Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Contam Hydrol ; 262: 104326, 2024 03.
Article in English | MEDLINE | ID: mdl-38452418

ABSTRACT

The migration behavior of pollutants is affected by consolidation and temperature when using thermal desorption technology to clean contaminated sites. Based on a one-dimensional consolidation model for unsaturated soil and the traditional heat conduction equation, a pollutant transport model accounting for the combined effects of consolidation and temperature was established in this paper. An analytical solution was obtained by using the separation of variables method and the integral transformation method. In addition, the correctness of the proposed model was verified via a comparison between the existing analytical solution and the theoretical model. Finally, adopting benzene as the research object, the influence of different factors on pollutant migration was studied. It was found that the growth rate of the pollutant concentration increased with increasing consolidation pressure, and the final pollutant concentration decreased with increasing consolidation pressure. The pollutant concentration increment due to temperature first increased and then decreased with increasing migration distance. The higher the Soret coefficient and volumetric moisture content are, the higher the pollutant concentration.


Subject(s)
Environmental Pollutants , Soil Pollutants , Soil , Temperature , Soil Pollutants/analysis , Models, Theoretical
2.
Environ Sci Pollut Res Int ; 31(12): 17964-17980, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36637646

ABSTRACT

This study is carried out to understand the degree of soil pollution, transport mechanism, and distribution pattern of potentially toxic elements (PTEs), including the exposure effects on human health. Towards this, topsoil samples were collected from the Saman wetland and surrounding agricultural fields in the Gangetic plain, India. The results show that the mean concentration of Cu, Hg, Zn, Pb, Th, As, U, and Cd of both soil types exceed the natural background values. The multivariate analysis suggests the soils are moderately contaminated with As, Cd, Zn, Pb, and Hg (possibly from anthropogenic sources) and heavily contaminated with Th and U, likely ascended from geogenic sources. The GIS-based geostatistical plots coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) apportion the sources of these toxic elements, which vary greatly and are closely correlated to the geogenic processes and local anthropogenic sources like pesticides and agrochemicals. The health risk assessment revealed that the cumulative hazard index (HI) values of PTEs are lower than the safe level, suggesting no significant noncarcinogenic effect for adults and children. However, excess cancer risk (ECR) values exceed the permissible limit (1 × 10-6), signifying that exposure to the toxic element concentration may cause cancer in the exposed population, most probably in the children subpopulation. Thus, this study highlights the importance of local compliance, ensuring the quality checks and management policies in using pesticides and other agrochemicals containing PTEs to control the imposed cancer risks.


Subject(s)
Mercury , Metals, Heavy , Neoplasms , Pesticides , Soil Pollutants , Adult , Child , Humans , Soil , Metals, Heavy/analysis , Wetlands , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis , Mercury/analysis , Risk Assessment , Pesticides/analysis , China
3.
Chemosphere ; 350: 141023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141674

ABSTRACT

Energetics used in military exercises can potentially contaminate ground and surface waters. This study was conducted to evaluate the movement of Composition B, a formulation that includes TNT (2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), in runoff. Mechanisms of transport we examined include movement of energetics dissolved in runoff, as particles and adsorbed to suspended sediment, and in infiltration. Rainfall simulations were conducted under controlled conditions with two rainfall rates (approximately 30 and 50 mm h-1), two soils with different infiltration capacities, and four energetic particle sizes (4.75-9.51 mm, 2.83-4.75 mm, 2-2.83 mm, and <2 mm). Particles remaining on the soil surface after rainfall were measured as well as energetics dissolved in runoff, in suspended sediment, and in infiltration. Greater concentrations of TNT than RDX and HMX were found dissolved in runoff due to its higher solubility and dissolution rates. We also found that particle transport in runoff increased with decrease in particle size. Smaller particle sizes also led to greater transport dissolved in solution. Relationships were found relating runoff and sediment yield to the transport of RDX and TNT. The results of this study allow improved prediction of Composition B transport in runoff and therefore its contamination potential.


Subject(s)
Explosive Agents , Trinitrotoluene , Explosive Agents/chemistry , Azocines/chemistry , Trinitrotoluene/analysis , Triazines/chemistry , Soil
4.
Environ Technol ; : 1-14, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37953741

ABSTRACT

The ex-situ treatment of arsenic is widely adopted; however, there are emerging concerns related to system maintenance, material replacement, and waste generation. There is a scope to explore in-situ arsenite [As (III)] remediation in the aquifers. The main objective of this study is to evaluate the performance of in-situ synthesised FeS in immobilising As (III) in the natural groundwater when transported through a three-dimensional (3-D) porous media system. In this study, a 3-D tank of 0.50 m × 0.30 m × 0.30 m (L × W × H) was packed with natural sand to represent the subsurface porous media system. The homogeneous packing and uniform flow were ensured before synthesising FeS in-situ, where a total of 1.5 pore volumes (PVs) of 20 mM sodium sulfide (Na2S) and 20 mM ferrous sulfate (FeSO4) reagent solutions were injected alternatively into the pre-saturated porous media. Finally, 300 ± 15 µg/L of As (III) spiked natural groundwater was passed through the porous media, and the samples were collected through several sampling ports for analysing for total As and Fe. The result suggests that the concentration of As (III) reaches below 11 µg/L within 644 min (4 PVs) of injection of reagents. Furthermore, almost 88.4% of As (III) get immobilised after passing 31 PVs of contaminated water. In brief, almost 406 L of As contaminated groundwater can be treated by injecting 21 L of reagents with a reagent-to-treated water ratio of 1:20.

5.
Mar Environ Res ; 190: 106101, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37499276

ABSTRACT

Mariculture activities have been recognized as one of the major sources of contamination for marine pollutants, such as the excessive discharging of nitrogen and phosphate. The fully understanding of the pollutants emission and transportation is crucial for coastal environment management. However, the influence of such highly dynamic coastal process on the pollutant migration remain unclear, such as the effects of coastal seasonal hydrodynamics on the dissolved pollutant transportation, especially under intensive marine ranching activities in open waters. This study investigated the seasonal transport mechanisms of pollutants released from three typical mariculture methods (floating raft, cage and bottom pond) in the Wangjia Island (WJ), Yellow Sea, China. We have conducted three field surveys to monitor the coastal dynamics and measure the distribution of dissolved pollutants in the ranching area. Results from these field surveys show that the WJ and adjacent area experienced significant degradation in terms of water quality with the development of regional marine ranching. The average of calculated index for eutrophication Ei increases from 0.12 in the non-farming area to 0.78 in the farming area. In order to delineate the impacts area of pollutant transport associated with these highly dynamics of water exchange, a Eulerian passive tracer-tracking module is applied to simulate the pollutant transport processes based on a field scale three-dimensional Finite Volume Coastal Ocean Model (FVCOM). Then after, the impacts of barotropic and baroclinic coastal dynamics on the migration of dissolved pollutants were evaluated. The transport of pollutants was greatly influenced by the different farming modes. The travel distance of pollutants released from the bottom pond farming mode was limited, whereas pollutants from the surface-farming methods were transported over a longer distance. In this study, there are three folders of finding: 1) The migration direction varies with seasons, with a landward direction in winter and an offshore direction in summer; 2) In winter, strong wind (wind speed over 10 m/s) is the dominant factor for water exchange, which is conducive to the dispersion of pollutants in the study area. However, in summer, the thermal stratification controls pollutant migration; 3) The results of breakthrough time illustrate that the pollutants travelled slower during summer, especially for pollutants discharged from the bottom pond farming method. In summary, this study demonstrates that even in open waters with stronger water exchange capacity, the pollutants from intensive marine ranching can still increase the risk of eutrophication. The finding of this study has important implications for the management and regulation of offshore aquaculture activities, particularly for mitigating pollutants from marine ranching.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring , Seasons , Water Quality , Water Pollutants, Chemical/analysis , China
6.
J Environ Manage ; 340: 117985, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37126922

ABSTRACT

Precise estimation of the longitudinal dispersion coefficient (LDC) is crucial for the accurate simulation of water quality management tools such as assimilation capacity. Previous research analyzed the LDC of natural streams in two general categories: ignoring or considering the river sinuosity (σ). Genetic programming (GP) is used in this study to investigate both mentioned categories by applying two experimental datasets from 56 to 24 different rivers worldwide. The first proposed LDC equation of this research (without σ) improves the amounts of statistical measures R2 (Determination Coefficient), OI (Overall Index), NSE (Nash-Sutcliffe Efficiency), WI (Willmott's Index of Agreement), RMSE (Root Mean Square Error), and MAE (Mean Absolute Error) by 3.75%, 4.71%, 7.81%, 0.85%, 13.72%, and 0.68%, respectively, compared to the best values of these indicators in the previous investigations. Regarding the second category, relative and absolute sensitivity analyses are conducted, which reveal that σ is the most influential parameter in the accurate prediction of the LDC among all hydraulics and geometric parameters of the river. This part of the investigation presents four unique LDC equations that closely match the experimental results. Significant improvement of the most accurate presented LDC for statistical indices R2, OI, NSE, WI, RMSE, MAE, and accuracy percentage are obtained equal to 3.27%, 2.41%, 3.16%, 0.81%, 35.1%, 24.47%, 3.8%, respectively, in comparison with the best previous relations. Also, a new indicator for measuring the efficiency of mathematical equations called Mean Normalized Statistical Index (MNSI) is introduced and applied in different parts of this research. Finally, the assimilation capacity of the Kashafrud River is determined based on the analytical method of pollution propagation for three types of water demands utilizing the accurately presented LDC in 1993-2020. The average amount of river assimilation capacity using accurate LDC is simulated at 91.93 tons/day, much lower than the currently reported pollution entrance, which equals 540 tons/day.


Subject(s)
Rivers , Water Quality
7.
Heliyon ; 9(3): e14329, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967901

ABSTRACT

This study aims at investigating the numerical analysis of pollutant transport in homogeneous porous media with solid plate stacks. The investigation was performed for solid/impervious objects of the same size placed in homogeneous porous media. The pollutant transport equation (i.e., steady-state and time dependent advection-dispersion) chosen in mathematical modeling. Three cases arise on the basis of dispersion coefficients: (a) when dispersion is uniformly constant, (b) when dispersion depends upon magnitude of the velocity, and (c) when dispersion depends upon magnitude of the velocity and directional dispersivities, all these are discussed in detail. Generally, analytical solution of such problems doesn't exist, so all the work is done numerically. The governing partial differential equation of pollutant concentration is approximated by using finite difference technique. Central, one-sided, backward and forward finite difference formulae of the same order are used to discretize the domain. Simulations of velocity potential and stream function are approximated by Matlab software. Then equipotential lines and streamlines are visualized in the form of contours. Both, velocity potential and stream function are harmonic and satisfy Laplace's equation. Fluid flow lines and pollutant concentration are represented graphically for several parameters involved in the study. It is found that entrance/exit length, shape, hydraulic conductivity, the number and position of impervious objects affect the fluid flow and pollutant transport. However, there is no significant affect of heated objects on pollutant transport. Moreover, advection and dispersion depend upon permeability of porous media and properties of solid matrix. To authenticate the Matlab scheme of finite difference, it is verified that fluid as well as pollutant fluxes (in and out) are equal. Moreover, time-dependent problem converges to steady-state form after very long time. For monitoring or forecasting the build up of contamination concentration, the pollutant transport model is considerable. As this model is affected by different parameters which are discussed above, can helps to overcome the pollutant accumulation. The solid object is main key to lessen the contamination in the underground. If the entrance or leakage point of the domain is blocked by impermeable object or filled the vertical column with material of low hydraulic conductivity it ultimately slows down or even refrains the pollutant particles to pass through. The pollutant concentration is also minimized by injecting the bioremedial agents with the help of treatment columns.

8.
Sci Total Environ ; 873: 162344, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813196

ABSTRACT

Microplastics and antibiotics were frequently detected in the effluent of sand filtration, while the presence of microplastics may change the interactions between the antibiotics and the quartz sands. However, the influence of microplastics on the transport of antibiotics in sand filtration has not been revealed. In this study, ciprofloxacin (CIP) and sulfamethoxazole (SMX) were respectively grafted on AFM probes to determine the adhesion forces to the representative microplastics (PS and PE) and the quartz sand. CIP and SMX exhibited low and high mobilities in the quartz sands, respectively. Compositional analysis of the adhesion forces indicated that the lower mobility of CIP in sand filtration columns could be attributed to the electrostatic attraction between the quartz sand and CIP compared with repulsion for SMX. Moreover, the significant hydrophobic interaction between the microplastics and the antibiotics could be responsible for the competitive adsorption of the antibiotics to the microplastics from the quartz sands; meanwhile, the π-π interaction further enhanced the adsorption of PS to the antibiotics. As a result of the high mobility of microplastics in the quartz sands, the carrying effect of microplastics enhanced the transport of antibiotics in the sand filtration columns regardless of their original mobilities. This study provided insights into the mechanism of the microplastics on enhancing the transport of antibiotics in sand filtration systems from the perspective of the molecular interaction.


Subject(s)
Anti-Bacterial Agents , Sand , Anti-Bacterial Agents/chemistry , Quartz/chemistry , Plastics/chemistry , Microplastics , Porosity , Ciprofloxacin/chemistry , Sulfamethoxazole , Spectrum Analysis
9.
Sci Total Environ ; 866: 161434, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36623648

ABSTRACT

Insensitive munition constituents derived from residues of low order detonations and deposited on military training grounds present environmental risks. A series of rainfall simulation experiments on small soil plots examined the effect of precipitation, soil properties, and particle size on transport of IMX-104 munition components: NTO (3-nitro-1,2,4-triazol-5-one), DNAN (2,4-dinitroanisole), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7- tertranitro-1,3,5,7-tetrazocine). The primary pathways for rainfall driven transport were subsurface infiltration, off-site transport in solution, and transport in solid form including re-adsorption onto soil particles. The transport was solubility dependent with NTO moving mostly in solution, which was dominated by either runoff or infiltration depending on soil. DNAN, RDX, and HMX, were transported primarily in particulate form. The fine energetic fraction (<2 mm) showed the highest mobility, while the coarsest fraction (>4.75 mm) remained in-situ after rainfall. A simple linear model relating energetics transport with sediment yield and energetics particle size and was proposed. These findings provide the first comprehensive mass balance of munition constituents as affected by overland flow under rainfall. They improve our understanding of environmental fate of munitions, can further be used for predictive modelling, developing mitigation strategies, and regulatory compliance.

10.
J Environ Sci (China) ; 123: 341-349, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521997

ABSTRACT

A variety of methods based on air quality models, including tracer methods, the brute-force method (BFM), decoupled direct method (DDM), high-order decoupled direct method (HDDM), response surface models (RSMs) and so on forth, have been widely used to study the transport of air pollutants. These methods have good applicability for the transport of air pollutants with simple formation mechanisms. However, differences in research conclusions on secondary pollutants with obvious nonlinear characteristics have been reported. For example, the tracer method is suitable for the study of simplified scenarios, while HDDM and RSMs are more suitable for the study for nonlinear pollutants. Multiple observation techniques, including conventional air pollutant observation, lidar observation, air sounding balloons, vehicle-mounted and ship-borne technology, aerial surveys, and remote sensing observations, have been utilized to investigate air pollutant transport characteristics with time resolution as high as 1 sec. In addition, based on a multi-regional input-output model combined with emission inventories, the transfer of air pollutant emissions can be evaluated and applied to study the air pollutant transport characteristics. Observational technologies have advantages in temporal resolution and accuracy, while modeling technologies are more flexible in spatial resolution and research plan setting. In order to accurately quantify the transport characteristics of pollutants, it is necessary to develop a research method for interactive verification of observation and simulation. Quantitative evaluation of the transport of air pollutants from different angles can provide a scientific basis for regional joint prevention and control.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Technology
11.
Environ Sci Pollut Res Int ; 29(59): 88410-88431, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36327084

ABSTRACT

Microplastic (MP) pollution is one of the emerging threats to the water and terrestrial environment, forcing a new environmental challenge due to the growing trend of plastic released into the environment. Synthetic and non-synthetic plastic components can be found in rivers, lakes/reservoirs, oceans, mountains, and even remote areas, such as the Arctic and Antarctic ice sheets. MPs' main challenge is identifying, measuring, and evaluating their impacts on environmental behaviors, such as carbon and nutrient cycles, water and wastewater microbiome, and the associated side effects. However, until now, no standardized methodical protocols have been proposed for comparing the results of studies in different environments, especially in urban water and wastewater. This review briefly discusses MPs' sources, fate, and transport in urban waters and explains methodological uncertainty. The effects of MPs on urban water microbiomes, including urban runoff, sewage wastewater, stagnant water in plumbing networks, etc., are also examined in depth. Furthermore, this study highlights the pathway of MPs and their transport vectors to different parts of ecosystems and human life, particularly through mediating microbial communities, antibiotic-resistant genes, and biogeochemical cycles. Overall, we have briefly highlighted the present research gaps, the lack of appropriate policy for evaluating microplastics and their interactions with urban water microbiomes, and possible future initiatives.


Subject(s)
Microbiota , Microplastics , Humans , Plastics , Wastewater , Water
12.
Environ Sci Pollut Res Int ; 29(58): 87114-87131, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35802329

ABSTRACT

Modeling three-dimensional contaminant transport released from arbitrary shape source geometries is useful in hydrological and environmental sciences. This article produces several analytical solutions for three-dimensional contaminant transport in a homogeneous and isotropic aquifer by using Green's function with the groundwater flow which is assumed to be in three directions. The solutions are obtained for both finite depth aquifer and semi-infinite depth aquifer. Various types of sources are discussed: point, line, plane, or cuboid sources. The continuous and instantaneous sources are also investigated. A MATLAB coding is developed to calculate the numerical integrals which occur at the solutions. Some solutions are verified with the solutions obtained in the literature. This study confirms the effect of groundwater velocities in all directions on the degree and the directions of contaminant spreading. Additionally, the results highlight the significant effect of the geometrical shape of the contaminant sources on contaminant concentrations for instantaneous and continuous sources. In particular, the cuboid source and the horizontal rectangular source provide the highest concentrations. The analytical solutions developed in this article can be applied for a wide range of contaminant transport.

13.
Sci Total Environ ; 846: 157476, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-35868399

ABSTRACT

Since combined sewer systems are still considered as a threat to urban water environment, understand their pollution transport process and load distribution characteristics during rainfall-runoff events would assist to mitigate urban stormwater pollution. In this study, built-up and wash-off processes of particulate pollutants on road surface and in sewer were synchronously observed during eight natural rainfall events in the combined sewer system in Zhuhai, Southern China. Field observation results showed the significant influence of particles size distribution characteristics on TSS concentration. High TSS concentrations (Road runoff, >200 mg/L; combined sewer runoff, >150 mg/L) usually contained relatively coarse particles (>100 µm) during the eight rainfall events, but the counter argument. Combined sewer runoff had a particle size coarser than road runoff. The relationship between the event means concentration (EMC) of TSS from road and combined sewer runoff varied with rainfall. EMC of TSS in road runoff were higher than that in sewer runoff during small rainfall, while that in combined sewer runoff were higher during large rainfall. The results also showed that 65.2 % of total nitrogen (TN) loadings and 62.3 % of total phosphorous (TP) loadings in the catchment came from combined sewer sediments, while 58.6 % of chemical oxygen demand (COD) loadings came from road runoff, which were mainly determined by the content of each pollutant in the sewer sediments and road-deposited sediments (RDS). Additionally, high pollutant loads phases (drainage of pollutant loads faster than runoff at a given incremental time during an event) of road runoff occurred earlier than that of combined sewer runoff. These findings can provide a basis for the type selection and scale determination of stormwater control measures in combined sewer systems.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , China , Dust , Environmental Monitoring/methods , Particle Size , Rain , Water Movements , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 836: 155524, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35489494

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been previously detected near suspected sources in Alabama, but the overall extent of contamination across the state is unknown. This study evaluated the spatial distribution of 17 PFAS within the ten major river basins in Alabama and provided insights into their transport and fate through a mass flux analysis. Six PFAS were identified in 65 out of the 74 riverine samples, with mean ∑6PFAS levels of 35.2 ng L-1. The highest ∑6PFAS concentration of 237 ng L-1 was detected in the Coosa River, a transboundary river that receives discharges from multiple sources in Alabama and Georgia. PFAS distribution was not observed to be uniform across the state: while the Coosa, Alabama, and Chattahoochee rivers presented relatively high mean ∑6PFAS concentrations of 191, 100 and 28.8 ng L-1, respectively, PFAS were not detected in the Conecuh, Escatawpa, and Yellow rivers. Remaining river systems presented mean ∑6PFAS concentrations between 7.94 and 24.7 ng L-1. Although the short-chain perfluoropentanoic acid (PFPeA) was the most detected analyte (88%), perfluorobutanesulfonic acid (PFBS) was the substance with the highest individual concentration of 79.4 ng L-1. Consistent increases in the mass fluxes of PFAS were observed as the rivers flowed through Alabama, reaching up to 63.3 mg s-1, indicating the presence of numerous sources across the state. Most of the mass inputs would not have been captured if only aqueous concentrations were evaluated, since concentration is usually heavily impacted by environmental conditions. Results of this study demonstrate that mass flux is a simple and powerful complementary approach that can be used to broadly understand trends in the transport and fate of PFAS in large river systems.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alabama , Alkanesulfonic Acids/analysis , Environmental Monitoring/methods , Fluorocarbons/analysis , Rivers , Water/analysis , Water Pollutants, Chemical/analysis
15.
Ecotoxicol Environ Saf ; 235: 113435, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35334237

ABSTRACT

Vertical cutoff walls have been widely used in the remediation of contaminated sites. However, determining the best method for evaluating the long-term barrier performance of vertical cutoff walls presents a major difficulty in actual projects. Here, a case study is presented for a typical electroplating, medical, and chemical industrial park in China. Based on the analysis of groundwater pollution characteristics at the site, pollutants included metals (Ni, Al), ammonia nitrogen, and 1,2-dichloroethane. Finite element model simulations of Ni transport at the site showed that a vertical cutoff wall with a thickness of 60 cm and a hydraulic conductivity of 1.0 × 10-8 cm/s could significantly attenuate pollutant transport in the horizontal direction. Compared with other methods such as reducing the hydraulic conductivity or increasing the adsorption retardation factor of the vertical cutoff wall, increasing the thickness was more effective in controlling pollutant transport at the study site. Doubling the thickness would cause the Ni leakage concentration to decrease by more than 98% and the breakthrough time to increase by more than 47 years. It is recommended that the thickness of cutoff walls be maximized to optimize their effects on pollutant transport.


Subject(s)
Environmental Pollution , Groundwater , Manufacturing and Industrial Facilities , China , Environmental Restoration and Remediation/methods , Groundwater/analysis , Water Movements
16.
J Environ Manage ; 293: 112821, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34051534

ABSTRACT

Recently, the optical remote sensing technique is effectively applied to monitor real-time water quality parameters at finer spatiotemporal scales that are mostly based on the surface reflectance of satellite images. However, during the rainy season due to cloudy or hazy satellite images, it is a great challenge to obtain the surface reflectances and to estimate the pollutant concentration. This study is specially focused on developing a novel approach to estimate the daily-scale pollutant concentrations in ungauged rivers during cloudy days. The developed approach integrates the simplified physically-based VPMM-AD(ΨDc) solute transport model with the remote sensing (RS)-based approach for assessing the non-reactive river pollutants in real-time. This integrated VPMM-AD(ΨDc)-RS approach is tested for simulating the in-situ heavy metal (Fe, Zn, Cu, Cr, Pb, and Cd) and total suspended solid (TSS) concentrations in the Brahmani River during the tropical monsoon (rainy) seasons of the typical years 2010-2013. The study results reveal that the proposed integrated approach performed reasonably well with acceptable accuracy for real-time estimation of pollutant concentrations in the considered ungauged river reach during the cloudy period.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Rivers , Water Pollutants, Chemical/analysis
17.
Article in English | MEDLINE | ID: mdl-33805472

ABSTRACT

The 2019-2020 summer wildfire event on the east coast of Australia was a series of major wildfires occurring from November 2019 to end of January 2020 across the states of Queensland, New South Wales (NSW), Victoria and South Australia. The wildfires were unprecedent in scope and the extensive character of the wildfires caused smoke pollutants to be transported not only to New Zealand, but also across the Pacific Ocean to South America. At the peak of the wildfires, smoke plumes were injected into the stratosphere at a height of up to 25 km and hence transported across the globe. The meteorological and air quality Weather Research and Forecasting with Chemistry (WRF-Chem) model is used together with the air quality monitoring data collected during the bushfire period and remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites to determine the extent of the wildfires, the pollutant transport and their impacts on air quality and health of the exposed population in NSW. The results showed that the WRF-Chem model using Fire Emission Inventory (FINN) from National Center for Atmospheric Research (NCAR) to simulate the dispersion and transport of pollutants from wildfires predicted the daily concentration of PM2.5 having the correlation (R2) and index of agreement (IOA) from 0.6 to 0.75 and 0.61 to 0.86, respectively, when compared with the ground-based data. The impact on health endpoints such as mortality and respiratory and cardiovascular diseases hospitalizations across the modelling domain was then estimated. The estimated health impact on each of the Australian Bureau of Statistics (ABS) census districts (SA4) of New South Wales was calculated based on epidemiological assumptions of the impact function and incidence rate data from the 2016 ABS and NSW Department of Health statistical health records. Summing up all SA4 census district results over NSW, we estimated that there were 247 (CI: 89, 409) premature deaths, 437 (CI: 81, 984) cardiovascular diseases hospitalizations and 1535 (CI: 493, 2087) respiratory diseases hospitalizations in NSW over the period from 1 November 2019 to 8 January 2020. The results are comparable with a previous study based only on observation data, but the results in this study provide much more spatially and temporally detailed data with regard to the health impact from the summer 2019-2020 wildfires.


Subject(s)
Air Pollutants , Air Pollution , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , Humans , New South Wales/epidemiology , New Zealand , Pacific Ocean , Particulate Matter/analysis , Queensland , Smoke/analysis , South America , South Australia , Victoria
18.
Mar Pollut Bull ; 164: 112011, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33485016

ABSTRACT

Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Aquaculture , Rivers , Water Quality
19.
Sci Total Environ ; 758: 143936, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33333307

ABSTRACT

Microplastic (MP) particles have been observed in most environments and concentrations are expected to increase over the coming decades given continued and increased production of synthetic polymer products. The expected increase in plastic pollution (including MPs) may elevate the risk posed by these synthetic particles to both environmental and human health. The purpose of this review is to provide a review of the state of knowledge regarding the occurrence and transport of MPs in and across three of the Earths subsystems, specifically, the lithosphere, atmosphere, and hydrosphere. Evidence is presented that shows the lithosphere includes substantial MP accumulation (e.g. approximately 25 particles L-1 in landfill leachate), the impacts of which remain poorly understood. The atmosphere plays an important role in MP transport, with increased occurrence and higher transport concentrations noted in more densely populated areas (e.g. 175 to 313 particles m-2 d-1 in Dongguan China). In the hydrosphere, freshwater ecosystems alternate between MP transport (e.g. rivers) and deposition (e.g. lakes) with flow rate being identified as a key factor determining the movement and fate of MPs. Conversely, marine ecosystems act as a major sink for MP pollution (e.g. MP comprise 94%, approximately 1.69 trillion pieces, of plastic pieces in the Great Pacific Garbage Patch), driven by direct deposition or by transport via the atmosphere or freshwater conveyance systems (e.g. streams, rivers, or ice sheets). Once ingested by organisms, the trophic transfer and bioaccumulation of MPs has been confirmed with the polymer particles potentially accumulating in or impacting fauna, flora, microbes, and humans. Finally, 16 areas are identified in which future MP research efforts should be focused, with the goal of accurately identifying the scope and potential risks posed by synthetic polymer pollution. This review serves as a valuable steppingstone for future research and researchers wishing to address MP research gaps across various environmental settings in the coming decades.

20.
Water Res ; 164: 114911, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31382156

ABSTRACT

The high pollutant loads discharged from cities pose risks to urban waterways, and in turn the estuarine environments, making it challenging to improve urban liveability. Past studies on the behaviour of pollutants in rivers have largely investigated their transport along the waterway, primarily focusing on the movement of water and sediment. However, the current approaches in pollutant transport modelling provide limited insights into how pollutant transfer between water and sediment phases influences their transport from the upstream towards the estuarine environment. This research study firstly identified typical patterns of metal loads along an urban river in a highly populated city in China. The outcomes were then used to conceptualise metal transfer between water and sediment phases. It was noted that physico-chemical characteristics of water and sediments play a key role in metal transfer between the two phases, and the dominant transfer path (sediment to water/water to sediment) is different between different metals, independent of their origin (crustal, anthropogenic or marine-related). Several scenarios were derived from the conceptualisation of metal behaviour. These in turn were then used to develop real-world scenarios of metal transport in rivers based on the field data. The conceptualisation of metal behaviour confirmed that each metal is likely to have a dominant phase of transport (sediment/water), which is influenced by the dominant transfer path of that metal between water and sediments.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , China , Cities , Environmental Monitoring , Geologic Sediments , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL