Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Ecology ; 105(5): e4306, 2024 May.
Article in English | MEDLINE | ID: mdl-38590050

ABSTRACT

Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.


Subject(s)
Lupinus , Pollen , Pollination , Pollen/chemistry , Animals , Lupinus/chemistry , Lupinus/physiology , Alkaloids , Flowers/chemistry , Bees/physiology , Insecta/physiology , Insecta/drug effects
2.
J Plant Res ; 137(4): 605-617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506958

ABSTRACT

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation. In this study, Symphytum officinale was used to detect the effect of nectar robbers on pollinators under different robbing intensity as well as their effects on plant reproductive success. Six robbing levels and three bumblebees with mixed foraging behaviors were used to evaluate the effect of different robbing intensity on pollinator behavior, visitation rate, flower longevity and pollen deposition. Our results indicated that the robbing rate increased gradually with the proportion of robbed flowers, but which did not affect the frequency of legitimate visits. The increase of robbing rate promoted the corolla abscission, and then enhanced the self-pollen deposition, but which had no significant effect on cross-pollen deposition. These results indicate that the overall fitness of S. officinale was improved by combined self and cross-pollination modes when visited by both pollinators and nectar robbers simultaneously. Although nectar robbing is not uncommon, its consequences for pollination in the interaction web have not been well studied. Our results emphasize the significance of indirect impacts in mediating the adaptive outcomes of species interactions.


Subject(s)
Boraginaceae , Flowers , Plant Nectar , Pollination , Reproduction , Pollination/physiology , Flowers/physiology , Animals , Bees/physiology , Reproduction/physiology , Plant Nectar/physiology , Boraginaceae/physiology , Pollen/physiology
3.
Plants (Basel) ; 13(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38498564

ABSTRACT

Florivores consume floral structures with negative effects on plant fitness and pollinator attraction. Several studies have evaluated these consequences in hermaphroditic plants, but little is known about the effects on monoecious and dioecious species. We characterize the florivory and its effects on floral visitors and reproductive success in a monoecious population of Sagittaria lancifolia. Five categories of florivory were established according to the petal area consumed. Visits were recorded in male and female flowers within the different damage categories. Reproductive success was evaluated through fruit number and weight, as well as the number of seeds per fruit. Our results show that the weevil Tanysphyrus lemnae is the main florivore, and it mainly damages the female flowers. Hymenoptera were recorded as the most frequent visitors of both male and female flowers. Male and female flowers showed differences in visit frequency, which decreases as flower damage increases. Reproductive success was negatively related to the level of damage. We found that florivory is common in the population of S. lancifolia, which can exert a strong selective pressure by making the flowers less attractive and reducing the number of seeds per fruit. Future studies are needed to know how florivores affect plant male fitness.

4.
Am J Bot ; 111(3): e16303, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38531667

ABSTRACT

PREMISE: Vertical stratification is a key feature of tropical forests and plant-frugivore interactions. However, it is unclear whether equally strong patterns of vertical stratification exist for plant-nectarivore interactions and, if so, which factors drive these patterns. Further, nectar-inhabiting bacteria, acting as "hidden players" in plant-nectarivore interactions, might be vertically stratified, either in response to differences among strata in microenvironmental conditions or to the nectarivore community serving as vectors. METHODS: We observed visitations by a diverse nectarivore community to the liana Marcgravia longifolia in a Peruvian rainforest and characterized diversity and community composition of nectar-inhabiting bacteria. Unlike most other plants, M. longifolia produces inflorescences across forest strata, enabling us to study effects of vertical stratification on plant-nectarivore interactions without confounding effects of plant species and stratum. RESULTS: A significantly higher number of visits were by nectarivorous bats and hummingbirds in the midstory than in the understory and canopy, and the visits were strongly correlated to flower availability and nectar quantity and quality. Trochiline hummingbirds foraged across all strata, whereas hermits remained in the lower strata. The Shannon diversity index for nectar-inhabiting bacterial communities was highest in the midstory. CONCLUSIONS: Our findings suggest that vertical niche differentiation in plant-nectarivore interactions seems to be partly driven by resource abundance, but other factors such as species-specific preferences of hummingbirds, likely caused by competition, play an important role. We conclude that vertical stratification is an important driver of a species' interaction niche highlighting its role for promoting biodiversity and ecosystem functioning.


Subject(s)
Ecosystem , Plant Nectar , Animals , Forests , Biodiversity , Flowers , Birds/physiology
5.
BMC Ecol Evol ; 24(1): 10, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243160

ABSTRACT

BACKGROUND: Artificial light at night, also referred to as light pollution (LP), has been shown to affect many organisms. However, little is known about the extent to which ecological interactions between earthworms and plants are altered by LP. We investigated the effects of LP on anecic earthworms (Lumbricus terrestris) that come to the surface at night to forage and mate, and on the germination and growth of the invasive and allergenic ragweed (Ambrosia artemisiifolia). In a full factorial pot experiment in the greenhouse, we tested four factors and their interactions: LP (5 lux vs. 0 lux at night), earthworms (two individuals vs. none), plant species (seeding of ragweed only vs. mixed with Phacelia seeds) and sowing depth (seed placed at the surface vs. in 5 cm depth). Data were analysed using Generalized Linear (Mixed) Models and multifactorial ANOVAs with soil parameters as covariates. RESULTS: Light pollution reduced earthworm surface activity by 76% as measured by casting activity and toothpick index; 85% of mating earthworms were observed in the absence of LP. Light pollution in interaction with earthworms reduced ragweed germination by 33%. However, LP increased ragweed height growth by 104%. Earthworms reduced ragweed germination especially when seeds were placed on the soil surface, suggesting seed consumption by earthworms. CONCLUSIONS: Our data suggest that anecic earthworms are negatively affected by LP because reduced surface activity limits their ability to forage and mate. The extent to which earthworm-induced ecosystem services or community interactions are also affected by LP remains to be investigated. If the increased height growth of ragweed leads to increased pollen and seed production, it is likely that the competition of ragweed with field crops and the risks to human health will also increase under LP.


Subject(s)
Oligochaeta , Animals , Humans , Ecosystem , Ambrosia , Light Pollution , Soil
6.
Mol Ecol ; 33(6): e17285, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38288563

ABSTRACT

Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.


Subject(s)
Genetics, Population , Microsatellite Repeats , Animals , Bayes Theorem , Microsatellite Repeats/genetics , Reproduction/genetics , Pollination/genetics , Gene Flow , Genetic Variation/genetics
7.
Rev. biol. trop ; 71(1)dic. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1449507

ABSTRACT

Introducción: La frugivoría es un proceso ecológico determinante para la estructuración y regeneración de los bosques. En los trópicos, donde la diversidad de plantas y animales frugívoros es alta, las relaciones interespecíficas son complejas y requieren estudio. Objetivo: Identificar las especies de plantas ecológicamente importantes en dos redes de interacción, y el papel de los rasgos funcionales de los frutos en esas interacciones en un bosque seco. Métodos: Recolectamos 10 frutos por planta de 10 plantas de cada especie de interés en un bosque seco colombiano, calculamos el índice de importancia de las plantas a partir de la relevancia de aves y mamíferos frugívoros en la estructura de las redes. Esta relevancia se relaciona directamente con el potencial del animal como dispersor efectivo de semillas. Utilizamos modelos lineales generalizados para estimar el tamaño, color, estrato, y tipo de pulpa, en el índice. Resultados: Las plantas más importantes son especies de los géneros Miconia, Ficus, Cecropia, Bursera, Casearia y Trichilia, también identificadas como recursos importantes para los frugívoros de los trópicos en otros estudios. Las plantas con frutos carnosos, rojos y de menor tamaño son los mejores para dispersores de semillas. El índice de importancia de las plantas tiene alta variación; esto sugiere que un conjunto de especies frugívoras beneficiadas por cada especie de planta tiene una contribución diferenciada en procesos ecológicos derivados de la dispersión de semillas. Conclusiones: Programas de restauración para este tipo de bosque tropical seco debería incluir una variedad de plantas, incluyendo especies con frutos pequeños, rojos y carnosos.


Introduction: Frugivory is a pivotal ecological process for the structure and regeneration of forests. In the tropics, where the diversity of plants and frugivorous animals is high, interspecific relationships in the interaction networks are complex and need study. Objective: To identify ecologically important plant species in two interaction networks, and the role of functional fruit traits in those interactions in a dry forest. Methods: We collected 10 fruits per plant from 10 plants of each species of interest in a Colombian dry forest, we calculated the Plant Importance Index based on the bird and mammal frugivores relevance for network structure. This relevance is directly related to the animal's potential as effective seed dispersers. We used generalized linear models to estimate the effect of fruit size, color, stratum, and type of pulp, on the index. Results: The most important plants are species of the genera Miconia, Ficus, Cecropia, Bursera, Casearia and Trichilia, also identified as important resources for tropical frugivores in other studies. Plants with small, red, and fleshy fruits are the best for seed dispersers. The plant importance index has a high variation; this suggests that the set of frugivore species benefited by each plant species has a differential contribution to the ecological processes derived from seed dispersal. Conclusions: Restoration programs for this kind of tropical dry forest should include a variety of plants, including species with small, red, and fleshy fruits.

8.
Planta ; 258(6): 117, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957258

ABSTRACT

MAIN CONCLUSION: Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.


Subject(s)
DNA, Environmental , Ecosystem , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , Ecology , Environmental Monitoring/methods , Plants/genetics
9.
J Anim Ecol ; 92(10): 2016-2027, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37565516

ABSTRACT

1. Experimental studies across biomes demonstrate that herbivores can have significant effects on ecosystem functioning. Herbivore effects, however, can be highly variable with studies demonstrating positive, neutral or negative relationships between herbivore presence and different components of ecosystems. Mixed effects are especially likely in the soil, where herbivore effects are largely indirect mediated through effects on plants. 2. We conducted a long-term experiment to disentangle the effects of non-native moose in boreal forests on plant communities, nutrient cycling, soil composition and soil organism communities. 3. To explore the effect of moose on soils, we conduct separate analyses on the soil organic and mineral horizons. Our data come from 11 paired exclosure-control plots in eastern and central Newfoundland, Canada that provide insight into 22-25 years of moose herbivory. We fit piecewise structural equations models (SEM) to data for the organic and mineral soil horizons to test different pathways linking moose to above-ground and below-ground functioning. 4. The SEMs revealed that moose exclusion had direct positive impacts on adult tree count and an indirect negative impact on shrub percent cover mediated by adult tree count. We detected no significant impact of moose on soil microbial C:N ratio or net nitrogen mineralization in the organic or mineral soil horizon. Soil temperature and moisture, however, was more than twice as variable in the presence (i.e. control) than absence (i.e. exclosure) of moose. Overall, we observed clear impacts of moose on above-ground forest components with limited indirect effects below-ground. Even after 22-25 years of exclusion, we did not find any evidence of moose impacts on soil microbial C:N ratio and net nitrogen mineralization. 5. Our long-term study and mechanistic path analysis demonstrates that soils can be resilient to ungulate herbivore effects despite evidence of strong effects above-ground. Long-term studies and analyses such as this one are relatively rare yet critical for reconciling some of the context-dependency observed across studies of ungulates effects on ecosystem functions. Such studies may be particularly valuable in ecosystems with short growing seasons such as the boreal forest.

10.
Proc Biol Sci ; 290(2003): 20231221, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37464753

ABSTRACT

Building ecological networks is the fundamental basis of depicting how species in communities interact, but sampling complex interaction networks is extremely labour intensive. Recently, indirect ecological information has been applied to build interaction networks. Here we propose to extend the source of indirect ecological information, and applied regional ecological knowledge to build local interaction networks. Using a high-resolution dataset consisting of 22 locally observed networks with 17 572 seed-dispersal events, we test the reliability of indirectly derived local networks based on regional ecological knowledge (REK) across islands. We found that species richness strongly influenced 'local interaction rewiring' (i.e. the proportion of locally observed interactions among regionally interacting species), and all network properties were biased using REK-based networks. Notably, species richness and local interaction rewiring strongly affected estimations of REK-based network structures. However, locally observed and REK-based networks detected the same trends of how network structure correlates to island area and isolation. These results suggest that we should use REK-based networks cautiously for reflecting actual interaction patterns of local networks, but highlight that REK-based networks have great potential for comparative studies across environmental gradients. The use of indirect regional ecological information may thus advance our understanding of biogeographical patterns of species interactions.


Subject(s)
Seed Dispersal , Islands , Reproducibility of Results , Seeds , Ecosystem
11.
Biol Rev Camb Philos Soc ; 98(5): 1829-1844, 2023 10.
Article in English | MEDLINE | ID: mdl-37311559

ABSTRACT

In many disturbed terrestrial landscapes, a subset of native generalist vertebrates thrives. The population trends of these disturbance-tolerant species may be driven by multiple factors, including habitat preferences, foraging opportunities (including crop raiding or human refuse), lower mortality when their predators are persecuted (the 'human shield' effect) and reduced competition due to declines of disturbance-sensitive species. A pronounced elevation in the abundance of disturbance-tolerant wildlife can drive numerous cascading impacts on food webs, biodiversity, vegetation structure and people in coupled human-natural systems. There is also concern for increased risk of zoonotic disease transfer to humans and domestic animals from wildlife species with high pathogen loads as their abundance and proximity to humans increases. Here we use field data from 58 landscapes to document a supra-regional phenomenon of the hyperabundance and community dominance of Southeast Asian wild pigs and macaques. These two groups were chosen as prime candidates capable of reaching hyperabundance as they are edge adapted, with gregarious social structure, omnivorous diets, rapid reproduction and high tolerance to human proximity. Compared to intact interior forests, population densities in degraded forests were 148% and 87% higher for wild boar and macaques, respectively. In landscapes with >60% oil palm coverage, wild boar and pig-tailed macaque estimated abundances were 337% and 447% higher than landscapes with <1% oil palm coverage, respectively, suggesting marked demographic benefits accrued by crop raiding on calorie-rich food subsidies. There was extreme community dominance in forest landscapes with >20% oil palm cover where two pig and two macaque species accounted for >80% of independent camera trap detections, leaving <20% for the other 85 mammal species >1 kg considered. Establishing the population trends of pigs and macaques is imperative since they are linked to cascading impacts on the fauna and flora of local forest ecosystems, disease and human health, and economics (i.e., crop losses). The severity of potential negative cascading effects may motivate control efforts to achieve ecosystem integrity, human health and conservation objectives. Our review concludes that the rise of native generalists can be mediated by specific types of degradation, which influences the ecology and conservation of natural areas, creating both positive and detrimental impacts on intact ecosystems and human society.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Humans , Swine , Forests , Biodiversity , Animals, Wild , Sus scrofa
12.
Front Plant Sci ; 14: 1135312, 2023.
Article in English | MEDLINE | ID: mdl-37229139

ABSTRACT

The seed germination schedule is a key factor affecting the food-hoarding behavior of animals and the seedling regeneration of plants. However, little is known about the behavioral adaptation of rodents to the rapid germination of acorns. In this study, we provided Quercus variabilis acorns to several rodent species to investigate how food-hoarding animals respond to seed germination. We found that only Apodemus peninsulae adopted embryo excision behavior to counteract seed germination, which is the first report of embryo excision in nonsquirrel rodents. We speculated that this species may be at an early stage of the evolutionary response to seed perishability in rodents, given the low rate of embryo excision in this species. On the contrary, all rodent species preferred to prune the radicles of germinating acorns before caching, suggesting that radicle pruning is a stable and more general foraging behavior strategy for food-hoarding rodents. Furthermore, scatter-hoarding rodents preferred to scatter-hoard and prune more germinating acorns, whereas they consumed more nongerminating acorns. Acorns with embryos excised rather than radicles pruned were much less likely to germinate than intact acorns, suggesting a behavioral adaptation strategy by rodents to the rapid germination of recalcitrant seeds. This study provides insight into the impact of early seed germination on plant-animal interactions.

13.
Ecology ; 104(6): e4038, 2023 06.
Article in English | MEDLINE | ID: mdl-36946141

ABSTRACT

Exploitation competition occurs when one group of organisms reduces the availability of a resource for another group of organisms. For instance, plants produce a certain number of fruits for seed dispersal by fruit-eating animals (hereafter frugivores), and fruit consumption by one group of frugivores can reduce the number of fruits available for other frugivores. However, it is uncertain whether exploitation competition is common among frugivores, particularly in novel ecosystems, where food resources are generally thought to be abundant and invasive species are dietary generalists. In a novel ecosystem in Hawai'i, we used gut passage experiments with captive birds to identify roles of introduced frugivores and found they were either distinctly seed dispersers or predators. We then experimentally tested how frugivory by seed predators influenced frugivory by seed dispersers. Specifically, we used exclosures around fruiting plants that blocked seed predator access, while permitting seed disperser access, and we had two control treatments that allowed for access by all frugivores (n = 139 plants). When seed predators were excluded from plants, there was more frugivory by dispersers compared to controls, and results varied by year and plant species. Overall, we show that introduced frugivores occupied distinct ecological roles (seed predator or seed disperser), exploitation competition occurred between these introduced frugivore groups, and seed predators had both direct (via seed destruction) and indirect (via reduction in frugivory by dispersers) effects on seed dispersal. Thus, in this novel ecosystem, multiple frugivory is subtractive, and competition for fruit between introduced seed predators and seed dispersers scales up to affect invasions and the conservation of native flora.


Subject(s)
Ecosystem , Seed Dispersal , Animals , Hawaii , Forests , Seeds , Fruit , Feeding Behavior
14.
Am J Bot ; 110(3): 1-12, 2023 03.
Article in English | MEDLINE | ID: mdl-36706269

ABSTRACT

PREMISE: In fleshy-fruited plants, fruit removal is widely used as a proxy for plant reproductive success. Nevertheless, this proxy may not accurately reflect the number of seeds dispersed, an assumed better proxy for total fitness (fruit removal × mean number of seeds dispersed per fruit). METHODS: We examined under what circumstances fruit removal can be reliable as a proxy for total fitness when assessing bird-mediated selection on fruit traits. In three populations of the Blue Passionflower (Passiflora caerulea), we used the number of fruits pecked per plant as a surrogate for fruit removal to estimate phenotypic selection on fruit and seed traits, and simulations of the effect of the fruit-seed number trade-off on the number of fruits removed. RESULTS: Fruit removal was a good indicator of fitness, accounting for 55 to 68% of the variability in total fitness, measured as total number of seeds removed. Moreover, multivariate selection analyses on fruit crop size, mean fruit diameter and mean seed number using fruit removal as a fitness proxy yielded similar selection regimes to those using total fitness. Simulations showed that producing more fruits, a lower number of seeds per fruit, and a higher variability in seed number can result in a negative relationship between fruit removal and total fitness. CONCLUSIONS: Our results suggest that fruit removal can be reliably used as a proxy for total fitness when (1) there is a weak fruit number-seed number trade-off, (2) fruit crop size and fruit removal correlate positively, and (3) seed number variability does not largely exceed fruit number variability.


Subject(s)
Fruit , Seed Dispersal , Animals , Seeds , Birds
15.
Proc Natl Acad Sci U S A ; 120(5): e2201832120, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36689651

ABSTRACT

Megaherbivores have pervasive ecological effects. In African rainforests, elephants can increase aboveground carbon, though the mechanisms are unclear. Here, we combine a large unpublished dataset of forest elephant feeding with published browsing preferences totaling nearly 200,000 records covering >800 plant species and with nutritional data for 145 species. Elephants increase carbon stocks by: 1) promoting high wood density trees via preferential browsing on leaves from low wood density species, which are more palatable and digestible; and 2) dispersing seeds of trees that are relatively large and have the highest average wood density among tree guilds based on dispersal mode. Loss of forest elephants could cause an increase in abundance of fast-growing low wood density trees and a 6% to 9% decline in aboveground carbon stocks due to regeneration failure of elephant-dispersed trees. These results demonstrate the importance of megaherbivores for maintaining diverse, high-carbon tropical forests. Successful elephant conservation will contribute to climate mitigation at a globally-relevant scale.


Subject(s)
Elephants , Animals , Carbon/metabolism , Forests , Trees/metabolism , Tropical Climate , Biomass
16.
Ecol Lett ; 26(1): 132-146, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36450595

ABSTRACT

Mutualistic interactions among free-living species generally involve low-frequency interactions and highly asymmetric dependence among partners, yet our understanding of factors behind their emergence is still limited. Using individual-based interactions of a super-generalist fleshy-fruited plant with its frugivore assemblage, we estimated the Resource Provisioning Effectiveness (RPE) and Seed Dispersal Effectiveness (SDE) to assess the balance in the exchange of resources. Plants were highly dependent on a few frugivore species, while frugivores interacted with most individual plants, resulting in strong asymmetries of mutual dependence. Interaction effectiveness was mainly driven by interaction frequency. Despite highly asymmetric dependences, the strong reliance on quantity of fruit consumed determined high reciprocity in rewards between partners (i.e. higher energy provided by the plant, more seedlings recruited), which was not obscured by minor variations in the quality of animal or plant service. We anticipate reciprocity will emerge in low-intimacy mutualisms where the mutualistic outcome largely relies upon interaction frequency.


Subject(s)
Feeding Behavior , Seed Dispersal , Animals , Symbiosis , Birds , Fruit , Trees
17.
Oecologia ; 201(1): 83-90, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36416931

ABSTRACT

Many plants produce colour-polymorphic fruits. However, the processes responsible for the evolution and maintenance of fruit colour polymorphisms are poorly understood. We investigated the fruit colour polymorphism in Gaultheria depressa var. novae-zealandiae (Ericaceae), a predominantly bird-dispersed, alpine shrub from New Zealand, by testing whether colour morph frequencies vary geographically to maximise fruit-foliage colour contrasts. We also conducted a seed germination experiment to test whether fruit colour morphs vary in their susceptibility to UV damage. Results showed that 'red' fruits were more abundant at lower elevations, while 'white' fruits were predominant at higher elevations. Leaf colours shifted from 'green' in appearance at lower elevations to 'red' at higher elevations. Analyses of fruit-foliage colour contrasts showed that 'red' fruits were more conspicuous at lower elevations, and 'white' fruits were more conspicuous at higher elevations, which was consistent with the hypothesis that colour morph frequencies vary geographically to maximise their conspicuousness to dispersers. However, 'red' fruits were generally more conspicuous than 'white' fruits, regardless of elevation, indicating that the maintenance of the polymorphism could not be attributed to fruit-foliage colour contrasts alone. The seed germination experiment showed that 'white' fruits were more resistant to UV damage, suggesting the preponderance of 'white' fruited individuals in the landscape results from a greater degree of protection from UV damage. The fruit colour polymorphism in Gaultheria depressa var. novae-zealandiae therefore appears to be maintained by trade-offs between conspicuousness to dispersers and tolerance to UV damage, advocating a pluralistic approach to the problem in the future.


Subject(s)
Color , Ericaceae , Fruit , New Zealand , Plant Leaves
18.
Am J Bot ; 110(1): e16082, 2023 01.
Article in English | MEDLINE | ID: mdl-36219504

ABSTRACT

PREMISE: Trimerophytes are a plexus of early tracheophytes that form the base of the euphyllophyte clade and, thus, represent the link between the earliest land plants and modern-day ferns, sphenophytes, and seed plants. As the best-characterized trimerophyte, the genus Psilophyton occupies a key position in the euphyllophyte fossil record. We describe a new Psilophyton species that has implications for the evolution of plant-animal interactions. METHODS: The fossil material is preserved by permineralization in the Lower Devonian (Emsian) Battery Point Formation (Québec, Canada) and was studied in serial sections using the cellulose acetate peel technique. RESULTS: Psilophyton diakanthon sp. nov. differs from other Psilophyton species in possessing fibers that form a discontinuous layer in the inner cortex and two distinct types of spinescent emergences whose anatomy and morphology are consistent with roles in anti-herbivore defense. CONCLUSIONS: Psilophyton diakanthon adds another species to an already diverse genus. Its two morphologically distinct types of spinescence suggest that herbivory was rampant in plant-animal interactions and demonstrate that anti-herbivory defenses had reached a previously unrecognized level of sophistication by 400 million years ago, in the Early Devonian.


Subject(s)
Embryophyta , Ferns , Quebec , Plants , Canada , Fossils , Biological Evolution
19.
Ecology ; 104(3): e3900, 2023 03.
Article in English | MEDLINE | ID: mdl-36315032

ABSTRACT

Encounters between flowers and invertebrates are key events for the functioning of tropical forests. Assessing the structure of networks composed of the interactions between those partners leads to a better understanding of ecosystem functioning and the effects of environmental factors on ecological processes. Gathering such data is, however, costly and time-consuming, especially in the highly diverse tropics. We aimed to provide a comprehensive repository of available flower-invertebrate interaction information for the Atlantic Forest, a South American tropical forest domain. Data were obtained from published works and "gray literature," such as theses and dissertations, as well as self-reports by co-authors. The data set has ~18,000 interaction records forming 482 networks, each containing between one and 1061 interaction links. Each network was sampled for about 200 h or less, with few exceptions. A total of 641 plant genera within 136 different families and 39 orders were reported, with the most abundant and rich families being Asteraceae, Fabaceae, and Rubiaceae. Invertebrates interacting with these plants were all arthropods from 10 orders, 129 families, and 581 genera, comprising 2419 morphotypes (including 988 named species). Hymenoptera was the most abundant and diverse order, with at least six times more records than the second-ranked order (Lepidoptera). The complete data set shows Hymenoptera interacting with all plant orders and also shows Diptera, Lepidoptera, Coleoptera, and Hemiptera to be important nodes. Among plants, Asterales and Fabales had the highest number of interactions. The best sampled environment was forest (~8000 records), followed by pastures and crops. Savanna, grasslands, and urban environments (among others) were also reported, indicating a wide range of approaches dedicated to collecting flower-invertebrate interaction data in the Atlantic Forest domain. Nevertheless, most reported data were from forest understory or lower strata, indicating a knowledge gap about flower-invertebrate interactions at the canopy. Also, access to remote regions remains a limitation, generating sampling bias across the geographical range of the Atlantic Forest. Future studies in these continuous and hard-to-access forested areas will yield important new information regarding the interactions between flowers and invertebrates in the Atlantic Forest. There are no copyright restrictions on the data set. Please cite this data paper if the data are used in publications and teaching events.


Subject(s)
Hymenoptera , Lepidoptera , Humans , Animals , Ecosystem , Invertebrates , Forests , Plants , Flowers , Pollination
20.
Conserv Biol ; 37(2): e14014, 2023 04.
Article in English | MEDLINE | ID: mdl-36178021

ABSTRACT

The loss of large animals due to overhunting and habitat loss potentially affects tropical tree populations and carbon cycling. Trees reliant on large-bodied seed dispersers are thought to be particularly negatively affected by defaunation. But besides seed dispersal, defaunation can also increase or decrease seed predation. It remains unclear how these different defaunation effects on early life stages ultimately affect tree population dynamics. We reviewed the literature on how tropical animal loss affects different plant life stages, and we conducted a meta-analysis of how defaunation affects seed predation. We used this information to parameterize models that altered matrix projection models from a suite of tree species to simulate defaunation-caused changes in seed dispersal and predation. We assessed how applying these defaunation effects affected population growth rates. On average, population-level effects of defaunation were negligible, suggesting that defaunation may not cause the massive reductions in forest carbon storage that have been predicted. In contrast to previous hypotheses, we did not detect an effect of seed size on changes in seed predation rates. The change in seed predation did not differ significantly between exclosure experiments and observational studies, although the results of observational studies were far more variable. Although defaunation surely affects certain tree taxa, species that benefit or are harmed by it and net changes in forest carbon storage cannot currently be predicted based on available data. Further research on how factors such as seed predation vary across tree species and defaunation scenarios is necessary for understanding cascading changes in species composition and diversity.


Predicciones de cómo los cambios inducidos en la dispersión y depredación de semillas por la pérdida de fauna afectará a las poblaciones de árboles tropicales Resumen La pérdida de animales grandes debido a la caza excesiva y la pérdida del hábitat afecta potencialmente a las poblaciones de árboles tropicales y al ciclo del carbono. Se considera que los árboles que dependen de dispersores de semillas de talla grande son los más afectados negativamente por la pérdida de fauna. La defaunación también puede incrementar o disminuir la depredación de semillas, además de su dispersión. Todavía no está claro cómo afectan al final a las dinámicas poblaciones de los árboles los diferentes efectos de la pérdida de fauna en las etapas temprana de vida. Revisamos la literatura sobre cómo la pérdida de animales tropicales afecta las diferentes etapas de vida de las plantas y realizamos un metaanálisis sobre cómo la pérdida de fauna afecta a la depredación de semillas. Usamos esta información para definir los parámetros de los modelos que alteraron los modelos de proyección de matriz a partir de un conjunto de especies de árboles y así simular los cambios causados por la pérdida de fauna en la dispersión y depredación de semillas. Analizamos cómo la aplicación de estos efectos de pérdida de fauna afectó las tasas de crecimiento poblacional. En promedio, los efectos de la pérdida de fauna a nivel poblacional fueron no significativas, lo que sugiere que la pérdida de fauna puede no ser la causa de las reducciones masivas que se han pronosticado en el almacenamiento de carbono forestal. Contrario a las hipótesis previas, no detectamos ningún efecto del tamaño de las semillas sobre los cambios en las tasas de depredación. El cambio en la depredación de semillas no difirió significativamente entre los experimentos de encierro y los estudios de observación, aunque los resultados de los últimos fueron mucho más variables. Mientras que la pérdida de fauna seguramente afecta a ciertos taxones de árboles, actualmente no se pueden pronosticar, con base en los datos disponibles, las especies que se benefician o perjudican por esta pérdida y los cambios netos en el almacenamiento de carbono forestal. Se necesita una investigación más avanzada sobre cómo varían los factores, como la depredación de semillas, entre especies de árboles y escenarios de pérdida de fauna para entender los cambios en cascada en la composición y diversidad de las especies.


Subject(s)
Seed Dispersal , Trees , Animals , Predatory Behavior , Conservation of Natural Resources , Forests , Ecosystem , Seeds , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...