Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 909
Filter
1.
Sci Total Environ ; 948: 174554, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004366

ABSTRACT

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.

2.
Front Bioeng Biotechnol ; 12: 1338276, 2024.
Article in English | MEDLINE | ID: mdl-38952667

ABSTRACT

Phenotypic analysis has significant potential for aiding breeding efforts. However, there is a notable lack of studies utilizing phenotypic analysis in the field of edible fungi. Pleurotus geesteranus is a lucrative edible fungus with significant market demand and substantial industrial output, and early-stage phenotypic analysis of Pleurotus geesteranus is imperative during its breeding process. This study utilizes image recognition technology to investigate the phenotypic features of the mycelium of P. geesteranus. We aim to establish the relations between these phenotypic characteristics and mycelial quality. Four groups of mycelia, namely, the non-degraded and degraded mycelium and the 5th and 14th subcultures, are used as image sources. Two categories of phenotypic metrics, outline and texture, are quantitatively calculated and analyzed. In the outline features of the mycelium, five indexes, namely, mycelial perimeter, radius, area, growth rate, and change speed, are proposed to demonstrate mycelial growth. In the texture features of the mycelium, five indexes, namely, mycelial coverage, roundness, groove depth, density, and density change, are studied to analyze the phenotypic characteristics of the mycelium. Moreover, we also compared the cellulase and laccase activities of the mycelium and found that cellulase level was consistent with the phenotypic indices of the mycelium, which further verified the accuracy of digital image processing technology in analyzing the phenotypic characteristics of the mycelium. The results indicate that there are significant differences in these 10 phenotypic characteristic indices ( P < 0.001 ), elucidating a close relationship between phenotypic characteristics and mycelial quality. This conclusion facilitates rapid and accurate strain selection in the early breeding stage of P. geesteranus.

3.
Food Chem ; 458: 140195, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38954951

ABSTRACT

Pleurotus eryngii, an edible mushroom recognized for its potent polysaccharides, demonstrates significant regulatory effects on metabolic processes. ß-glucan (WPEP) derived from P. eryngii has been noted for its therapeutic potential, exhibiting notable benefits in alleviating colonic inflammation and restructuring gut microbiota in mice treated with dextran sodium sulfate (DSS). This study focuses on utilizing DSS-induced colitis mice to explore the efficacy and underlying mechanisms of WPEP in ameliorating colitis, employing a metabolomics approach analyzing urine and serum. The findings reveal that WPEP administration effectively regulates metabolic imbalances in DSS mice, impacting purine metabolism, pentose and glucuronic acid interconversion, amino acid metabolism, primary bile acid biosynthesis, citric acid cycle, and lipid metabolism. Furthermore, WPEP demonstrates a capacity to modulate colitis by regulating diverse metabolic pathways, consequently influencing intestinal barrier integrity, motility, inflammation, oxidative stress, and immunity. These insights suggest that WPEP is a promising food component for managing inflammatory bowel diseases.

4.
Article in English | MEDLINE | ID: mdl-38977547

ABSTRACT

Nowadays, nickel oxide nanoparticles are in great demands owing to their use in many sectors. These nanoparticles may release into aquatic environment from different industries and cause negative effect on aquatic flora and fauna. Therefore, an effective and efficient method is required to remove these nanoparticles from contaminated water. Hence, the aim of this study was to bioremediate nickel oxide nanoparticles using a macrofungus, Pleurotus fossulatus, and to analyze its impact on fungal physiology. For this purpose, fungal spawns were inoculated in malt dextrose agar media containing different concentrations of nickel oxide nanoparticles (24 mg/l, 48 mg/l, and 100 mg/l) as well as control group (having no nickel oxide nanoparticles) and allowed to grow for a period of 20 days. Fungal mycelia as well as media were collected at different time intervals (5th day, 10th day, 15th day, and 20th day) for evaluation of Ni concentration and different biochemical parameters. Ni removal efficiency of P. fossulatus from media was found to be highest in 48 mg/l (66.98%) followed by 24 mg/l (60.83%) and 100 mg/l (18.03%), respectively. Increased level of metallothionein, lipid peroxidation, activity of different antioxidant enzymes (superoxide dismutase, catalase, glutathione s transferase, glutathione reductase), activity of ligninolytic enzymes (laccase, lignin peroxidase, manganese peroxidase), and shift in FTIR spectra were also reported in mycelia cultured in malt dextrose agar media containing nickel oxide nanoparticles. This study suggests that P. fossulatus has great efficiency to remediate nanoparticles from contaminated water and it can be utilized as potential agent in wastewater treatment plants by different industries.

5.
Food Chem ; 459: 140391, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39024879

ABSTRACT

The development of safe and efficient dietary selenium sources to promote lead excretion is of great importance for public health. In this research, proteins from original Pleurotus eryngii (PEP) and Se-enriched P. eryngii (SePEP, Se content: 360.64 ± 3.11 mg/kg) were extracted and purified respectively for the further comparison of structural and digestive characteristics. Caco-2 monolayer membrane, in vitro simulated fermentation and acute lead exposure mice model were constructed to evaluate the effects of PEP and SePEP on lead excretion. The results indicated that Se biofortification significantly altered the amino acid composition and reduced the total sulfhydryl content of proteins (p < 0.05). SePEP could better alleviate lead-induced intestinal barrier damage and inhibit the absorption and accumulation of lead in both cell and mice models. Furthermore, SePEP promoted fecal adsorption and excretion of lead via regulating gut microbiota composition. SePEP can be considered a potentially functional Se source to promote lead excretion.

6.
PeerJ ; 12: e17467, 2024.
Article in English | MEDLINE | ID: mdl-38827301

ABSTRACT

Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (µ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.


Subject(s)
Coloring Agents , Glycerol , Pleurotus , Glycerol/metabolism , Glycerol/pharmacology , Pleurotus/genetics , Pleurotus/enzymology , Pleurotus/growth & development , Pleurotus/metabolism , Coloring Agents/metabolism , Carbon/metabolism , Gene Expression Regulation, Fungal/drug effects , Peroxidases/genetics , Peroxidases/metabolism , Glucose/metabolism
7.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893397

ABSTRACT

A specific feature of mushrooms (including those of the genus Pleurotus) is their natural ability to absorb and accumulate many chemical substances present in their immediate environment, which makes them an excellent natural sorption material. Hence, fruiting bodies of mushrooms have been recognized for years as excellent indicators of the environment, reflecting its current state. Nevertheless, mushrooms can accumulate both health-promoting substances, such as bioelements, and toxic substances, such as heavy metals and organic compounds, including bisphenol A® (BPA). This organic chemical compound in the phenol group, although it has been withdrawn in the EU since 2010, is widely present in the environment around us. In the present experiment, we aimed to determine the effect of adding BPA to liquid media for in vitro cultures of Pleurotus spp. The biomass increases were determined. Moreover, the degrees of adsorption and desorption of BPA from the obtained freeze-dried biomass in two different environments (neutral and acidic) were determined as a function of time. This is the first study to determine the bioavailability of adsorbed BPA in obtained biomass by extracting the mycelium into artificial digestive juices in a model digestive system. BPA was added to the liquid Oddoux medium in the following amounts: 0.01, 0.5, and 0.5 g/250 mL of medium. The amounts of adsorbed and desorbed BPA were determined by flow injection analysis (FIA) with amperometric detection. The addition of BPA to the substrate reduced the biomass growth in each of the discussed cases. BPA adsorption by the mycelium occurred at over 90% and depended on the morphology of the mushroom (structure, surface development, and pore size). BPA desorption depended on the pH of the environment and the desorption time. Mushrooms are an excellent natural remedial material, but BPA is extracted into artificial digestive juices; therefore, consuming mushrooms from industrialized areas may have health consequences for our bodies.


Subject(s)
Benzhydryl Compounds , Biomass , Phenols , Pleurotus , Phenols/chemistry , Phenols/metabolism , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/metabolism , Adsorption , Flow Injection Analysis
8.
PeerJ ; 12: e17571, 2024.
Article in English | MEDLINE | ID: mdl-38938607

ABSTRACT

Fungal polysaccharides are commonly utilized in the food industry and biomedical fields as a natural and safe immune modulator. Co-culturing is a valuable method for enhancing the production of secondary metabolites. This study used intracellular polysaccharide (IPS) content as a screening index, co-culturing seven different fungi with Sanghuangporus vaninii. The seed pre-culture liquid culture time was selected through screening, and conditions were assessed using single factor experimentation, a Plackett-Burman (PB) design, and response surface methodology (RSM) optimization. RSM optimization was conducted, leading to the measurement of antioxidant capacity. Results indicated that the co-culture of S. vaninii and Pleurotus sapidus exhibited the most effective outcome. Specifically, pre-culturing S. vaninii and P. sapidus seed cultures for 2 days and 0 days, respectively, followed by co-culturing, significantly increased IPS content compared to single-strain culturing. Further optimization of co-culture conditions revealed that yeast extract concentration, liquid volume, and S. vaninii inoculum ratio notably influenced IPS content in the order of yeast extract concentration > liquid volume > S. vaninii inoculum ratio. Under the optimal conditions, IPS content reached 69.9626 mg/g, a 17.04% increase from pre-optimization co-culture conditions. Antioxidant capacity testing demonstrated that co-cultured IPS exhibited greater scavenging abilities for DPPH and ABTS free radicals compared to single strain cultures. These findings highlight the potential of co-culturing S. vaninii and P. sapidus to enhance IPS content and improve antioxidant capacity, presenting an effective strategy for increasing fungal polysaccharide production.


Subject(s)
Antioxidants , Coculture Techniques , Pleurotus , Pleurotus/metabolism , Pleurotus/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/metabolism
9.
Int J Biol Macromol ; 275(Pt 1): 133503, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944091

ABSTRACT

Pleurotus ostreatus is one of the most cultivated edible fungi worldwide, but its lignocellulose utilization efficiency is relatively low (<50 %), which eventually affects the biological efficiency of P. ostreatus. Improving cellulase production and activity will contribute to enhancing the lignocellulose-degrading capacity of P. ostreatus. AMP-activated/Snf1 protein kinase plays important roles in regulating carbon and energy metabolism. The Snf1 homolog (PoSnf1) in P. ostreatus was obtained and analyzed using bioinformatics. The cellulose response of PoSnf1, the effect of the phosphorylation level of PoSnf1 on the expression of cellulose degradation-related genes, the putative proteins that interact with the phosphorylated PoSnf1 (P-PoSnf1), the cellobiose transport function of two sugar transporters (STP1 and STP2), and the interactions between PoSnf1 and STP1/STP2 were studied in this research. We found that cellulose treatment improved the phosphorylation level of PoSnf1, which further affected cellulase activity and the expression of most cellulose degradation-related genes. A total of 1, 024 proteins putatively interacting with P-PoSnf1 were identified, and they were enriched mainly in the substances transport and metabolism. Most of the putative cellulose degradation-related protein-coding genes could respond to cellulose. Among the P-PoSnf1-interacting proteins, the functions of two sugar transporters (STP1 and STP2) were further studied, and the results showed that both could transport cellobiose and were indirectly regulated by P-PoSnf1, and that STP2 could directly interact with PoSnf1. The results of this study indicated that PoSnf1 plays an important role in regulating the expression of cellulose degradation genes possibly by affecting cellobiose transport.

10.
Food Chem ; 455: 139867, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823127

ABSTRACT

Reducing the content of quickly absorbed carbohydrates and saturated fats in snack formulations while increasing the consumption of high-quality proteins are effective strategies to prevent obesity in childhood. Thus, the nutritional value, digestibility, and functionality of fava beans (Vicia faba L.) fermented with Pleurotus ostreatus were examined as potential ingredients for food design. Solid-state fermentation enhanced the protein content by 16% with a rise in essential (25%) and non-essential (15%) amino acids while decreasing total carbohydrate content and tannin levels. Moreover, fermentation modified the amino acid profile released during digestion, increasing amino acids such as valine, isoleucine, and threonine, which are vital for health and development in childhood. Furthermore, the bioaccessible fraction of the fermented bean showed a 60% of ACE inhibition and improved magnesium bioaccessibility. Consequently, fava beans fermented with Pleurotus ostreatus emerged as a new ingredient in the development of new protein-rich snacks tailored for children and adolescents.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Digestion , Fermentation , Vicia faba , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/microbiology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Humans , Amino Acids/metabolism , Amino Acids/analysis , Nutritive Value , Models, Biological
11.
Plants (Basel) ; 13(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931026

ABSTRACT

Pleurotus citrinopileatus Singer (PCS) has attracted increasing attention as a raw material for medicine and food. Its quality is greatly affected by the accumulation of metabolites, which varies with the applied drying methods. In this study, we utilize an approach based on ultra-high-performance liquid chromatography/Q Exactive mass spectrometry (UHPLC-QE-MS) to reveal the metabolic profiles of PCS from three different drying methods (natural air-drying, NAD; hot-air-drying, HAD; vacuum freeze-drying, VFD). The results showed that lipids, amino acids and their derivatives were all important secondary metabolites produced during NAD, HAD and VFD treatments, with the key differential metabolites of PCS during drying including fifteen lipids and seven amino acids. Meanwhile, VFD was the best way for long-term preservation of dried PCS. Hot-drying methods, especially HAD, can improve the medicinal component of PCS. Furthermore, KEGG enrichment analysis highlighted 16 pathways and indicated that amino acid metabolism might be the key metabolite pathway for the PCS drying process. Our study elucidates the relationship between drying methods and metabolites or metabolic pathways of PCS to determine the mechanisms affecting the quality of PCS, and finally provides reference values for further development and application in functional food and medications.

12.
Sci Rep ; 14(1): 13446, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862766

ABSTRACT

Present study concerns the transformation of the agro-industrial by-products olive mill stone waste (OMSW) and walnut shell (WS) to a protein-enriched animal feedstuff utilizing the solid state fermentation (SSF) technique. For this purpose, various mixtures of these by-products were exploited as substrates of the SSF process which was initiated by the P. ostreatus fungus. The respective results indicated that the substrate consisted of 80% WS and 20% OMSW afforded the product with the highest increase in protein content, which accounted the 7.57% of its mass (69.35% increase). In addition, a 26.13% reduction of lignin content was observed, while the most profound effect was observed for their 1,3-1,6 ß-glucans profile, which was increased by 3-folds reaching the 6.94% of substrate's mass. These results are indicative of the OMSW and WS mixtures potential to act as efficient substrate for the development of novel proteinaceous animal feed supplements using the SSF procedure. Study herein contributes to the reintegration of the agro-industrial by-products aiming to confront the problem of proteinaceous animal feed scarcity and reduce in parallel the environmental footprint of the agro-industrial processes within the context of circular economy.


Subject(s)
Animal Feed , Fermentation , Industrial Waste , Juglans , Olea , Pleurotus , Pleurotus/metabolism , Juglans/metabolism , Juglans/chemistry , Olea/metabolism , Olea/chemistry , Animal Feed/analysis , Industrial Waste/analysis , Lignin/metabolism , Animals
13.
Front Microbiol ; 15: 1405564, 2024.
Article in English | MEDLINE | ID: mdl-38881654

ABSTRACT

Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 µg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.

14.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891868

ABSTRACT

Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus.


Subject(s)
Fungal Viruses , Pleurotus , Spores, Fungal , Pleurotus/virology , Spores, Fungal/growth & development , Fungal Viruses/physiology
15.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892489

ABSTRACT

A bioactive Pleurotus eryngii aqueous extract powder (SPAE) was obtained by spray drying and its performance in terms of physicochemical properties, in vitro digestion, inflammatory factors, and modulation of the intestinal microbiota was explored. The results indicated that the SPAE exhibited a more uniform particle size distribution than P. eryngii polysaccharide (PEP). Meanwhile, a typical absorption peak observed at 843 cm-1 in the SPAE FTIR spectra indicated the existence of α-glycosidic bonds. SPAE exhibited higher antioxidant abilities and superior resistance to digestion in vitro. In addition, SPAE supplementation to mice significantly reduced the release of factors that promote inflammation, enhanced the secretion of anti-inflammatory factors, and sustained maximum production of short-chain fatty acids (SCFAs). Additionally, it significantly enhanced the relative abundance of SCFAs-producing Akkermansia and reduced the abundance of Ruminococcus and Clostridiides in intestines of mice. These results show the potential of SPAE as a novel material with prebiotic effects for the food and pharmaceutical industries.


Subject(s)
Gastrointestinal Microbiome , Pleurotus , Powders , Prebiotics , Spray Drying , Pleurotus/chemistry , Animals , Gastrointestinal Microbiome/drug effects , Mice , Fatty Acids, Volatile/metabolism , Antioxidants/pharmacology , Male , Particle Size , Digestion/drug effects , Anti-Inflammatory Agents/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry
16.
J Am Nutr Assoc ; : 1-8, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935369

ABSTRACT

OBJECTIVE: Our aim in this study is, does 29-day regular consumption of Pleurotus ostreatus water extract by volunteer individuals who meet the study criteria have an effect on blood and cytokine values? METHOD: In accordance with the purpose of the study, volunteers were asked to consume 100 ml of the extract every morning for 29 days. Three tubes of blood samples were taken from the volunteers on the 15th and 29th days of the study. Biochemical and hematological analysis of the blood samples were performed and immunomodulatory effects through cytokines were examined. The values obtained from 3 tubes of blood obtained from volunteers before the use of mushroom extract were used as control. The chemical composition and ß-glucan content of 100 ml of mushroom water extract were also analyzed. RESULT: IL-4, IL-6, IL-10 and IL-13 could not be detected because the values were below the lowest standard value. TNF-α, IFN-γ and IL-1ß 15th and 29th day values decreased compared to the 1st day (control) values (p < 0.05). However, there was no significant difference observed between the 15th and 29th day. No abnormalities were observed in biochemical and hematological values. Also, the ß-glucan content of extract was found 38.12 mg/100 ml. CONCLUSION: The frequency range of kidney and liver function test results confirmed that P. osreatus is a reliable food source. Considering the cytokine values these results indicate that P. ostreatus water extract has an anti-inflammatory effect. As no significant difference was observed in 29 days of use, it is thought that 15 days of daily consumption of the extract may be sufficient for the anti-inflammatory effect to occur. However, a large number of qualified clinical trials are needed to support the issue.

17.
Front Med (Lausanne) ; 11: 1396783, 2024.
Article in English | MEDLINE | ID: mdl-38887673

ABSTRACT

Background: L-ergothioneine (EGT), an antioxidative and anti-inflammatory amino acid, is abundant in various mushroom fruiting bodies. Meanwhile, the effects of EGT-containing mushrooms on human skin are unknown. This study investigated the effects of oral ingestion of a novel EGT-rich strain of Pleurotus species (hiratake) on skin conditions in humans. Methods: We conducted a 12-week, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate skin moisturizing functions and facial conditions in 80 healthy women who were randomly assigned to either a group that was supplemented with hiratake tablets containing 25 mg of EGT/day or a placebo group. Skin moisture content, transepidermal water loss (TEWL), and facial scores (VISIA scores) were measured at baseline, 8 weeks, and 12 weeks of supplementation. Results: At 8 weeks, the skin moisture content was significantly higher on the temple in the hiratake group than in the placebo group. The hiratake group also exhibited a significant increase in skin moisture content on the arm at 8 and 12 weeks compared with baseline. At 12 weeks, wrinkle and texture scores were significantly better in the hiratake group than in the placebo group, and plasma EGT concentrations in the hiratake group were 4.7-fold higher than baseline (from 3.4 to 15.9 µM). Furthermore, EGT concentrations in plasma were significantly correlated with improvements in skin moisture content and TEWL on the arm, implying that these skin moisturizing benefits could be partly attributed to EGT. A stratified analysis of participants with a low baseline plasma EGT concentration (< 3.3 µM) revealed that skin moisture content on the temple was significantly higher at 8 and 12 weeks, and skin moisture content on the arm at 12 weeks tended to be higher (p = 0.074), in the hiratake group than in the placebo group. These findings suggested that oral ingestion of EGT-rich hiratake can improve skin moisturizing functions. Conclusion: EGT-rich hiratake may help maintain skin conditions in healthy women, and EGT may play a role in these beneficial effects.

18.
Microorganisms ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930624

ABSTRACT

Edible fungi are a valuable resource in the search for sustainable solutions to environmental pollution. Their ability to degrade organic pollutants, extract heavy metals, and restore ecological balance has a huge potential for bioremediation. They are also sustainable food resources. Edible fungi (basidiomycetes or fungi from other divisions) represent an underutilized resource in the field of bioremediation. By maximizing their unique capabilities, it is possible to develop innovative approaches for addressing environmental contamination. The aim of the present study was to find selective chemical agents suppressing the growth of microfungi and bacteria, but not suppressing white-rot fungi, in order to perform large-scale cultivation of white-rot fungi in natural unsterile substrates and use it for different purposes. One application could be the preparation of a matrix composed of wooden sleeper (contaminated with PAHs) and soil for further hazardous waste bioremediation using white-rot fungi. In vitro microbiological methods were applied, such as, firstly, compatibility tests between bacteria and white-rot fungi or microfungi, allowing us to evaluate the interaction between different organisms, and secondly, the addition of chemicals on the surface of a Petri dish with a test strain of microorganisms of white-rot fungi, allowing us to determine the impact of chemicals on the growth of organisms. This study shows that white-rot fungi are not compatible to grow with several rhizobacteria or bacteria isolated from soil and bioremediated waste. Therefore, the impact of several inorganic materials, such as lime (hydrated form), charcoal, dolomite powder, ash, gypsum, phosphogypsum, hydrogen peroxide, potassium permanganate, and sodium hydroxide, was evaluated on the growth of microfungi (sixteen strains), white-rot fungi (three strains), and bacteria (nine strains) in vitro. Charcoal, dolomite powder, gypsum, and phosphogypsum did not suppress the growth either of microfungi or of bacteria in the tested substrate, and even acted as promoters of their growth. The effects of the other agents tested were strain dependent. Potassium permanganate could be used for bacteria and Candida spp. growth suppression, but not for other microfungi. Lime showed promising results by suppressing the growth of microfungi and bacteria, but it also suppressed the growth of white-rot fungi. Hydrogen peroxide showed strong suppression of microfungi, and even had a bactericidal effect on some bacteria, but did not have an impact on white-rot fungi. The study highlights the practical utility of using hydrogen peroxide up to 3% as an effective biota-suppressing chemical agent prior to inoculating white-rot fungi in the large-scale bioremediation of polluted substrates, or in the large-scale cultivation for mushroom production as a foodstuff.

19.
Sci Rep ; 14(1): 11295, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760401

ABSTRACT

Intercropping with Pleurotus ostreatus has been demonstrated to increase the tea yield and alleviate soil acidification in tea gardens. However, the underlying mechanisms remain elusive. Here, high-throughput sequencing and Biolog Eco analysis were performed to identify changes in the community structure and abundance of soil microorganisms in the P. ostreatus intercropped tea garden at different seasons (April and September). The results showed that the soil microbial diversity of rhizosphere decreased in April, while rhizosphere and non-rhizosphere soil microbial diversity increased in September in the P. ostreatus intercropped tea garden. The diversity of tea tree root microorganisms increased in both periods. In addition, the number of fungi associated with organic matter decomposition and nutrient cycling, such as Penicillium, Trichoderma, and Trechispora, was significantly higher in the intercropped group than in the control group. Intercropping with P. ostreatus increased the levels of total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) in the soil. It also improved the content of secondary metabolites, such as tea catechins, and polysaccharides in tea buds. Microbial network analysis showed that Unclassified_o__Helotiales, and Devosia were positively correlated with soil TN and pH, while Lactobacillus, Acidothermus, and Monascus were positively correlated with flavone, AE, and catechins in tea trees. In conclusion, intercropping with P. ostreatus can improve the physical and chemical properties of soil and the composition and structure of microbial communities in tea gardens, which has significant potential for application in monoculture tea gardens with acidic soils.


Subject(s)
Microbiota , Plant Roots , Pleurotus , Rhizosphere , Soil Microbiology , Soil , Tea , Pleurotus/growth & development , Pleurotus/metabolism , Plant Roots/microbiology , Tea/microbiology , Soil/chemistry , Camellia sinensis/microbiology , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Fungi/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Hydrogen-Ion Concentration
20.
Int Microbiol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740653

ABSTRACT

The current study was aimed for the generation of Pleurotus extracellular extract-mediated selenium and zinc-oxide nanoparticles (NPs). The Pleurotus djamor (PD) and Pleurotus sajor-caju (PSC) extracts were incubated with different concentrations of sodium selenate and zinc acetate to yield BioSeNPs and BioZnONPs. The NPs formation led to visual color change (brick-red and white for Se and Zn nanosols, respectively). The synthesized NPs were spherical with size of 124 and 68 nm and 84 and 91 nm for PD and PSC BioSeNPs and BioZnONPs respectively. The UV absorbance peaks were recorded at 293.2 and 292.2 nm and 365.9 and 325.5 nm for BioSeNPs and BioZnONPs derived from PD and PSC respectively. FT-IR spectroscopy indicated specific functional group adoration on metal-based NPs. On supplementation in straw, these NPs improved the fruit body yield besides enhancing their protein and Se/ Zn contents. These biofortified mushrooms could be potential dietary supplement/ nutraceutical.

SELECTION OF CITATIONS
SEARCH DETAIL
...