these particles. These findings demonstrated that PLMs stably interact with rice, and their emitted afterglow precisely matches the perceptual bandwidth of rice photoreceptors. Notably, the nocturnal afterglow from the red and blue PLMs enhanced the vegetative growth of rice seedlings while inhibiting their reproductive development. The blue PLMs exhibited the most pronounced positive effects, while the red PLMs exhibited inhibitory effects. When exposed to a combination of red and blue PLMs, rice displays enhanced growth and development. The observed alterations in the expression patterns of genes responsible for flowering supported these effects. We concluded that PLMs influence rice growth and development due to their inherent properties and intermittent illumination during dark periods. Both factors collectively shape rice growth and development.

2.
Sci Total Environ ; 912: 169058, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070573

ABSTRACT

The ability of microplastics (MPs) to interact with environmental pollutants is currently of great concern due to the increasing use of plastic. Agricultural soils are sinks for multipollutants and the safety of biodegradable MPs in field conditions is questioned. However, still few studies have investigated the interactive effects between MPs and metals on the soil-plant system with agricultural soil and testing crops for human consumption. In this work, we tested the effect on soil and plant parameters of two common MPs, non-degradable plastic low-density polyethylene and biodegradable polymer polylactic acid at two different sizes (<250 µm and 250-300 µm) in association with arsenic (As). Lettuce (Lactuca sativa L.) was used as a model plant in a small-scale experiment lasting 60 days. Microplastics and As explained 12 % and 47 % of total variance, respectively, while their interaction explained 21 %, suggesting a higher toxic impact of As than MPs. Plant growth was promoted by MPs alone, especially when biodegradable MPs were added (+22 %). However, MPs did not affect nutrient concentrations in roots and leaves. The effect of MPs on enzyme activities was variable depending on the time of exposure (with larger effects immediately after exposure), the type and size of the MPs. On the contrary, the co-application of MP and As, although it did not change the amount of bioavailable As in soil in the short and medium term, it resulted in a significant decrease in lettuce biomass (-19 %) and root nutrient concentrations, especially when polylactic acid was applied. Generally, MPs in association with As determined the plant-soil toxicity. This work provides insights into the risk of copollution of MPs and As in agricultural soil and its phytotoxic effect for agricultural crops. However, the mechanisms of the joint effect of MP and As on plant toxicity need further investigation, especially under field conditions and in long-term experiments.


Subject(s)
Arsenic , Soil , Humans , Microplastics , Plastics , Agriculture , Crops, Agricultural , Lactuca , Polyethylene
3.
Sci Total Environ ; 894: 164744, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37315601

ABSTRACT

Boron (B) is released to terrestrial and aquatic environments through both natural and anthropogenic sources. This review describes the current knowledge on B contamination in soil and aquatic environments in relation to its geogenic and anthropogenic sources, biogeochemistry, environmental and human health impacts, remediation approaches, and regulatory practices. The common naturally occurring sources of B include borosilicate minerals, volcanic eruptions, geothermal and groundwater streams, and marine water. Boron is extensively used to manufacture fiberglass, thermal-resistant borosilicate glass and porcelain, cleaning detergents, vitreous enamels, weedicides, fertilizers, and B-based steel for nuclear shields. Anthropogenic sources of B released into the environment include wastewater for irrigation, B fertilizer application, and waste from mining and processing industries. Boron is an essential element for plant nutrition and is taken up mainly as boric acid molecules. Although B deficiency in agricultural soils has been observed, B toxicity can inhibit plant growth in soils under arid and semiarid regions. High B intake by humans can be detrimental to the stomach, liver, kidneys and brain, and eventually results in death. Amelioration of soils and water sources enriched with B can be achieved by immobilization, leaching, adsorption, phytoremediation, reverse osmosis, and nanofiltration. The development of cost-effective technologies for B removal from B-rich irrigation water including electrodialysis and electrocoagulation techniques is likely to help control the predominant anthropogenic input of B to the soil. Future research initiatives for the sustainable remediation of B contamination using advanced technologies in soil and water environments are also recommended.


Subject(s)
Boron , Minerals , Humans , Boron/toxicity , Risk Management , Soil , Water
4.
Environ Sci Pollut Res Int ; 30(29): 74186-74195, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37204581

ABSTRACT

Although studies on microplastics are increasing every year, still very little is known about their toxicity. Especially for plant species, even studies of uptake of microplastics are only few, not to mention phytotoxicity of microplastics. Therefore, we conducted a pilot study on the phytotoxicity of 1-µm-sized fluorescent microplastics (FMPs) on the free-floating aquatic plants Spirodela polyrhiza and Salvinia natans and the emergent aquatic plant Phragmites australis using 0.1% and 0.01% FMP treatment. Furthermore, uptake of FMPs by plants was verified by detecting fluorescence of FMPs by laser. A free-floating aquatic plant S. polyrhiza and emergent aquatic plant P. australis showed significantly decreased harvested biomass after 3 weeks indicating phytotoxicity of FMPs, but S. natans did not show any differences of harvested biomass or chlorophyll contents among treatments. Detection of fluorescence from plant leaves provided evidence of active FMPs uptake by plants. The emission spectra of plant leaves in 0.1% FMP treatment showed similar peaks to those of free fluorescent microplastics, providing a firm evidence of FMPs uptake by plants. This study is one of the pioneering studies to explore fluorescent microplastic uptake and toxicity in aquatic plants and therefore provides a baseline for further studies.


Subject(s)
Microplastics , Plastics , Microplastics/toxicity , Pilot Projects , Plants
5.
Environ Pollut ; 320: 121077, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36646409

ABSTRACT

Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.


Subject(s)
Beryllium , Soil Pollutants , Humans , Ecosystem , Soil , Soil Pollutants/analysis , Risk Management , Coal
6.
J Trace Elem Med Biol ; 76: 127116, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481602

ABSTRACT

BACKGROUND: Fenugreek is known to have good anti-diabetes properties. Moreover, several studies accounted that the trivalent form of chromium [Cr(III)] also have anti-diabetic properties. However, its hexavalent form i.e., Cr(VI) is known to be highly toxic and carcinogenic to living beings and retarded plant growth even if it is present in low concentration in soil. Many plant growth-promoting rhizobacteria (PGPR) are reported to have the potential to reduce the Cr(VI) into Cr(III) in soil. In view of the above, the present objective was designed to effectively utilize Cr(VI) reducing PGPRs for the growth and development of fenugreek plant in Cr(VI) amended soil, apart from reducing Cr(VI) in soil and fortification of Cr(III) in the aerial part of plants. METHODS: The experiment was carried out to evaluate the effect of Cr(VI)-reducing PGPRs viz. Bacillus cereus (SUCR44); Microbacterium sp. (SUCR140); Bacillus thuringiensis (SUCR186) and B. subtilis (SUCR188) on growth, uptake and translocation of Cr as well as other physiological parameters in fenugreek grown under artificially Cr(VI) amended soil (100 mg kg-1 of Cr(VI) in soil). RESULTS: The aforementioned concentration of Cr(VI) in soil cause severe reduction in root length (41 %), plant height (43 %), dry root (38 %) and herb biomass (48 %), when compared with control negative (CN; uninoculated plant not grown in Cr(VI) contaminated soil). However, the presence of Microbacterium sp.-SURC140 (MB) mitigates the Cr toxicity resulting in improved root length (92 %), plant height (86 %), dry root (74 %) and herb biomass (99 %) as compared with control positive (CP; uninoculated plants grown in Cr(VI) contaminated soil). The maximum reduction in bioavailability (82 %) of Cr(VI) in soil and its uptake (50 %) by the plant were also observed in MB-treated plants. However, All Cr(VI)-reducing PGPRs failed to decrease the translocation of Cr to the aerial parts. Moreover, the plant treated with MB observed diminution in relative water content (13 %), electrolyte leakage (16%) and lipid peroxidation (38 %) as well as higher chlorophyll (37 %) carotenoids (17 %) contents and antioxidants (18%) potential. CONCLUSION: This study demonstrates that MB can lower the Cr(VI) toxicity to the plant by reducing the bioavailable Cr(VI), consequently reducing the Cr(VI) toxicity level in soil and helping in improving the growth and yield of fenugreek. Additionally, Cr(III) uptakes and translocation may improve the effectiveness of fenugreek in treating diabetes.


Subject(s)
Soil , Trigonella , Chromium/toxicity , Chromium/analysis , Plant Development
7.
Antioxidants (Basel) ; 11(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35883771

ABSTRACT

Plants play a pivotal role in drug discovery, constituting 50% of modern pharmacopeia. Many human diseases, including age-related degenerative diseases, converge onto common cellular oxidative stress pathways. This provides an opportunity to develop broad treatments to treat a wide range of diseases in the ageing population. Here, we characterize and assess the toxicological effects of finger lime (Citrus australasica), mountain pepper (Tasmannia lanceolata), and small-leaved tamarind (Diploglottis australis) extracts. The characterization demonstrates that these Australian native plants have antioxidant potential and, importantly, they have high concentrations of distinct combinations of different antioxidant classes. Using zebrafish larvae as a high-throughput pre-clinical in vivo toxicology screening model, our experiment effectively discriminates which of these extracts (and at what exposure levels) are suitable for development towards future therapies. The LC50-96h for finger lime and tamarind were >480 mg/L, and 1.70 mg/L for mountain pepper. Critically, this work shows that adverse effects are not correlated to the properties of these antioxidants, thus highlighting the need for combining characterization and in vivo screening to identify the most promising plant extracts for further development. Thus, we present a high-throughput pre-clinical screening that robustly tests natural plant products to utilize the diversity of antioxidant compounds for drug development.

8.
Biology (Basel) ; 11(2)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35205151

ABSTRACT

In 1766, the agricultural scientist Giovanni Targioni Tozzetti described for the Grand Duchy of Tuscany, the wild and cultivated plant species that could be used, in times of famine, to increase the quantity of flour or vegetable mass in bread making. These wild plants can be defined as wild edible plants (WEPs) or "alimurgic species", a concept usually traced back to Giovanni Targioni Tozzetti himself. The 342 plant names mentioned in the text are in the Tuscan vernacular, so a research work was done on bibliographic sources from the 1800s in order to match them with their current nomenclature. This process led to an "alimurgic flora" repertoire based on the writing of Targioni Tozzetti; and a comparison with our AlimurgITA database of 1103 wild edible plants used in Italy. It is particularly interesting that in his short treatise, Giovanni Targioni Tozzetti identified eight toxic plants (corresponding to 14 species), indicating how to eliminate the poisonous substances from their useful roots. We treat them in detail, examining their current and past use, their geographical distribution in Italy, and their eventual toxicity. We obtained 343 matches, of which 198 were reliable (certain matches) and 145 possessed some degree of uncertainty (due to generic or collective vernacular names). Among the 198 certain identifications, 140 species are present in the AlimurgITA database (92 mentioned for Tuscany) and 58 are not; for bread-making there are only documentary traces of 53 species for Italy and 7 for Tuscany. Moreover, among the total 198 species, 84 showed some degree of hazard. Researching edible toxic spontaneous species allows: (1) investigation, from an unusual perspective, of a historical period in which the poor conditions of some social strata led to finding unusual solutions to food provision; (2) idea generation to re-enable potentially useful WEPs whose use has been lost. Making a virtue of necessity!

9.
Plant Sci ; 310: 110961, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34315586

ABSTRACT

Hyperaccumulators store metals in the vacuoles of leaf cells. To investigate the role of vacuolar compartmentalization in Cd accumulation, chelation and induced antioxidation, we quantified the amounts of total cadmium (Cd), Cd2+, glutathione (GSH) and reactive oxygen species (ROS) in leaf cells of Solanum nigrum L. The results confirmed that vacuoles were, indeed, the main storage compartments for Cd. We then found that with increased Cd treatment concentration, the proportion of vacuolar Cd in protoplasts showed its ultimate storage capacity (82.24 %-83.40 %), and the Cd concentration stored in the protoplast maintained at a certain level (73.81-77.46 mg L-1). Besides, studies on different forms of Cd showed that the chelation state was dominant in the protoplast. The large level appearance of Cd2+ outside the vacuole revealed the limitations of vacuolar Cd2+ sequestration. The relationships between the combined forms of Cd and GSH outside the vacuole (R2 = 0.9906) showed GSH was mainly distributed to important compartments for chelation, not to vacuoles. We also demonstrated the presence of ROS-induced oxidative stress and detoxification mediated by the antioxidant GSH in vacuoles, suggesting that sequestration into vacuoles is an active process accompanied by chelation and antioxidant-mediated detoxification.


Subject(s)
Cadmium/toxicity , Plant Roots/metabolism , Solanum nigrum/metabolism , Antioxidants/metabolism , Glutathione/metabolism , Microscopy, Fluorescence , Plant Roots/drug effects , Protoplasts/drug effects , Protoplasts/metabolism , Reactive Oxygen Species/metabolism , Solanum nigrum/drug effects
10.
Environ Sci Pollut Res Int ; 28(28): 37471-37481, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33713267

ABSTRACT

Loessal soil is one of the main cultivated soils in northwest China. Part of its distribution area was irrigated with industrial wastewater in past three decades. This caused heavy metal contamination in the soil. It had induced toxicity on crops and also threatened local human health for now. Based on a field plot experiment, effects of different Cu concentrations (from 45 to 2000 mg kg-1) in loessal soil on spinach plant growth and uptake of mineral nutrients (Zn, Fe, Mg, K, and Ca) by spinach were investigated. The Cu addition increased available concentrations of mineral nutrients in loessal soil and concentrations of Cu, Zn, Mg, and Ca in roots. The translocation of mineral nutrients from roots to leaves was inhibited under Cu addition, inducing their decrease in leaves. The EC10 and EC50 of soil Cu in relative dry weights of leaves were 240.33 mg kg-1 and 1205.04 mg kg-1, respectively. The PLS-PM analysis showed that available concentrations of nutrients in soil were only affected by Cu in soil positively, nutrients in roots were mainly affected by Cu in soil and Cu in leaves positively, nutrients in leaves were mainly affected by Cu in roots negatively, translocation of nutrients in spinach and plant growth were principally affected by Cu in leaves negatively, and the total effect of Cu in leaves on nutrients in roots and leaves, translocation of nutrients in spinach, and plant growth was the highest. Our results indicated that the phytotoxicity of Cu including spinach growth inhibition and mineral disorder in spinach was mainly affected by the Cu concentrations in leaves.


Subject(s)
Copper , Soil Pollutants , China , Copper/analysis , Humans , Minerals , Nutrients , Plant Leaves/chemistry , Plant Roots/chemistry , Soil , Spinacia oleracea , Zinc
11.
Environ Res ; 195: 110780, 2021 04.
Article in English | MEDLINE | ID: mdl-33539835

ABSTRACT

Environmental matrices are polluted with the plethora of contaminants, and among these, the concerns related to heavy metals (HMs) are also included. Due to the low cost in a long-term application and environmental friendliness, the use of biological remediation has gained significant attention in recent decades. The use of ornamental plants (OPs) in the field of phytoremediation is scarcely reported, and the impacts of HMs on OPs have also not been investigated in great depth. The OPs mediated HMs remediation can simultaneously remove contaminants and bring improvement in aesthetics of the site. The biomass of OPs produced after such activities can be used and sold as pot plants, cut flowers, essential oils, perfumes, air fresheners production, metal phytomining, and feedstock in silk production. The OPs also present a lower risk of HMs bioaccumulation compared to crop plants. This review focuses on the current knowledge of HMs toxicity to OPs, their applicability advantages, methods to improve the tolerance of OPs with incremented HMs uptake, challenges in the field, and future application perspectives. The case studies realted to practical application of OPs, from China, Iran, India, Oman, Pakistan, and Turkey, were also discussed. This work fetches the inter-disciplinary features and understanding for the sustainable treatment of HMs in a new novel way, to which no previous review has focused.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , China , India , Iran , Metals, Heavy/analysis , Metals, Heavy/toxicity , Pakistan , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Turkey
12.
Environ Sci Pollut Res Int ; 28(16): 20883-20893, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33405173

ABSTRACT

Firefighting water additives are used to increase the rate at which fires can be extinguished. The majority of ecotoxicological research has focused on firefighting formulations containing perfluorinated compounds as additives, due to the persistence and bioaccumulative nature of the perfluorinated constituents. A number of relatively new additives have come on the market to replace the products containing perfluorinated compounds. The potential effect of these new additives on the environment has been largely unstudied. This study investigated the toxicity of six firefighting water additives: Eco-Gel™, ThermoGel 200L™, FireAde™, Fire-Brake™, Novacool Foam™, and F-500™ to terrestrial biota. Terrestrial organisms could be exposed to firefighting water additives through leaching into soil and/or runoff following a firefighting event or through direct aerial application during a forest fire. Toxicity to three plant species was assessed through seedling germination and emergence tests: Fagopyrum esculentum (buckwheat), Raphanus raphanistrum subsp. sativus (radish), and Rudbeckia hirta (black-eyed Susan). The effects of firefighting water additives on three soil invertebrates, the collembolan Folsomia candida, the earthworms Eisenia andrei, and Dendrodrilus rubidus, were also investigated using static acute tests to estimate EC50/LC50s. The concentration that resulted in a 50% reduction in survival (LC50) for the acute toxicity tests conducted with F. candida ranged from 3 (Eco-Gel) to 0.175% (Novacool) by volume. Comparatively, the acute toxicity of two firefighting water additives to D. rubidus could not be determined, as a 50% reduction in survival was not observed. A number of firefighting water additives were found to pose a hazard to terrestrial organisms based on a worst-case exposure scenario of direct application at the greatest recommended application rate for a class A fire (e.g., wood, paper). The firefighting water additive F-500 was found to pose a hazard (HQ ≥ 1) for all species tested, except for the acute test conducted with D. rubidus. Comparatively, Eco-Gel posed a hazard for only the acute and chronic tests with F. candida. This study represents the first comparative deterministic risk assessment of firefighting water additives to terrestrial ecosystems.


Subject(s)
Arthropods , Oligochaeta , Soil Pollutants , Animals , Ecosystem , Risk Assessment , Soil , Soil Pollutants/analysis , Water
13.
Environ Chem Lett ; 19(1): 699-710, 2021.
Article in English | MEDLINE | ID: mdl-32837486

ABSTRACT

The COVID-19 pandemic has induced dramatic effects on the population of the industrialized north of Italy, whereas it has not heavily affected inhabitants of the southern regions. This might be explained in part by human exposure to high levels of fine particulate matter (PM) in the air of northern Italy, thus exacerbating the mortality. Since trees mitigate air pollution by intercepting PM onto plant surfaces and bolster the human immune system by emitting bioactive volatile organic compounds (VOCs), we hypothesize a protective role of evergreen forested areas in southern Italy. We compared the mortality rate  due to COVID-19, the death number, the positivity rate and the forest coverage per capita in various Italian regions. Hectares of forest per capita and prevalence of deciduous versus evergreen forestal species were also estimated. In silico docking studies of potentially protective compounds found in Laurus nobilis L., a typical Mediterranean plant, were performed to search for potential antivirals. We found that the pandemic's severity was generally lower in southern regions, especially those with more than 0.3 hectares of forest per capita. The lowest mortality rates were found in southern Italy, mainly in regions like Molise (0.007%) and Basilicata (0.005%) where the forest per capita ratio is higher than 0.5 Ha/person. Our findings suggest that evergreen Mediterranean forests and shrubland plants could have protected the southern population by emission of immuno-modulating VOCs and provision of dietary sources of bioactive compounds. Moreover, in silico studies revealed a potential anti-COVID-19 activity in laurusides, which are unexplored glycosides from bay laurel. Overall, our results highlight the importance of nature conservation and applications to the search for natural antivirals.

14.
Chemosphere ; 260: 127578, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32683024

ABSTRACT

Micro- and nano-plastics have widely been recognized as major global environmental problem due to its widespread use and inadequate waste management. The emergence of these plastic pollutants in agroecosystem is a legitimate ecotoxicological concerns for food web exchanges. In agriculture, micro/nano plastics are originated from a variety of different agricultural management practices, such as the use of compost, sewage sludge and mulching. A range of soil properties and plant traits are affected by their presence. With the increase of plastic debris, these pollutant materials have now begun to demonstrate serious implications for key soil ecosystem functions, such as soil microbial activity and nutrient cycling. Nitrogen (N) cycle is key predictor of ecological stability and management in terrestrial ecosystem. In this review, we evaluate ecological risks associated with micro-nano plastic for soil-plant system. We also discuss the consequence of plastic pollutants, either positive or negative, on soil microbial activities. In addition, we systematically summarize both direct and hypothesized implications for N cycling in agroecosystem. We conclude that soil N transformation had showed varied effects resulting from different types and sizes of plastic polymers present in soil. While mixed effects of microplastic pollution on plant growth and yield have been observed, biodegradable plastics have appeared to pose greater risk for plant growth compared to chemical plastic polymers.


Subject(s)
Microplastics/toxicity , Nitrogen/metabolism , Plants/drug effects , Soil Microbiology , Soil Pollutants , Agriculture , Crops, Agricultural/drug effects , Ecosystem , Ecotoxicology , Environmental Pollution , Nanostructures , Sewage , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
15.
J Hazard Mater ; 389: 121849, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31843404

ABSTRACT

Cadmium (Cd) is an on-going environmental pollutant associated with hindered plant growth. In response, plants possess various strategies to alleviate Cd stress, including reactive oxygen species (ROS) scavenging and chelation-mediated Cd detoxification. The present study examined the Cd defense mechanism of perennial ryegrass (Lolium perenne L.), taking into account the effect of exogenous phosphorus (P) input. It was found that despite triggering antioxidant enzyme activity, Cd stress heightened lipid peroxidation levels. Exogenous P input partially mitigated the lipid peroxidation impact and decreased the levels of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) antioxidant enzymes, revealing reduced ROS-scavenging activity. Importantly, notable relationships were determined between the amount of Cd uptake in the root and the amount of non-protein thiols (R2 = 0.914), glutathione (R2 = 0.805) and phytochelatins (R2 = 0.904) in proportion to the amount of exogenous P applied. The levels of amino acids proline and cysteine were also enhanced by exogenous P input showing their influence in alleviating Cd stress. Overall, it is reported that Cd detoxification in ryegrass plants can be stimulated by exogenous P input, which facilitates chelation-mediated Cd detoxification processes.


Subject(s)
Cadmium/toxicity , Lolium/drug effects , Oxidative Stress/drug effects , Phosphorus/pharmacology , Soil Pollutants/toxicity , Soil/chemistry , Antioxidants/metabolism , Hydroponics , Lolium/enzymology , Lolium/growth & development , Phosphorus/chemistry
16.
Chemosphere ; 241: 125006, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31590016

ABSTRACT

The use of ornamental plant will increase with the improvement in living standards in green and blue-green infrastructure of urban settings. Nicotiana alata is an ornamental plant, frequently grown as a model plant for horticulture, medicine, and scientific research studies throughout the world. Despite its popularity, little is known about the response of N. alata against heavy metals (HMs). This work is based on the hydroponic study to identify the impacts of selected HMs (Cd, Cr, Cu, Ni and Pb) on N. alata, at 0, 50 and 100 µM concentration, with the co-application of EDTA, at 0 and 2.5 mM in hydroponics system. The HMs uptake was found to be dose dependent, with significant higher uptake at 100 µM of respective HM. Highest cumulative uptake (mg kg-1 of HMs in root, shoot, and leaf dried weight) noted were 767.50 ±â€¯50.83, 862.30 ±â€¯23.83, 271.29 ±â€¯18.68, 1117.49 ±â€¯46.10 and 2166.81 ±â€¯102.09, for Cd, Cr, Cu, Ni, and Pb at 100 µM, respectively. It was identified that EDTA co-application with HMs resulted in boosted HMs uptake, with cumulative uptake percentage increment of 41.62, 54.67, 53.98, 34.48 and 19.92% for 100 µM of Cd, Cr, Cu, Ni, and Pb, respectively. Higher uptake led to negative impact on plant physiology, photosynthetic pigments, and higher lipid peroxidation, H2O2 contents, and electrolyte leakage that increased the stress. Higher HMs uptake induced higher antioxidant enzymatic response. It is recommended to incorporate appropriate soil modification to grow N. alata in sustainable infrastructures.


Subject(s)
Edetic Acid/pharmacology , Metals, Heavy/pharmacokinetics , Nicotiana/growth & development , Nicotiana/metabolism , Soil Pollutants/pharmacokinetics , Hydrogen Peroxide/analysis , Metals, Heavy/analysis , Oxidoreductases/analysis , Plant Leaves/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis
17.
Environ Sci Pollut Res Int ; 25(18): 17268-17277, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29774514

ABSTRACT

This article summarizes historical and recent research on the terrestrial toxicology of tetrabromobisphenol A (TBBPA). Despite its ubiquitous use and presence in the environment, little published data is available to evaluate the terrestrial ecotoxicity of TBBPA. The purposes of this paper are to enable broad access to a series of TBBPA ecotoxicity tests (nitrogen transformation, earthworm survival/reproduction, and seedling emergence/growth) that were conducted in support of regulatory risk assessments, and to summarize available research in the terrestrial toxicity of TBBPA. In these studies, no significant effect of TBBPA on nitrogen transformation was observed up to the highest concentration [1000 mg/kg dry weight (d.w.) soil]. The no-observed-effect concentrations (NOECs) for seedling emergence ranged from 20 to 5000 mg/kg d.w. Sensitivities were soybeans < corn ≈ onion ≈ tomato < ryegrass < cucumber; the most sensitive endpoints being seedling dry weight and height. The 28-day earthworm mortality NOEC was > 4840 mg/kg d.w. The most sensitive terrestrial endpoint was earthworm reproduction with a half maximal effective concentration (EC50) of 0.12 mg/kg d.w. soil. Based on this sensitive terrestrial endpoint, the EU derived a predicted no-effect concentration (PNEC) for soil of 0.012 mg/kg wet weight soil (EU 2008). We did not identify a more sensitive/lower point of departure for terrestrial toxicity endpoints in the published literature. On the basis of this PNEC, the EU concluded there was potential risk for environmental effects near TBBPA manufacturing sites, but no additional risk provided that no sewage sludge was applied to agricultural land (EU 2008).


Subject(s)
Flame Retardants/analysis , Nitrogen/chemistry , Oligochaeta/drug effects , Polybrominated Biphenyls/toxicity , Animals , Cucumis sativus , Halogenation , Lolium , Nitrogen/pharmacology , Onions , Polybrominated Biphenyls/chemistry , Sewage , Soil , Soil Pollutants/analysis , Zea mays
18.
Environ Toxicol Chem ; 37(4): 1122-1130, 2018 04.
Article in English | MEDLINE | ID: mdl-29193285

ABSTRACT

Since the detection of active pharmaceutical ingredients (APIs) in various environmental media, research has explored the potential uptake and toxicity of these chemicals to species inhabiting these matrices. Specifically, pharmaceuticals, including the antiepileptic API carbamazepine (CBZ), are taken up from soil by a range of plants. Many short-term studies have also suggested that certain APIs induce toxicity in plants. However, the effects of APIs on fruiting plants remain relatively unexplored. The present study investigated the uptake, bioaccumulation, and toxicity of CBZ in Cucurbita pepo (zucchini) from seed to full maturity across a range of CBZ exposure concentrations in soil (0.1-20 mg/kg). Results of biomass, chlorophyll, starch and total nitrogen (N) concentration in C. pepo indicated toxicity at soil concentrations of ≥10 mg/kg. There were clear visual indications of increasing toxicity on leaves, including chlorosis and necrosis, from soil concentrations of 1 up to 20 mg/kg. The present study also revealed novel insights into the effect of CBZ accumulation on C. pepo fruiting: female C. pepo flowers were unable to set fruit when leaf concentrations were ≥14 mg/kg. These findings may have implications for future agricultural productivity in areas where reclaimed wastewater containing APIs is a source of irrigation. Detectable CBZ concentrations were found in edible C. pepo fruit, indicating the possibility of trophic transfer. Environ Toxicol Chem 2018;37:1122-1130. © 2017 SETAC.


Subject(s)
Carbamazepine/metabolism , Carbamazepine/toxicity , Cucurbita/metabolism , Soil/chemistry , Toxicity Tests , Biomass , Carbamazepine/chemistry , Chlorophyll/analysis , Cucurbita/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Starch/analysis
19.
Rev Environ Contam Toxicol ; 243: 89-148, 2017.
Article in English | MEDLINE | ID: mdl-28005213

ABSTRACT

The use of veterinary pharmaceuticals (VPs) is a result of growing animal production. Manure, a great crop fertilizer, contains a significant amount of VPs. The investigation of VPs in manure is prevalent, because of the potential risk for environmental organisms, as well as human health. A re-evaluation of the impact of veterinary pharmaceuticals on the agricultural environment is needed, even though several publications appear every year. The aim of this review was to collate the data from fields investigated for the presence of VPs as an inevitable component of manure. Data on VP concentrations in manure, soils, groundwater and plants were collected from the literature. All of this was connected with biotic and abiotic degradation, leaching and plant uptake. The data showed that the sorption of VPs into soil particles is a process which decreases the negative impact of VPs on the microbial community, the pollution of groundwater, and plant uptake. What was evident was that most of the data came from experiments conducted under conditions different from those in the environment, resulting in an overestimation of data (especially in the case of leaching). The general conclusion is that the application of manure on crop fields leads to a negligible risk for plants, bacteria, and finally humans, but in future every group of compounds needs to be investigated separately, because of the high divergence of properties.


Subject(s)
Agriculture , Pharmaceutical Preparations/analysis , Soil Pollutants/toxicity , Veterinary Medicine , Water Pollutants, Chemical/toxicity , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
20.
Open Vet J ; 6(1): 30-5, 2016.
Article in English | MEDLINE | ID: mdl-26894038

ABSTRACT

The cardiotoxicity of Coffee senna (Senna occidentalis) was investigated in sheep that were fed diets containing its seeds, which are recognized as the most poisonous part of such weed. Dianthrone, the main toxic component of S. occidentalis, is known to impair mitochondrial oxidative phosphorylation, leading to myofiber degeneration. In this study, fifteen ewes were fed 0%, 2% or 4% of seeds of S. occidentalis for 63 days. Non-specific markers of myocyte injury and electrocardiograms were undertaken at baseline, and at 14, 35, and 63 days after the animals were first fed the diets, while histopathology of heart samples was performed at the very end of the study. Our results showed an increase in serum AST and LDH over time, while CK-MB did not change significantly. Changes that could be ascribed to myocardial damage were not documented in the electrocardiograms. Cardiac histopathology demonstrated only mild-to-moderate vacuolar degeneration, myofiber edema and disarray, structural disorganization, and cellular necrosis. In conclusion, S. occidentalis caused myocardial fiber degeneration in a dose-dependent fashion, but the electrocardiogram was not able to identify these lesions non-invasively. Because the markers of myofiber injury used in this study lack specificity, they may not be used to support cardiac impairment objectively, despite some of them did change over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...