Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Microbiol Spectr ; : e0101623, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323827

ABSTRACT

The treatment of methicillin-resistant Staphylococcus aureus (MRSA)-induced pneumonia with antibiotics alone poses considerable challenges. To address these challenges, low-frequency ultrasound (LFU) emerges as a promising approach. In this study, a mouse pneumonia model was established through intratracheal injection of MRSA to investigate the therapeutic efficacy of LFU in combination with antibiotics. Minimal inhibitory concentration was assessed, and the distribution of antibiotics in the lung and plasma was determined using liquid chromatography coupled with mass spectrometry. Various parameters, including the survival rate, histopathology, lung bacterial clearance, and the expressions of cytokines and inflammation-related genes, were evaluated before and after treatment. Compared with the infection group, both the antibiotic-alone groups [vancomycin (VCM), linezolid, and contezolid (CZD)] and the groups in combination with LFU demonstrated an improvement in the survival status of mice. The average colony-forming units of lung tissue in the LFU combination groups were lower compared with the antibiotic-alone groups. While no significant changes in C-reactive protein and procalcitonin in plasma and bronchoalveolar lavage fluid were observed, histopathological results revealed reduced inflammatory damage in LFU combination groups. The secretion of interleukin-6 and tumor necrosis factor-alpha was decreased by the combination treatment, particularly in the VCM + LFU group. Furthermore, the expressions of MRSA virulence factors (hla and agrA) and inflammation-related genes (Saa3, Cxcl9, and Orm1) were further reduced by the combinations of LFU and antibiotics. Additionally, LFU treatment facilitated the distribution of VCM and CZD in mouse lung tissue at 30 and 45 min, respectively, after dosage.IMPORTANCETreating pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA) with antibiotics alone poses significant challenges. In this in vivo study, we present compelling evidence supporting the efficacy of low-frequency ultrasound (LFU) as a promising approach to overcome these obstacles. Our findings demonstrated that LFU enhanced the effectiveness of vancomycin, linezolid, and contezolid in an MRSA pneumonia model. The combination of LFU with anti-MRSA agents markedly improved the survival rate of mice, accelerated the clearance of pulmonary bacteria, reduced inflammatory injury, inhibited the production of MRSA endotoxin, and enhanced the distribution of antibiotics in lung tissue. The application of LFU in the treatment of pulmonary infections held substantial significance. We believe that readers of your journal will find this topic of considerable interest.

2.
Front Cell Infect Microbiol ; 13: 1297281, 2023.
Article in English | MEDLINE | ID: mdl-38149013

ABSTRACT

Background: New drugs targeting antimicrobial resistant pathogens, including Pseudomonas aeruginosa, have been challenging to evaluate in clinical trials, particularly for the non-ventilated hospital-acquired pneumonia and ventilator-associated pneumonia indications. Development of new antibacterial drugs is facilitated by preclinical animal models that could predict clinical efficacy in patients with these infections. Methods: We report here an FDA-funded study to develop a rabbit model of non-ventilated pneumonia with Pseudomonas aeruginosa by determining the extent to which the natural history of animal disease reproduced human pathophysiology and conducting validation studies to evaluate whether humanized dosing regimens of two antibiotics, meropenem and tobramycin, can halt or reverse disease progression. Results: In a rabbit model of non-ventilated pneumonia, endobronchial challenge with live P. aeruginosa strain 6206, but not with UV-killed Pa6206, caused acute respiratory distress syndrome, as evidenced by acute lung inflammation, pulmonary edema, hemorrhage, severe hypoxemia, hyperlactatemia, neutropenia, thrombocytopenia, and hypoglycemia, which preceded respiratory failure and death. Pa6206 increased >100-fold in the lungs and then disseminated from there to infect distal organs, including spleen and kidneys. At 5 h post-infection, 67% of Pa6206-challenged rabbits had PaO2 <60 mmHg, corresponding to a clinical cut-off when oxygen therapy would be required. When administered at 5 h post-infection, humanized dosing regimens of tobramycin and meropenem reduced mortality to 17-33%, compared to 100% for saline-treated rabbits (P<0.001 by log-rank tests). For meropenem which exhibits time-dependent bactericidal activity, rabbits treated with a humanized meropenem dosing regimen of 80 mg/kg q2h for 24 h achieved 100% T>MIC, resulting in 75% microbiological clearance rate of Pa6206 from the lungs. For tobramycin which exhibits concentration-dependent killing, rabbits treated with a humanized tobramycin dosing regimen of 8 mg/kg q8h for 24 h achieved Cmax/MIC of 9.8 ± 1.4 at 60 min post-dose, resulting in 50% lung microbiological clearance rate. In contrast, rabbits treated with a single tobramycin dose of 2.5 mg/kg had Cmax/MIC of 7.8 ± 0.8 and 8% (1/12) microbiological clearance rate, indicating that this rabbit model can detect dose-response effects. Conclusion: The rabbit model may be used to help predict clinical efficacy of new antibacterial drugs for the treatment of non-ventilated P. aeruginosa pneumonia.


Subject(s)
Pneumonia , Pseudomonas Infections , Humans , Animals , Rabbits , Meropenem/therapeutic use , Pseudomonas aeruginosa , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Tobramycin/pharmacology , Tobramycin/therapeutic use , Pneumonia/drug therapy , Drug Development
3.
Med Microbiol Immunol ; 212(6): 421-435, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37796314

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 µM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pneumonia , Animals , Mice , Humans , Methicillin-Resistant Staphylococcus aureus/metabolism , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus/metabolism , Disease Models, Animal , Bacterial Proteins/metabolism
4.
Int Immunopharmacol ; 115: 109551, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36621329

ABSTRACT

Acinetobacter baumannii is a worldwide health issue in terms of its high antibiotic resistance and ability to form biofilms. Nanoparticles (NPs) with high biocompatibility, high penetrating ability, and low medication dose can successfully treat the antibiotic-resistant infections. In this research, the anti-biofilm activity of niosomes containing minocycline and gallium nitrate (GaN) against A. baumannii biofilm was determined. In order to improve their anti-biofilm properties, minocycline and GaN were encapsulated in niosomes as biocompatible drug carriers. The niosomes' size, zeta potential, shape, stability, drug entrapment efficacy, drug release pattern and antibacterial activity were assessed. Several clinical samples were isolated from the lungs of patients hospitalized at Loghman hospital, Tehran, Iran. The biofilm formation of most lethal clinical isolates of A. baumannii was analyzed. The pneumonia model was generated by intranasally administering A. baumannii suspension to anesthetized mice whose immune systems was compromised twice by cyclophosphamide. Lung infection of the mouse with A. baumannii was confirmed using PCR. After treatment, the lungs were excised under sterile conditions and stained with hematoxylin and eosin (H&E) to determine histological symptoms, inflammation and intercellular secretions. The niosomes contained minocycline and GaN had an average size of 230 nm and a zeta potential of -40 mV, respectively. The percentage of drug entrapment and delayed drug release was both high in niosomal formulations. Niosomes containing minocycline and GaN dispersed 1, 3 and 5 day old biofilms. The mice given the combination of two compounds required less time to be treated than the animals given the single medication (minocycline). The minocycline& GaN-loaded niosomes could be considered as promising candidates to treat the infections caused by A. baumannii biofilm.


Subject(s)
Acinetobacter baumannii , Gallium , Pneumonia , Mice , Animals , Minocycline/therapeutic use , Liposomes/therapeutic use , Nitrates , Iran , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gallium/therapeutic use , Pneumonia/drug therapy , Pneumonia/microbiology , Microbial Sensitivity Tests
5.
World J Microbiol Biotechnol ; 39(1): 3, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36344903

ABSTRACT

Due to increasing antibiotic resistance, targeting bacterial virulence factors is now gaining further interest as an alternative strategy to develop novel classes of anti-infective agents. The critical role of α-hemolysin (Hla), an indispensable virulence determinant, in the pathogenicity of Staphylococcus aureus renders this virulence factor an appealing target for effective therapeutic applications. Herein, we identified a natural compound schisandraone, as an effective Hla inhibitor, which could inhibit Hla production and thus hemolytic activity in a dose-dependent manner without affecting the growth of S. aureus. We also found that the addition of schisandrone could down-regulate the transcriptional levels of the hla, agrA and RNAIII and significantly alleviated Hla-mediated injury of A549 cells co-cultured with S. aureus. In vivo studies further suggested that schisandrone combined with antibiotic ceftiofur exhibited a significant therapeutic effect on S. aureus infection. These findings revealed the role of schisandrone in inhibiting the activity of Hla and we believe that it is a promising anti-virulence candidate to combat MRSA pneumonia.


Subject(s)
Bacterial Toxins , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Staphylococcal , Staphylococcal Infections , Humans , Hemolysin Proteins/metabolism , Staphylococcus aureus , Bacterial Toxins/metabolism , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Virulence Factors/metabolism
6.
Front Microbiol ; 13: 988725, 2022.
Article in English | MEDLINE | ID: mdl-36160186

ABSTRACT

The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop "Advancing toward a standardized murine model to evaluate treatments for AMR lung infections". This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (ß-lactam/ß-lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.

7.
Front Microbiol ; 13: 988728, 2022.
Article in English | MEDLINE | ID: mdl-36160241

ABSTRACT

Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.

8.
World J Microbiol Biotechnol ; 38(11): 200, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35995893

ABSTRACT

Staphylococcus aureus (S. aureus), a Gram-positive bacteria, is an incurable cause of hospital and community-acquired infections. Inhibition bacterial virulence is a viable strategy against S. aureus infections based on the multiple virulence factors secreted by S. aureus. Alpha-hemolysin (Hla) plays a crucial role in bacteria virulence without affecting bacterial viability. Here, we identified that 7,8-Dihydroxyflavone (7,8-DHF), a natural compound, was able to decrease the expression of and did not affect the in vitro growth of S. aureus USA300 at a concentration of 32 µg/mL. It was verified by western blot and RT-qPCR that the natural compound could inhibit the transcription and translation of Hla. Further mechanism studies revealed that 7,8-DHF has a negative effect on transcriptional regulator agrA and RNAIII, preventing the upregulation of virulence gene. Cytotoxicity assays showed that 7,8-DHF did not produce significant cytotoxicity to A549 cells. Animal experiments showed that the combination of 7,8-DHF and vancomycin had a more significant therapeutic effect on S. aureus infection, reflecting the synergistic effect of 7,8-DHF with antibiotics. In conclusion, 7,8-DHF was able to target Hla to protect host cells from hemolysis while limiting the development of bacterial resistance.


Subject(s)
Bacterial Toxins , Flavones , Staphylococcal Infections , Staphylococcus aureus , A549 Cells , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/metabolism , Flavones/pharmacology , Hemolysin Proteins/genetics , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Front Immunol ; 13: 893921, 2022.
Article in English | MEDLINE | ID: mdl-35655774

ABSTRACT

Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Pneumonia , Animals , Immunoglobulin G/pharmacology , Mice , Rabbits , Staphylococcus aureus , Superantigens
10.
Article in English | MEDLINE | ID: mdl-34991848

ABSTRACT

INTRODUCTION: Immune response stimulation may be an adjuvant to antimicrobial treatment. Here, we evaluated the impact of immune response modification by lysophosphatidylcholine (LPC), combined with imipenem or ceftazidime, in murine models of peritoneal sepsis (PS) and pneumonia induced by Pseudomonas aeruginosa. METHODS: The imipenem and ceftazidime-susceptible strain (Pa39) and imipenem and ceftazidime-resistant strain (Pa238) were used. Ceftazidime pharmacokinetic and pharmacodynamic parameters were determined. The therapeutic efficacy and TNF-α and IL-10 levels were determined in murine models of PS and pneumonia induced by Pa39 and Pa238 and treated with LPC, imipenem or ceftazidime, alone or in combination. RESULTS: In the PS model, LPC+ceftazidime reduced spleen and lung Pa238 concentrations (-3.45 and -3.56log10CFU/g; P<0.05) to a greater extent than ceftazidime monotherapy, while LPC+imipenem maintained the imipenem efficacy (-1.66 and -1.45log10CFU/g; P>0.05). In the pneumonia model, LPC+ceftazidime or LPC+imipenem reduced the lung Pa238 concentrations (-2.37log10CFU/g, P=0.1, or -1.35log10CFU/g, P=0.75). For Pa39, no statistically significant difference was observed in the PS and pneumonia models between combined therapy and monotherapy. Moreover, LPC+imipenem and LPC+ceftazidime significantly decreased and increased the TNF-α and IL-10 levels, respectively, in comparison with the untreated controls and monotherapies. CONCLUSIONS: These results demonstrate the impact of immune response modification by LPC plus antibiotics on the prognosis of infections induced by ceftazidime-resistant P. aeruginosa.


Subject(s)
Pneumonia , Sepsis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Immunity , Lysophosphatidylcholines/pharmacology , Lysophosphatidylcholines/therapeutic use , Mice , Microbial Sensitivity Tests , Models, Theoretical , Pseudomonas aeruginosa , Sepsis/drug therapy
11.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 40(1): 1-8, Enero, 2022. graf, tab
Article in English | IBECS | ID: ibc-203286

ABSTRACT

IntroductionImmune response stimulation may be an adjuvant to antimicrobial treatment. Here, we evaluated the impact of immune response modification by lysophosphatidylcholine (LPC), combined with imipenem or ceftazidime, in murine models of peritoneal sepsis (PS) and pneumonia induced by Pseudomonas aeruginosa.MethodsThe imipenem and ceftazidime-susceptible strain (Pa39) and imipenem and ceftazidime-resistant strain (Pa238) were used. Ceftazidime pharmacokinetic and pharmacodynamic parameters were determined. The therapeutic efficacy and TNF-α and IL-10 levels were determined in murine models of PS and pneumonia induced by Pa39 and Pa238 and treated with LPC, imipenem or ceftazidime, alone or in combination.ResultsIn the PS model, LPC+ceftazidime reduced spleen and lung Pa238 concentrations (−3.45 and −3.56log10CFU/g; P<0.05) to a greater extent than ceftazidime monotherapy, while LPC+imipenem maintained the imipenem efficacy (−1.66 and −1.45log10CFU/g; P>0.05). In the pneumonia model, LPC+ceftazidime or LPC+imipenem reduced the lung Pa238 concentrations (−2.37log10CFU/g, P=0.1, or −1.35log10CFU/g, P=0.75). For Pa39, no statistically significant difference was observed in the PS and pneumonia models between combined therapy and monotherapy. Moreover, LPC+imipenem and LPC+ceftazidime significantly decreased and increased the TNF-α and IL-10 levels, respectively, in comparison with the untreated controls and monotherapies.ConclusionsThese results demonstrate the impact of immune response modification by LPC plus antibiotics on the prognosis of infections induced by ceftazidime-resistant P. aeruginosa.


IntroducciónLa estimulación de la respuesta inmunitaria podría ser adyuvante al tratamiento antimicrobiano. En este estudio, hemos evaluado el impacto de la modificación de la respuesta inmunitaria por la lisofosfatidilcolina (LPC), combinada con imipenem ó ceftazidima, en modelos murinos de sepsis peritoneal (SP) y de neumonía por Pseudomonas aeruginosa (P. aeruginosa).MétodosLa cepa sensible a imipenem y ceftazidima (Pa39) y la cepa resistente a ambos antibióticos (Pa238) fueron usadas. Los parámetros farmacocinéticos/farmacodinámicos de ceftazidima fueron determinados. La eficacia terapéutica y los niveles de TNF-α and IL-10 fueron determinados en los modelos murinos de SP y de neumonía por Pa39 y Pa238 y tratados con LPC, imipenem o ceftazidima, en monoterapia ó en combinación.ResultadosEn el modelo de SP, LPC + ceftazidima redujo la concentración de Pa238 en el bazo y el pulmón (–3,45 y –3,56 log10 UFC/g; p < 0,05) en comparación con ceftazidima, mientras LPC + impenem mantuvo la eficacia de imipenem (–1,66 y –1,45 log10 UFC/g; p > 0,05). En el modelo de neumonía, LPC + ceftazidima o LPC + imipenem redujo la concentración de Pa238 en pulmón (–2,37 log10 UFC/g, p = 0,1 o –1,35 log10 UFC/g, p = 0,75). Para Pa39, no se observó diferencia estadística significativa entre la terapia combinada y la monoterapia en los modelos de SP y de neumonía. Además, LPC + imipenem y LPC + ceftazidime redujeron y aumentaron los niveles de TNF-α y IL-10, respectivamente, en comparación con los controles no tratados y las monoterapias.ConclusionesEstos resultados demuestran el impacto de la modificación de la respuesta inmunitaria por LPC en combinación con antibióticos en el pronóstico de las infecciones por P. aeruginosa ceftazidima-resistente.


Subject(s)
Animals , Rats , Health Sciences , Anti-Bacterial Agents , Lysophosphatidylcholines , Pseudomonas aeruginosa , Sepsis , Pneumonia , Imipenem , Ceftazidime , 51710 , Communicable Diseases , Microbiology
12.
Article in English, Spanish | MEDLINE | ID: mdl-32674904

ABSTRACT

INTRODUCTION: Immune response stimulation may be an adjuvant to antimicrobial treatment. Here, we evaluated the impact of immune response modification by lysophosphatidylcholine (LPC), combined with imipenem or ceftazidime, in murine models of peritoneal sepsis (PS) and pneumonia induced by Pseudomonas aeruginosa. METHODS: The imipenem and ceftazidime-susceptible strain (Pa39) and imipenem and ceftazidime-resistant strain (Pa238) were used. Ceftazidime pharmacokinetic and pharmacodynamic parameters were determined. The therapeutic efficacy and TNF-α and IL-10 levels were determined in murine models of PS and pneumonia induced by Pa39 and Pa238 and treated with LPC, imipenem or ceftazidime, alone or in combination. RESULTS: In the PS model, LPC+ceftazidime reduced spleen and lung Pa238 concentrations (-3.45 and -3.56log10CFU/g; P<0.05) to a greater extent than ceftazidime monotherapy, while LPC+imipenem maintained the imipenem efficacy (-1.66 and -1.45log10CFU/g; P>0.05). In the pneumonia model, LPC+ceftazidime or LPC+imipenem reduced the lung Pa238 concentrations (-2.37log10CFU/g, P=0.1, or -1.35log10CFU/g, P=0.75). For Pa39, no statistically significant difference was observed in the PS and pneumonia models between combined therapy and monotherapy. Moreover, LPC+imipenem and LPC+ceftazidime significantly decreased and increased the TNF-α and IL-10 levels, respectively, in comparison with the untreated controls and monotherapies. CONCLUSIONS: These results demonstrate the impact of immune response modification by LPC plus antibiotics on the prognosis of infections induced by ceftazidime-resistant P. aeruginosa.

13.
Article in English | MEDLINE | ID: mdl-31555607

ABSTRACT

Acinetobacter baumannii is currently considered one of the most problematic nosocomial microorganisms. In the present work the hisF gene from the ATCC 17978 strain and the AbH12O-A2 clinical isolate of A. baumannii was found over-expressed during the course of murine pneumonia infections. The study demonstrated that the A. baumannii ATCC 17978 mutant strain lacking the hisF gene induces a sub-lethal pneumonia infection in mice, while the complemented mutant strain increased its virulence. This histidine auxotroph mutant showed an increase on IL-6 secretion and leukocytes recruitment during infections. Furthermore, data revealed that the hisF gene, implicated in the innate immunity and inflammation, is involved in virulence during a pneumonia infection, which may partly explain the ability of this strain to persist in the lung. We suggest that HisF, essential for full virulence in this pathogen, should be considered a potential target for developing new antimicrobial therapies against A. baumannii. Importance  Nosocomial pathogens such as A. baumannii are able to acquire and develop multi-drug resistance and represent an important clinical and economic problem. There is therefore an urgent need to find new therapeutic targets to fight against A. baumannii. In the present work, the potential of HisF from A. baumannii as a therapeutic target has been addressed since this protein is involved in the innate inmunity and the inflamatory response and seems essential to develop a pneumonia in mice. This work lays the groundwork for designing antimicrobial therapies that block the activity of HisF.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Pneumonia/immunology , Pneumonia/microbiology , A549 Cells , Acinetobacter baumannii/enzymology , Acinetobacter baumannii/immunology , Animals , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Gene Knockout Techniques , Genes, Bacterial/genetics , Humans , Interleukin-6/metabolism , Lung/immunology , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , RAW 264.7 Cells , Transcriptome , Virulence , Virulence Factors
14.
Chin J Nat Med ; 16(4): 241-251, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29703324

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid (QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group (M), QFOL-treated group (Q) and the control group (C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins (DEPs) were identified (15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B (FpB) and heparin cofactor II (HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the FpB level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.


Subject(s)
Biomarkers/blood , Drugs, Chinese Herbal/pharmacology , Fibrinopeptide B/analysis , Heparin Cofactor II/analysis , Proteome/drug effects , Proteomics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Viruses/drug effects , Animals , Chromatography, Liquid , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Fibrinopeptide B/genetics , Gene Expression Regulation/drug effects , Heparin Cofactor II/genetics , Lung/pathology , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/drug therapy , Tandem Mass Spectrometry
15.
Article in English | WPRIM (Western Pacific) | ID: wpr-773617

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid (QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group (M), QFOL-treated group (Q) and the control group (C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins (DEPs) were identified (15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B (FpB) and heparin cofactor II (HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the FpB level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.


Subject(s)
Animals , Biomarkers , Blood , Chromatography, Liquid , Disease Models, Animal , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Fibrinopeptide B , Genetics , Gene Expression Regulation , Heparin Cofactor II , Genetics , Lung , Pathology , Mice, Inbred BALB C , Proteome , Proteomics , Respiratory Syncytial Virus Infections , Blood , Drug Therapy , Respiratory Syncytial Viruses , Tandem Mass Spectrometry
16.
Article in English | WPRIM (Western Pacific) | ID: wpr-812407

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections. Qingfei oral liquid (QFOL), a traditional Chinese medicine, is widely used in clinical treatment for RSV-induced pneumonia. The present study was designed to reveal the potential targets and mechanism of action for QFOL by exploring its influence on the host cellular network following RSV infection. We investigated the serum proteomic changes and potential biomarkers in an RSV-infected mouse pneumonia model treated with QFOL. Eighteen BALB/c mice were randomly divided into three groups: RSV pneumonia model group (M), QFOL-treated group (Q) and the control group (C). Serum proteomes were analyzed and compared using a label-free quantitative LC-MS/MS approach. A total of 172 protein groups, 1009 proteins, and 1073 unique peptides were successfully identified. 51 differentially expressed proteins (DEPs) were identified (15 DEPs when M/C and 43 DEPs when Q/M; 7 DEPs in common). Classification and interaction network showed that these proteins participated in various biological processes including immune response, blood coagulation, complement activation, and so forth. Particularly, fibrinopeptide B (FpB) and heparin cofactor II (HCII) were evaluated as important nodes in the interaction network, which was closely involved in coagulation and inflammation. Further, the FpB level was increased in Group M but decreased in Group Q, while the HCII level exhibited the opposite trend. These findings not only indicated FpB and HCII as potential biomarkers and targets of QFOL in the treatment of RSV pneumonia, but also suggested a regulatory role of QFOL in the RSV-induced disturbance of coagulation and inflammation-coagulation interactions.


Subject(s)
Animals , Biomarkers , Blood , Chromatography, Liquid , Disease Models, Animal , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Fibrinopeptide B , Genetics , Gene Expression Regulation , Heparin Cofactor II , Genetics , Lung , Pathology , Mice, Inbred BALB C , Proteome , Proteomics , Respiratory Syncytial Virus Infections , Blood , Drug Therapy , Respiratory Syncytial Viruses , Tandem Mass Spectrometry
17.
Chinese Journal of Immunology ; (12): 233-238, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-702707

ABSTRACT

Objective:To obtain a high specificity and high affinity anti-PcrV protein monoclonal antibody which can be used for the treatment of Pseudomonas aeruginosa infected.Methods: The PcrV gene was amplified by PCR using P.aeruginosa PAO1 genome DNA as the template.The expression vector(pET-28a-PcrV) was constructed and transformed into E.coli BL21(DE3).The re-combinant PcrV protein was expressed by IPTG induction and purified by Ni2+affinity chromatography.The specific binders of PcrV were screened by phage display.The genes encoding VH and VL were amplified respectively by PCR using the plasmid of positive clone as the template.Then the recombinant expression vectors were constructed and transfected into 293E cells.Monoclonal antibody were purified by the Protein A affinity resin from the culture supernatants.The affinity of antibody was detected by ELISA and the function of YG5 was verified in murine pneumonia model caused by P.aeruginosa.Results: Recombinant PcrV protein was expressed and purified.A full human monoclonal antibody(named as YG5) against PcrV was obtained by phage display.The results of ELISA showed that YG5 had a high affinity with EC50=61 ng/ml.Furthermore,it was found that YG5 could protect mice from infection caused by P.aeruginosa.Conclusion:Our findings present a novel human monoclonal antibody YG5 against PcrV,which inhibits the infection casued by P.aeruginosa and may be a potential drug for treatment of P.aeruginosa infection.

18.
Am J Transl Res ; 9(11): 5116-5126, 2017.
Article in English | MEDLINE | ID: mdl-29218109

ABSTRACT

OBJECTIVE: This study works to develop novel models that may be adopted for earlier non-invasive breathomics tests to determine pneumonia pathogens. METHODS: Two types of pneumonia models were created, both in vitro and in vivo. Paraneoplasm lung tissue and specific pathogen-free (SPF) rabbits were adopted and separately challenged with sterile saline solution control or three pathogens: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. After inoculation, headspace air or exhaled air were absorbed by solid phase micro-extraction (SPME) fibers and subsequently analyzed with gas chromatograph Mass Spectrometer (GCMS). RESULTS: Pneumonia and pathogen-specific discriminating VOC patterns (1H-Pyrrole-3-carbonitrile, Diethyl phthalate, Cedrol, Decanoic acid, Cyclohexane, Diisooctyl phthalate) were determined. CONCLUSION: Our study successfully generated nosocomial pneumonia models for pneumonia diagnosis and pathogen-discriminating breath tests. The tests may allow for earlier pneumonia and pathogen diagnoses, and may transfer empirical therapy to targeted therapy earlier, thus improving clinical outcomes.

19.
Res Microbiol ; 166(8): 633-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254772

ABSTRACT

The treatment, in farmed mink, of hemorrhagic pneumonia caused by multidrug-resistant Pseudomonas aeruginosa strains has become increasingly difficult. This study investigated the potential use of phages as a therapy against hemorrhagic pneumonia caused by P. aeruginosa in a murine hemorrhagic pneumonia model. An N4-like phage designated YH6 was isolated using P. aeruginosa strain D9. YH6 is a virulent phage with efficient and broad host lytic activity against P. aeruginosa. No bacterial virulence- or lysogenesis-related ORF is present in the YH6 genome, making it eligible for use in phage therapy. In our murine experiments, a single intranasal administration of YH6 (2 × 10(7) PFU) 2 h after D9 intranasal injections at double minimum lethal dose was sufficient to protect mice against hemorrhagic pneumonia. The bacterial load in the lungs of YH6-protected mice was less than 10(3) CFU/g within 24 h after challenge and ultimately became undetectable, whereas the amount of bacteria in the lung tissue derived from unprotected mice was more than 10(8) CFU/g within 24 h after challenge. In view of its protective efficacy in this murine hemorrhagic pneumonia model, YH6 may serve as an alternative treatment strategy for infections caused by multidrug-resistant P. aeruginosa.


Subject(s)
Pneumonia, Bacterial/therapy , Pseudomonas Infections/therapy , Pseudomonas Phages , Pseudomonas aeruginosa/pathogenicity , Administration, Intranasal , Animals , Bacterial Load , Biological Therapy , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Female , Lung/microbiology , Lung/pathology , Mice , Pneumonia, Bacterial/microbiology , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas Phages/isolation & purification , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...