Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Plants (Basel) ; 12(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631124

ABSTRACT

Araceae comprises a diverse group of plants that grow in various habitats, ranging from submerged aquatics to lithophytes. Thus, aroids are likely to show diverse glands acting in several plant-environment interactions, including colleters that protect young shoots. Based on this premise and the lack of studies regarding secretory structures in Araceae, we employed standard light and electron microscopy methods to test the hypothesis that colleters are present in Anthurium. Our main goals were to identify mucilage glands in A. andraeanum by conducting a detailed anatomical study of their structure, ultrastructure, and secretory activity. We found finger-like colleters in the apex of young leaves, spathes, and unexpanded cataphylls as well as secreting zones at the apex of expanded cataphylls, at the margins of non-fused cataphylls, and throughout the keels in two-keeled cataphylls. The colleters develop precociously and senesce shortly afterwards. Ultrastructural data and histochemistry confirmed the production of a polysaccharide-rich secretion that fills the spaces within the developing shoot. As far we know, this is the first time that colleters have been reported for Araceae. The functional roles of the secretion and the position of finger-like colleters concerning the 'precursor tip' of monocotyledons are discussed. Future research correlating secretory activity in colleters of species from different habitats might reveal a great diversity of mucilage glands with ecological and evolutionary significance to the family.

2.
Plants (Basel) ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34451725

ABSTRACT

Buds usually possess mechanical or chemical protection and may also have secretory structures. We discovered an intricate secretory system in Ouratea castaneifolia (Ochnaceae) related to the protection of buds and young leaves. We studied this system, focusing on the distribution, morphology, histochemistry, and ultrastructure of glands during sprouting. Samples of buds and leaves were processed following the usual procedures for light and electron microscopy. Overlapping bud scales protect dormant buds, and each young leaf is covered with a pair of stipules. Stipules and scales possess a resin gland, while the former also possess an extrafloral nectary. Despite their distinct secretions, these glands are similar and comprise secreting palisade epidermis. Young leaves also possess marginal colleters. All the studied glands shared some structural traits, including palisade secretory epidermis and the absence of stomata. Secretory activity is carried out by epidermal cells. Functionally, the activity of these glands is synchronous with the young and vulnerable stage of vegetative organs. This is the first report of colleters and resin glands for O. castaneifolia. We found evidence that these glands are correlated with protection against herbivores and/or abiotic agents during a developmental stage that precedes the establishment of mechanical defenses.

3.
Phytochemistry ; 137: 15-23, 2017 May.
Article in English | MEDLINE | ID: mdl-28190676

ABSTRACT

Eucalyptus grandis and Eucalyptus globulus are among the most widely cultivated trees, differing in lignin composition and plantation areas, as E. grandis is mostly cultivated in tropical regions while E. globulus is preferred in temperate areas. As temperature is a key modulator in plant metabolism, a large-scale proteome analysis was carried out to investigate changes in the antioxidant system and the lignification metabolism in plantlets grown at different temperatures. Our strategy allowed the identification of 3111 stem proteins. A total of 103 antioxidant proteins were detected in the stems of both species. Hierarchical clustering revealed that alterations in the antioxidant proteins are more prominent when Eucalyptus seedlings were exposed to high temperature and that the superoxide isoforms coded by the gene Eucgr.B03930 are the most abundant antioxidant enzymes induced by thermal stimulus. Regarding the lignin biosynthesis, our proteomics approach resulted in the identification of 13 of the 17 core proteins involved in this metabolism, corroborating with gene predictions and the proposed lignin toolbox. Quantitative analyses revealed significant differences in 8 protein isoforms, including the ferulate 5-hydroxylase isoform F5H1, a key enzyme in catalyzing the synthesis of sinapyl alcohol, and the cinnamyl alcohol dehydrogenase isoform CAD2, the last enzyme in monolignol biosynthesis. Data are available via ProteomeXchange with identifier PXD005743.


Subject(s)
Antioxidants/metabolism , Eucalyptus/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Temperature , Eucalyptus/classification , Lignin/metabolism , Plant Stems/metabolism
4.
J Proteomics ; 150: 252-257, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27677843

ABSTRACT

Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. BIOLOGICAL SIGNIFICANCE: The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO2-enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in carbon assimilation may be used in plant transformation strategies aiming to increase plant adaptability to climate changes or to increase plant productivity.


Subject(s)
Carbon Dioxide/pharmacology , Carbon/metabolism , Eucalyptus/drug effects , Eucalyptus/growth & development , Eucalyptus/metabolism , Atmosphere/chemistry , Carbon Dioxide/analysis , Photosynthesis/drug effects , Photosynthesis/physiology , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/analysis , Plant Proteins/drug effects , Plant Proteins/metabolism , Proteomics
5.
Chemosphere ; 158: 56-65, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27243585

ABSTRACT

Considering the impacts caused to vegetation in the vicinity of cement factories, the aim of this study was to evaluate the impacts of cement dust on the structural organization and physiological/biochemical traits of Cedrela fissilis leaflets, a woody species native to tropical America. Plants were exposed to 2.5 or 5 mg cm-2 cement dust applied to the leaf surface, to the soil or simultaneously to the leaf surface and the soil.. Leaves of shoot-treated plants exhibited chlorosis, marginal and inter veins necrosis, diminished thickness, epidermal cells less turgid, cellular collapse, obstructed stomata, senescence, rolling and some abscission. In few cases, individual death was recorded. Cement dust-treated plants also presented decreased amount of photosynthetic pigments and iron (Fe) and increase in calcium (Ca) levels. The cement crust formed in leaves surface blocked from 30 to 50% of the incoming light and reduced the stomatal conductance and the potential quantum yield of photosystem II. Control or soil-treated plants did not exhibit morphophysiological changes throughout the experiment. The activity of superoxide dismutase, catalase and ascorbate peroxidase increased in leaves of plants upon treatment with 2.5 mg cm(-2) cement dust, independent of the site application. Overall, these results indicate that C. fissilis is highly sensitive to cement dust at the initial stage of development.


Subject(s)
Cedrela/drug effects , Construction Materials , Environmental Pollutants/analysis , Plant Leaves/drug effects , Antioxidants/chemistry , Ascorbate Peroxidases/chemistry , Catalase/chemistry , Dust , Hydrogen-Ion Concentration , Iron/chemistry , Light , Microscopy, Electron , Photosynthesis , Photosystem II Protein Complex , Plant Leaves/physiology , Soil/chemistry , Superoxide Dismutase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL