Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000482

ABSTRACT

Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides' coordinated survival in the natural environment and the mechanisms that infect the host.


Subject(s)
Bacterial Proteins , Flagella , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Plesiomonas , Flagella/metabolism , Flagella/genetics , Plesiomonas/genetics , Plesiomonas/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Transcriptome , Promoter Regions, Genetic , Bacterial Secretion Systems/genetics , Bacterial Secretion Systems/metabolism , Transcription, Genetic , Humans
2.
J Infect Chemother ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906374

ABSTRACT

A 21-year-old previously healthy Japanese woman visited an outpatient clinic because of abdominal pain, watery diarrhea, vomiting, and mild fever that had started on the previous day. She traveled to rural and urban areas of Rwanda and returned to Japan 3 days before. Stool culture yielded the Plesiomonas shigelloides strain TMCH301018, against which minimum inhibitory concentrations of cefotaxime and cefotaxime-clavulanate were 128 and ≤0.12/4 µg/mL, respectively. The strain had the blaCTX-M-27 gene and an IncA/C replicon-type plasmid. Moreover, a transformant produced by introduction of an IncA/C plasmid extracted from TMCH301018 into Escherichia coli DH5α was positive for the blaCTX-M-27 gene and fulfilled the criteria of extended-spectrum ß-lactamase (ESBL) production described by the Clinical and Laboratory Standards Institute, indicating that TMCH301018 produced ESBL of CTX-M-27 and the ESBL-encoding gene was located on an IncA/C plasmid. Pathogenicity of TMCH301018 for the patient's complaints was uncertain because a molecular assay detected other enteropathogens in the stool specimen and the symptoms improved within 2 days with administration of oral ciprofloxacin, to which TMCH301018 was not susceptible. To our knowledge, this is the first report describing the isolation of ESBL-producing P. shigelloides.

3.
Heliyon ; 10(11): e31304, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845922

ABSTRACT

Plesiomonas shigelloides, an aquatic bacterium belonging to the Enterobacteriaceae family, is a frequent cause of gastroenteritis with diarrhea and gastrointestinal severe disease. Despite decades of research, discovering a licensed and globally accessible vaccine is still years away. Developing a putative vaccine that can combat the Plesiomonas shigelloides infection by boosting population immunity against P. shigelloides is direly needed. In the framework of the current study, the entire proteome of P. shigelloides was explored using subtractive genomics integrated with the immunoinformatics approach for designing an effective vaccine construct against P. shigelloides. The overall stability of the vaccine construct was evaluated using molecular docking, which demonstrated that MEV showed higher binding affinities with toll-like receptors (TLR4: 51.5 ± 10.3, TLR2: 60.5 ± 9.2) and MHC receptors(MHCI: 79.7 ± 11.2 kcal/mol, MHCII: 70.4 ± 23.7). Further, the therapeutic efficacy of the vaccine construct for generating an efficient immune response was evaluated by computational immunological simulation. Finally, computer-based cloning and improvement in codon composition without altering amino acid sequence led to the development of a proposed vaccine. In a nutshell, the findings of this study add to the existing knowledge about the pathogenesis of this infection. The schemed MEV can be a possible prophylactic agent for individuals infected with P. shigelloides. Nevertheless, further authentication is required to guarantee its safeness and immunogenic potential.

4.
Int J Mol Sci ; 24(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37833920

ABSTRACT

The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network.


Subject(s)
Escherichia coli Proteins , Plesiomonas , Humans , Pyruvate Dehydrogenase Complex/metabolism , Escherichia coli Proteins/metabolism , Plesiomonas/genetics , Escherichia coli/metabolism , Repressor Proteins/genetics , Caco-2 Cells , Gene Expression Profiling
5.
J Matern Fetal Neonatal Med ; 36(1): 2220061, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37271970

ABSTRACT

The consumption of raw seafood, generally considered to be a healthy food, has greatly increased worldwide. Pathogens of fish can cause foodborne illnesses in humans, especially following the consumption of raw seafood from contaminated water.Foodborne illness in pregnant women is seldom the cause of neonatal infection, but, as in the reported cases, it has been associated with a high degree of morbidity and mortality.We present the case of a newborn with septicemia and meningitis caused by Plesiomonas shigelloides acquired via the transplacental route. There was a maternal history of ingestion of raw seafood 1 week prior to delivery. A few similar cases are described in the existing literature, which reports 7 neonatal deaths.Therefore, the primary objective of this paper is to highlight the fact that the popularity of raw seafood such as sushi, sashimi, and oysters, requires an improvement in dietary advice regarding unsafe choices in pregnancy in order to avoid preventable foodborne diseases, sometimes fatal for the newborn.


Subject(s)
Meningitis , Plesiomonas , Sepsis , Infant, Newborn , Animals , Humans , Female , Pregnancy , Dietary Exposure , Seafood/adverse effects
6.
Fish Shellfish Immunol ; 132: 108487, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36503060

ABSTRACT

The outbreak of mass mortality of M. salmoides occurred in an aquaculture farm in Jiangsu province of China, showing signs of skin ulceration and haemorrhages. The bacteria were isolated from diseased largemouth bass, and identified as Plesiomonas shigelloides based on morphological, physiological and biochemical features, as well as 16S rRNA gene sequence analysis. The pathogenicity of P. shigelloides was determined by challenge experiments, and the median lethal dosage (LD50) of the isolate NJS1 for M. salmoides was calculated as 1.6 × 105 CFU/mL at 7 d post-infection. Histopathological analysis revealed that extensive necrosis, vacuolization and inflammation were presented in the kidney, liver and gill of the diseased fish. Detection of virulence-related genes showed that P. shigelloides NJS1 was positive for astA, astB, astD, astE, actP and 6 ahpA. Additionally, the host defensive response of M. salmoides infected by P. shigelloides was analyzed by quantitive real-time PCR (qRT-PCR), and the results showed that the expression levels of Cas3, Hep1, HIF, IgM, IL15 and TGF were significantly up-regulated in head kidney, liver and spleen in different hours post-infection, which revealed varying expression profiles and clear transcriptional activation of immune related genes. The results suggested that P. shigelloides was an etiological element in the mass mortalities of M. salmoides and this study provided deeper insights for the pathogenesis and host defensive system in P. shigelloides invasion.


Subject(s)
Bass , Plesiomonas , Animals , Plesiomonas/genetics , Virulence , RNA, Ribosomal, 16S/genetics , Immunity
7.
Chinese Journal of Neonatology ; (6): 162-165, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-990738

ABSTRACT

Objective:To study the clinical characteristics of neonatal plesiomonas shigelloides (P. shigelloides) septicemia.Methods:The clinical data of a neonate with P.shigelloides septicemia admitted to the Department of Neonatology of our hospital were reviewed. Literature on this subject were searched in the following databases: CNKI, CQVIP database, Wanfang Database, SinoMed, PubMed and Web of Science (up to April 2022).The clinical characteristics of reported cases of neonatal P.shigelloides septicemia were analyzed.Results:Our patient was a full-term female neonate with symptoms of tachypnea, groaning, hypotension, septic shock and poor intestinal peristalsis. The cardiac and pulmonary ultrasound indicated pulmonary hypertension and right pleural effusion (empyema). The X-ray suggested pneumothorax. The blood culture showed P.shigelloides. Lumbar puncture and brain imaging showed no central nervous system involvement. After meropenem, penicillin and symptomatic treatment, the patient was cured and discharged without sequelae. In the literature review, 14 articles and 14 cases of neonatal P.shigelloides septicemia were found (a total of 15 cases including our case).All 15 cases had fever, 10 with convulsion/seizure, 8 had jaundice, 8 with respiratory distress/respiratory failure, 6 had feeding difficulty and 6 were irritable. Brain imaging features were hydrocephalus and panencephalitis. Antibiotics and symptomatic treatment were the main therapy. 8 cases died and 7 cases survived including 2 cases with neurological sequelae.Conclusions:Neonatal P.shigelloides septicemia has nonspecific manifestations, often involves multiple organs with significant neurological involvement and a high mortality rate.

8.
BMC Microbiol ; 22(1): 299, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510135

ABSTRACT

BACKGROUND: RpoN, also known as σ54, first reported in Escherichia coli, is a subunit of RNA polymerase that strictly controls the expression of different genes by identifying specific promoter elements. RpoN has an important regulatory function in carbon and nitrogen metabolism and participates in the regulation of flagellar synthesis, bacterial motility and virulence. However, little is known about the effect of RpoN in Plesiomonas shigelloides. RESULTS: To identify pathways controlled by RpoN, RNA sequencing (RNA-Seq) of the WT and the rpoN deletion strain was carried out for comparison. The RNA-seq results showed that RpoN regulates ~ 13.2% of the P. shigelloides transcriptome, involves amino acid transport and metabolism, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, ribosome biosynthesis, flagellar assembly and bacterial secretion system. Furthermore, we verified the results of RNA-seq using quantitative real-time reverse transcription PCR, which indicated that the absence of rpoN caused downregulation of more than half of the polar and lateral flagella genes in P. shigelloides, and the ΔrpoN mutant was also non-motile and lacked flagella. In the present study, the ability of the ΔrpoN mutant to kill E. coli MG1655 was reduced by 54.6% compared with that of the WT, which was consistent with results in RNA-seq, which showed that the type II secretion system (T2SS-2) genes and the type VI secretion system (T6SS) genes were repressed. By contrast, the expression of type III secretion system genes was largely unchanged in the ΔrpoN mutant transcriptome and the ability of the ΔrpoN mutant to infect Caco-2 cells was also not significantly different compared with the WT. CONCLUSIONS: We showed that RpoN is required for the motility and contributes to the killing ability of P. shigelloides and positively regulates the T6SS and T2SS-2 genes.


Subject(s)
Gene Expression Regulation, Bacterial , Plesiomonas , Humans , RNA Polymerase Sigma 54/genetics , Plesiomonas/genetics , Plesiomonas/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Caco-2 Cells
9.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36366394

ABSTRACT

The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models.

10.
J Infect Chemother ; 28(12): 1677-1681, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067910

ABSTRACT

Plesiomonas shigelloides is a gram-negative facultative anaerobic bacillus, usually found in soil and freshwater, which causes self-limited diarrhea, although reports of bacteremia are rare. Here, we report the first case of an intratumoral abscess with mixed bacteremia caused by P. shigelloides, Citrobacter freundii, Streptococcus mitis/oralis, Clostridium perfringens, and Candida albicans in a patient with recurrent postoperative cholangiocarcinoma. A 77-year-old man with hilar cholangiocarcinoma and hypertension was admitted to our hospital with fever and abdominal pain. He had visited Vietnam for 3 years, 20 years ago. Abdominal computed tomography showed air within the recurrent tumor at the left liver lobectomy resection margin site, which was diagnosed as an intratumor abscess perforating the intestinal tract. P. shigelloides, C. freundii, S. mitis/oralis, C. perfringens, and C. albicans were isolated in blood culture. P. shigelloides was identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and 16S ribosomal RNA (16S rRNA) sequencing. Piperacillin-tazobactam was administered for almost a week, ampicillin-sulbactam and levofloxacin for almost 3 weeks, and antifungal agents for almost 2 weeks, and the patient was discharged thereafter. Although bloodstream infections caused by P. shigelloides in patients with cancer are extremely rare, long-term colonization and the potential for future intra-abdominal infections were implicated.


Subject(s)
Bacteremia , Bile Duct Neoplasms , Cholangiocarcinoma , Plesiomonas , Sepsis , Abscess , Aged , Antifungal Agents , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/microbiology , Bile Ducts, Intrahepatic , Candida albicans , Citrobacter freundii , Clostridium perfringens , Humans , Levofloxacin , Male , Piperacillin , Plesiomonas/chemistry , RNA, Ribosomal, 16S/genetics , Soil , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Streptococcus mitis , Streptococcus oralis , Tazobactam
11.
Jpn J Infect Dis ; 75(4): 407-410, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35095023

ABSTRACT

The genus Plesiomonas, represented by a single species, Plesiomonas shigelloides, is a gram-negative bacillus associated with gastrointestinal and extraintestinal diseases in humans. In this study, 44 clinical isolates (gastrointestinal, n = 41; extraintestinal, n = 3) were genetically confirmed to be P. shigelloides using the hug gene. All 20 virulence genes were detected in the gastrointestinal isolates, ranging from 7.7% to 100%; however, only 12 genes were detected in the extra-gastrointestinal isolates, ranging from 33.3% to 100%. The phlA gene was significantly associated with the gastrointestinal isolates (P = 0.0216). The results of this study suggest that phlA may play a role in gastrointestinal infections. However, pilF, tolC, and fur were detected in both gastrointestinal and extraintestinal clinical isolates, and further investigations are warranted to elucidate their role in the pathogenesis of P. shigelloides.


Subject(s)
Gram-Negative Bacterial Infections , Plesiomonas , Humans , Plesiomonas/genetics , Virulence/genetics
12.
Antibiotics (Basel) ; 11(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35052962

ABSTRACT

Plesiomonas shigelloides are gram-negative, thermotolerant, motile, and pleomorphic microorganisms that are only distantly related to those of the Enterobacteriaceae and Vibrionaceae families. One of the most common sources of P. shigelloides contamination is human stool, but it may also be found in a wide range of other animals, plants, and aquatic habitats. Antimicrobial resistance in P. shigelloides from seawater and shellfish was investigated, and pathogenicity involved genes were characterized as part of this study. Out of 384 samples of shellfish, 5.7% included P. shigelloides. The presence of P. shigelloides was also discovered in 5% of the seawater sampled. The antimicrobial resistance of 23 P. shigelloides isolates derived from those samples was investigated. All isolates were sensitive to nalidixic acid, carbenicillin, cephalothin, erythromycin, kanamycin, tetracycline, and ciprofloxacin in the study. Several strains isolated from diseased shellfish were tested for virulence in shellfish by intraperitoneal injections. The LD50 values ranged from 12 × 108 to 3 × 1012 cfu/shellfish. When looking for possible virulence factors that may play a significant role in bacterial infection in the current study, we found that all of these genes were present in these strains. These include genes such as elastase, lipase, flagellin, enterotoxin, and DNases. According to these findings, shellfish may serve as a reservoir for multi-resistant P. shigelloides and help spread virulence genes across the environment.

13.
Genome Biol Evol ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35078241

ABSTRACT

About 10% of bacteria have a multichromosome genome with a primary replicon of bacterial origin, called the chromosome, and other replicons of plasmid origin, the chromids. Studies on multichromosome bacteria revealed potential points of coordination between the replication/segregation of chromids and the progression of the cell cycle. For example, replication of the chromid of Vibrionales (called Chr2) is initiated upon duplication of a sequence carried by the primary chromosome (called Chr1), in such a way that replication of both replicons is completed synchronously. Also, Chr2 uses the Chr1 as a scaffold for its partition in the daughter cells. How many of the features detected so far are required for the proper integration of a secondary chromosome in the cell cycle? How many more features remain to be discovered? We hypothesized that critical features for the integration of the replication/segregation of a given chromid within the cell cycle program would be conserved independently of the species in which the chromid has settled. Hence, we searched for a chromid related to that found in Vibrionales outside of this order. We identified one in Plesiomonas shigelloides, an aquatic and pathogenic enterobacterium that diverged early within the clade of Enterobacterales. Our results suggest that the chromids present in P. shigelloides and Vibrionales derive from a common ancestor. We initiated in silico genomic and proteomic comparative analyses of P. shigelloides, Vibrionales, and Enterobacterales that enabled us to establish a list of features likely involved in the maintenance of the chromid within the host cell cycle.


Subject(s)
Plesiomonas , Vibrio , Chromosomes, Bacterial/genetics , Genome, Bacterial , Plesiomonas/genetics , Proteomics , Vibrio/genetics
14.
J Med Case Rep ; 16(1): 53, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086562

ABSTRACT

BACKGROUND: The detection of epidemic-prone pathogens is important in strengthening global health security. Effective public health laboratories are critical for reliable, accurate, and timely testing results in outbreak situations. Ghana received funding as one of the high-risk non-Ebola affected countries to build and strengthen public health infrastructure to meet International Health Regulation core capacities. A key objective was to build laboratory capacities to detect epidemic-prone diseases. CASE PRESENTATION: In June 2018, a local hospital received eight patients who presented with acute diarrhea. A sample referral system for Ghana has not been established, but the Sekondi Zonal Public Health Laboratory staff and mentors collaborated with Disease Surveillance Officers (DSOs) to collect, package, and transport stool specimens from the outbreak hospital to the Public Health Laboratory for laboratory testing. The patients included seven females and one male, of Fante ethnicity from the Fijai township of Sekondi-Takoradi Municipality. The median age of the patients was 20 years (interquartile range: 20-29 years). Vibrio parahaemolyticus was identified within 48 hours from four patients, Plesiomonas shigelloides from one patient, and Aeromonas hydrophila from another patient. There was no bacteria growth from the samples from the two other patients. All patients were successfully treated and discharged. CONCLUSION: This is the first time these isolates have been identified at the Sekondi Zonal Public Health Laboratory, demonstrating how rapid response, specimen transportation, laboratory resourcing, and public health coordination are important in building capacity towards achieving health security. This capacity building was part of the United States Centers for Disease Control and Prevention engagement of international and local partners to support public health laboratories with supplies, diagnostic equipment, reagents, and logistics.


Subject(s)
Aeromonas , Plesiomonas , Vibrio parahaemolyticus , Adult , Aeromonas hydrophila , Disease Outbreaks , Ghana/epidemiology , Humans , Laboratories , Male , Young Adult
15.
Vet Sci ; 8(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34822653

ABSTRACT

A 7-year-old male gray wolf was found dead at a zoo during exhibition. To determine the cause of death, histological and gross necropsy diagnoses and a molecular analysis were performed. The gross necropsy revealed a swollen abdomen, hemorrhagic exudates around the mouth, splenomegaly, a discolored liver, a congested kidney, hemorrhagic ascites, and dark gray-colored membranes and air bubbles in the fundus of the stomach. Rod-shaped bacteria were found in the liver parenchyma and hemorrhagic ascites using Giemsa staining. The nucleotide sequencing of the cultured bacteria identified the causative agent as Plesiomonas shigelloides, which is rarely responsible for systemic infections. This study describes a rare case and the first reported systemic gastrointestinal infection due to P. shigelloides in a zoo animal.

16.
BMC Microbiol ; 21(1): 266, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34607564

ABSTRACT

BACKGROUND: The anoxic redox control binary system plays an important role in the response to oxygen as a signal in the environment. In particular, phosphorylated ArcA, as a global transcription factor, binds to the promoter regions of its target genes to regulate the expression of aerobic and anaerobic metabolism genes. However, the function of ArcA in Plesiomonas shigelloides is unknown. RESULTS: In the present study, P. shigelloides was used as the research object. The differences in growth, motility, biofilm formation, and virulence between the WT strain and the ΔarcA isogenic deletion mutant strain were compared. The data showed that the absence of arcA not only caused growth retardation of P. shigelloides in the log phase, but also greatly reduced the glucose utilization in M9 medium before the stationary phase. The motility of the ΔarcA mutant strain was either greatly reduced when grown in swim agar, or basically lost when grown in swarm agar. The electrophoretic mobility shift assay results showed that ArcA bound to the promoter regions of the flaK, rpoN, and cheV genes, indicating that ArcA directly regulates the expression of these three motility-related genes in P. shigelloides. Meanwhile, the ability of the ΔarcA strain to infect Caco-2 cells was reduced by 40%; on the contrary, its biofilm formation was enhanced. Furthermore, the complementation of the WT arcA gene from pBAD33-arcA+ was constructed and all of the above features of the pBAD33-arcA+ complemented strain were restored to the WT level. CONCLUSIONS: We showed the effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides, and demonstrated that ArcA functions as a positive regulator controls the motility of P. shigelloides by directly regulating the expression of flaK, rpoN and cheV genes.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Plesiomonas/genetics , Plesiomonas/pathogenicity , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
17.
Case Rep Gastroenterol ; 15(2): 475-477, 2021.
Article in English | MEDLINE | ID: mdl-34616242

ABSTRACT

The differential diagnosis for an acute Crohn's flare should include enteric infection, a challenging yet critical distinction to make when determining appropriate therapy. Since both present similarly, identification of an enteric infection should be performed with comprehensive stool microbial testing. In the setting of moderate-to-severe disease, patients on biologic therapy may be more prone to infectious complications. We present a patient with chronic Crohn's disease with an unusual, previously undetected enteric infection due to Plesiomonas shigelloides. Once identified, appropriate antibiotic treatment led to resolution of the patient's acute symptomatology. This is the first reported case of P. shigelloides infection in Crohn's disease.

18.
Virus Res ; 306: 198581, 2021 12.
Article in English | MEDLINE | ID: mdl-34560184

ABSTRACT

Plesiomonas shigelloides is an important fish pathogen that causes significant losses in aquaculture. Phage therapy is a new approach to overcome the problem of multidrug-resistant bacteria. Herein, a virulent phage of P. shigelloides was isolated from the intestines of grass carp. This phage belongs to the Siphoviridae family and was designated PSP01. The optimal multiplicity of infection of PSP01 was 1 with a latent period of 30 min and a lytic period of 140 min. Good activity was observed over a wide range of temperatures (-20 °C-50 °C), pH values (3-12), and NaCl concentrations (0.1-3.5%). The phage PSP01 lysis cassette is composed of 3 genes, HolPSP, LysPSP-1 and LysPSP-2. Expression of HolPSP or LysPSP-2 in Escherichia coli resulted in bacterial lysis, and a synergistic effect was observed when the HolPSP and LysPSP-1 proteins were co-expressed. In-frame deletion uncovered an important role of the transmembrane domain (TMD) in HolPSP and the signal peptide (SP) in LysPSP-2 for bacterial lysis function. The protective effects of phage PSP01 were investigated by intraperitoneal injection into grass carp infected with P. shigelloides, showing a 33.3% increase in the survival rate of the infected grass carp. Pathological analysis of the spleens from the infected grass carp revealed alleviation of the pathological symptoms. In conclusion, isolation and bacterial lysis investigations of phage PSP01 provide a new tool for the control of fish pathogens and possesses potential for aquaculture applications.


Subject(s)
Bacteriophages , Carps , Plesiomonas , Animals , Aquaculture , Bacteriophages/genetics , Escherichia coli , Plesiomonas/genetics
19.
Article in English | MEDLINE | ID: mdl-34339936

ABSTRACT

The mutual relationship between the intestinal immune system and the gut microbiota has received a great deal of attention. In mammals, interleukin-17A and F (IL-17A/F) are inflammatory cytokines and key regulators of the gut microbiota. However, in teleosts, the function of IL-17A/F in controlling the gut microbiota is poorly understood. We attempted to elucidate the importance of teleost IL-17 signaling in controlling gut microbiota. We previously established a knockout (KO) of IL-17 receptor A (RA) 1, a receptor for IL-17A/F, in the Japanese medaka (Oryzias latipes) using the CRISPR-Cas9 system and performed 16S rRNA-based metagenomic analyses using the anterior and posterior sections of the intestinal tract. The number of observed OTUs in the anterior intestine was significantly decreased in IL-17RA1 KO medaka compared to that in the wild-type (WT). Furthermore, ß-diversity analysis (weighted UniFrac) revealed considerably different bacterial composition in the anterior intestine of IL-17RA1 KO compared to WT, with similar findings in α-diversity. Notably, the pathogen Plesiomonas shigelloides was significantly increased in the posterior intestine of IL-17RA1 KO medaka. These findings indicate that signaling via IL-17RA1 is required to maintain a healthy gut microbiota in teleosts and mammals. The involvement of IL-17RA1 in controlling the gut microbiota has been demonstrated, resulting in microbiome dysbiosis in IL-17RA1 KO medaka.


Subject(s)
Microbiota , Oryzias , Animals , Intestines , Oryzias/genetics , RNA, Ribosomal, 16S/genetics , Receptors, Interleukin-17/genetics
20.
Open Forum Infect Dis ; 8(8): ofab401, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34409126

ABSTRACT

Plesiomonas shigelloides is a gram-negative bacillus that commonly causes self-limited diarrhea in humans. We present the case of P shigelloides bacteremia in a 49-year-old man with alcoholic cirrhosis who developed septic shock a day after eating Dojo nabe (loach hotpot), a Japanese traditional dish.

SELECTION OF CITATIONS
SEARCH DETAIL
...