Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 749
Filter
1.
Article in Chinese | MEDLINE | ID: mdl-38964913

ABSTRACT

Brominated flame retardants (BFRs) are a kind of brominated compounds widely used in electronic and electrical appliances, textiles, construction materials and other industrial products to improve the flame retardant property. Because of its strong chemical stability, environmental persistence, long-distance transmission, biological accumulation, the exposure of humans and organisms in the ecosystem is increasing, and its potential biological effects are of great concern. Now BFRs can be detected in breast milk, serum, placenta and cord blood. Studies have shown that exposure to BFRs during pregnancy can lead to adverse birth outcomes such as low birth weight, malformation, gestational age changes and impairment of neurobehavioral development. This article summarizes the pollution and population exposure of three traditional BFRs, polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA), as well as the impact and mechanism of prenatal exposure on offspring birth outcomes and growth and development. It explores the harm of prenatal exposure to BFRs to offspring and proposes preventive measures for occupational populations for reference.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Brominated , Maternal Exposure , Polybrominated Biphenyls , Prenatal Exposure Delayed Effects , Flame Retardants/toxicity , Pregnancy , Humans , Female , Hydrocarbons, Brominated/toxicity , Halogenated Diphenyl Ethers/toxicity , Maternal Exposure/adverse effects , Polybrominated Biphenyls/toxicity
2.
Toxicology ; 506: 153848, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825032

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are persistent contaminants used as flame retardants in electronic products. PBDEs are contaminants of concern due to leaching and recalcitrance conferred by the stable and hydrophobic bromide residues. The near absence of legislatures and conscious initiatives to tackle the challenges of PBDEs in Africa has allowed for the indiscriminate use and consequent environmental degradation. Presently, the incidence, ecotoxicity, and remediation of PBDEs in Africa are poorly elucidated. Here, we present a position on the level of contamination, ecotoxicity, and management strategies for PBDEs with regard to Africa. Our review shows that Africa is inundated with PBDEs from the proliferation of e-waste due to factors like the increasing growth in the IT sector worsened by the procurement of second-hand gadgets. An evaluation of the fate of PBDEs in the African environment reveals that the environment is adequately contaminated, although reported in only a few countries like Nigeria and Ghana. Ultrasound-assisted extraction, microwave-assisted extraction, and Soxhlet extraction coupled with specific chromatographic techniques are used in the detection and quantification of PBDEs. Enormous exposure pathways in humans were highlighted with health implications. In terms of the removal of PBDEs, we found a gap in efforts in this direction, as not much success has been reported in Africa. However, we outline eco-friendly methods used elsewhere, including microbial degradation, zerovalent iron, supercritical fluid, and reduce, reuse, recycle, and recovery methods. The need for Africa to make and implement legislatures against PBDEs holds the key to reduced effect on the continent.

3.
BJOG ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853304

ABSTRACT

OBJECTIVE: To evaluate the associations of plasma polybrominated diphenyl ether (PBDE) concentrations in early pregnancy with gestational weight gain (GWG). DESIGN: Prospective cohort study. SETTING: US-based, multicentre cohort of pregnant women. POPULATION: We used data from 2052 women without obesity and 397 women with obesity participating in the NICHD Fetal Growth Studies - Singleton Cohort, with first-trimester plasma PBDE concentrations and weight measurements throughout pregnancy. METHODS: We applied generalised linear models and Bayesian kernel machine regression (BKMR) to evaluate both the individual and joint associations of PBDEs with measures of GWG, adjusting for potential confounders. MAIN OUTCOME MEASURES: Total GWG (kg), total and trimester-specific GWG velocities (kg/week), and GWG categories and trajectory groups. RESULTS: Mean pre-pregnancy BMIs were 23.6 and 34.5 kg/m2 for women without and with obesity, respectively. Among women without obesity, there were no associations of PBDEs with any GWG measure. Among women with obesity, one standard deviation increase in log-transformed PBDE 47 was associated with a 1.87 kg higher total GWG (95% CI 0.39-3.35) and a 0.05 kg/week higher total GWG velocity (95% CI 0.01-0.09). Similar associations were found for PBDE 47 in BKMR among women with obesity, and PBDE 47, 99 and 100 were associated with lower odds of being in the low GWG trajectory group. CONCLUSIONS: PBDEs were not associated with GWG among individuals without obesity. Among those with obesity, only PBDE 47 showed consistent positive associations with GWG measures across multiple statistical methods. Further research is needed to validate this association and explore potential mechanisms.

4.
Chemosphere ; : 142611, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878983

ABSTRACT

Bromophenols has been proven to synthesize hydroxylated polybrominated diphenyl ethers (OH-PBDEs), which may pose additional environmental and health risks in the process of bioremediation. In this study, the removal of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) and the biosynthetic of OH-PBDEs by Prorocentrum donghaiense were explored. The removal efficiencies of 2,4-DBP and 2,4,6-TBP ranged from 32.71% to 76.89% and 31.15% to 78.12%, respectively. Low concentrations of 2,4-DBP stimulated algal growth, while high concentrations were inhibitory. Furthermore, exposure to 10.00 mg L-1 2,4-DBP resulted in the detection of 2'-hydroxy-2,3',4,5'-tetrabromodiphenyl ether (2'-OH-BDE-68) within P. donghaiense. In contrast, increasing concentrations of 2,4,6-TBP considerably inhibited P. donghaiense growth, with 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-121) detected within P. donghaiense under 5.00 mg L-1 2,4,6-TBP. Metabolomic analysis further revealed that the synthesized OH-PBDEs exhibited higher toxicity than their precursors and identified the oxidative coupling as a key biosynthetic mechanism. These findings confirm the capacity of P. donghaiense to remove bromophenols and biosynthesize OH-PBDEs from bromophenols, offering valuable insights into formulating algal bioremediation to mitigate bromophenol contamination.

5.
Anal Chim Acta ; 1315: 342756, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38879204

ABSTRACT

BACKGROUND: Dried blood spots (DBSs) collected and archived in newborn screening programs (NSP) represent a potentially valuable resource for assessing exposure to a range of organic and inorganic chemicals in newborns. This study develops and optimizes a method to measure polychlorinated naphthalenes (PCNs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (OCPs) in DBS using the isotope dilution technique, ultrasonic-assisted liquid-liquid extraction, simple cleanup, triple quadrupole GC-MS/MS analysis, and background correction. RESULTS: We minimize the number of extraction repetitions and the volume of solvent, which helps increase throughput while minimizing the potential for contamination. We obtained high recovery and precision for most compounds, and method detection limits (MDLs) were sufficiently low to detect the more prevalent compounds based on representative sample of the US population. MDLs averaged 0.020 ng/mL (recovery: 107 %, precision: 4 %) for PCNs, 0.021 ng/mL (recovery: 97 %, precision: 4 %) for PCBs, 0.021 ng/mL (recovery: 117 %, precision: 2 %) for OCPs, and 0.021 ng/mL (recovery: 96 %, precision: 3 %) for PBDEs. SIGNIFICANCE AND NOVELTY: To our knowledge, this is the first study presenting an analytical method and for PCNs in DBS, and one of the few studies providing an assessment of method performance for persistent organic pollutants in DBS. The optimized method can be applied to a wide range of applications, including exposure assessment, environmental epidemiology, forensics, environmental surveillance, and ecological monitoring.


Subject(s)
Dried Blood Spot Testing , Naphthalenes , Persistent Organic Pollutants , Tandem Mass Spectrometry , Dried Blood Spot Testing/methods , Humans , Naphthalenes/blood , Persistent Organic Pollutants/blood , Tandem Mass Spectrometry/methods , Halogenated Diphenyl Ethers/blood , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/blood , Polychlorinated Biphenyls/analysis , Liquid-Liquid Extraction/methods , Hydrocarbons, Chlorinated/blood , Hydrocarbons, Chlorinated/analysis , Infant, Newborn , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Pesticides/blood , Pesticides/analysis
6.
Am J Epidemiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38879743

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) exposure is associated with preterm birth. Laboratory studies suggest that PBDEs lead to elevated oxidative stress, a known contributor to preterm birth in epidemiologic studies. We hypothesized that elevated levels of PBDEs would be associated with increased oxidative stress during human pregnancy. Participants in this analysis were enrolled in the Chemicals in Our Bodies cohort and resided in the San Francisco Bay Area (N=201). Four PBDEs (BDE-47, -99, -100, -153) were measured in second trimester serum. Urinary oxidative stress biomarkers were measured at two timepoints (second and third trimester) and included 8-isoprostane-prostaglandin-F2α [8-iso-PGF2α], 2,3-dinor-5,6-dihydro-8-iso-PGF2α, 2,3-dinor-8-iso-PGF2α, and prostaglandin-F2α [PGF2α]. Associations between individual PBDEs and oxidative stress biomarkers (averaged and trimester specific) were examined using linear regression. Quantile g-computation and Bayesian kernel machine regression (BKMR) were used to assess cumulative effects of PBDEs. Quantile g-computation showed that higher concentrations of PBDEs were associated with increasing 8-iso-PGF2α, 2,3-dinor-8-iso-PGF2α, and PGF2α. Associations were greatest in magnitude for second trimester levels of 2,3-dinor-8-iso-PGF2α (mean change per quartile increase=0.25, 95% confidence interval=0.09, 0.41). Associations were similar using BKMR and linear regression. Our findings suggest that oxidative stress may be a plausible biological pathway by which PBDE exposure might lead to preterm birth.

7.
Chemosphere ; 361: 142488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821124

ABSTRACT

Brominated flame retardants (BFRs) are synthetic chemicals incorporated into a wide variety of products, both for industrial applications and everyday use, with the primary aim of reducing their flammability or reducing the material burning rate. These compounds find widespread use in plastics, textiles, and electrical/electronic devices. However, BFRs can be released from products and, thus are determined in many environmental matrices such as soil, water and air.This review discuss the potential health implications of selected BFRs (PBDEs and TBBPA) exposure arising from their impact on the epigenetic mechanisms. Epigenetic modifications, such as DNA methylation and histone acetylation or methylation, as well as changes in miRNA pattern, play significant roles in gene expression and cell function and can be influenced by environmental factors.The studies indicate that PBDEs exposure can lead to global DNA hypomethylation, disrupting normal gene regulation and contributing to genomic instability. In animal models, PBDEs have been associated with adverse effects on neurodevelopment, including impairments in memory and learning. TBBPA exposure has also been linked to changes in DNA methylation patterns, alterations in histone posttranslational modifications and non-coding RNA expression. These epigenetic changes may contribute to health issues related to growth, development, and endocrine functions.The growing evidence of epigenetic modifications induced by BFRs exposure highlights the importance of understanding their potential risks to human health. Further investigations are needed to fully elucidate the long-term consequences of altered epigenetic marks and their impact on human health.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Flame Retardants , Halogenated Diphenyl Ethers , Polybrominated Biphenyls , Flame Retardants/toxicity , Epigenesis, Genetic/drug effects , Humans , Halogenated Diphenyl Ethers/toxicity , Polybrominated Biphenyls/toxicity , DNA Methylation/drug effects , Animals , Environmental Exposure , Environmental Pollutants/toxicity
8.
Environ Pollut ; 352: 124110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723705

ABSTRACT

Due to differences in chemical properties and half-lives, best practices for exposure assessment may differ for legacy versus novel brominated flame retardants (BFRs). Our objective was to identify the environment matrix that best predicted biomarkers of children's BFR exposures. Paired samples were collected from children aged 3-6 years and their homes, including dust, a small piece of polyurethane foam from the furniture, and a handwipe and wristband from each child. Biological samples collected included serum, which was analyzed for 11 polybrominated diphenyl ethers (PBDEs), and urine, which was analyzed for tetrabromobenzoic acid (TBBA), a metabolite of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Significant positive correlations were typically observed between BFRs measured in dust, handwipes and wristbands, though wristbands and handwipes tended to be more strongly correlated with one another than with dust. PBDEs, EH-TBB and BEH-TEBP were detected in 30% of the sofa foam samples, suggesting that the foam was treated with PentaBDE or Firemaster® 550/600 (FM 550/600). PBDEs were detected in all serum samples and TBBA was detected in 43% of urine samples. Statistically significant positive correlations were observed between the environmental samples and serum for PBDEs. Urinary TBBA was 6.86 and 6.58 times more likely to be detected among children in the highest tertile of EH-TBB exposure for handwipes and wristbands, respectively (95 % CI: 2.61, 18.06 and 1.43, 30.05 with p < 0.001 and 0.02, respectively). The presence of either PentaBDE or FM 550/600 in furniture was also associated with significantly higher levels of these chemicals in dust, handwipes and serum (for PBDEs) and more frequent detection of TBBA in urine (p = 0.13). Our results suggest that children are exposed to a range of BFRs in the home, some of which likely originate from residential furniture, and that silicone wristbands are a practical tool for evaluating external exposure to both legacy and novel BFRs.


Subject(s)
Environmental Exposure , Flame Retardants , Halogenated Diphenyl Ethers , Flame Retardants/analysis , Humans , Halogenated Diphenyl Ethers/blood , Child , Child, Preschool , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Female , Male , Dust/analysis , Environmental Pollutants/urine , Environmental Pollutants/blood , Environmental Monitoring , Housing , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/analysis
9.
Environ Pollut ; 353: 124162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754691

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) in soils posed potential risks to crop growth and food safety due to their prevalence and persistence. PBDEs were capable of being absorbed and accumulated into crops, impacting their growth, whereas the interference on metabolic components and nutritional composition deserves further elucidation. This study integrated a combined non-targeted and targeted metabolomics method to explore the influences of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) and decabromodiphenyl ether (BDE-209) on the metabolic responses of rice (Oryza sativa). Metabolic pathways, which were associated with sugars, organic acids, and amino acids, were significantly disturbed under PBDE stresses. Particularly, 75% of the marked altered pathways belonged to amino acid metabolism, with alanine/aspartate/glutamate metabolism being commonly enhanced. The degradation of aspartic acid promoted the formation of downstream amino acids, among which the levels of lysine, methionine, isoleucine, and asparagine were increased by 1.31-3.15 folds compared to the control. Thus, the antioxidant capacity in rice plants was enhanced, particularly through the significant promotion of ascorbic acid-glutathione (AsA-GSH) cycle in rice leaves. The amino acids were promoted to resist reactive oxygen species (ROS) efficiently, thus were deficient for nutrient storage. When exposed to 4 µmol/kg PBDEs, the contents of amino acids and proteins in grains decreased by 9.1-32.1% and 8.6-34.8%, respectively. In particular, glutelin level was decreased by 5.6-41.2%, resulting in a decline in nutritional quality. This study demonstrated that PBDEs deteriorated the protein nutrition in rice grains by affecting amino acid metabolism, providing a new perspective for evaluating the ecological risks of PBDEs and securing agricultural products.


Subject(s)
Amino Acids , Halogenated Diphenyl Ethers , Oryza , Soil Pollutants , Oryza/metabolism , Halogenated Diphenyl Ethers/metabolism , Amino Acids/metabolism , Soil Pollutants/metabolism , Plant Proteins/metabolism , Edible Grain/metabolism , Edible Grain/chemistry
10.
Chem Biodivers ; : e202401179, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808458

ABSTRACT

Natural polybrominated diphenyl ethers are generally isolated from sponges and possess a broad range of biological activities. Through screening of our marine natural product library, we discovered that polybrominated diphenyl ethers 5 and 6 exhibit considerable anti-inflammatory activity. In order to expand our repertoire of derivatives for further biological activity studies, we designed and synthesized a series of 5-related polybrominated diphenyl ethers. Importantly, compound 5a showed comparable anti-inflammatory activity while much lower cytotoxicity on lipopolysaccharide (LPS)-induced RAW264.7 cells. Additionally, western blotting analysis showed that 5a reduced the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). Besides, molecular docking experiments were conducted to predict and elucidate the potential mechanisms underlying the varying anti-inflammatory activities exhibited by compounds 5a, 5, and 6.

11.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792195

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) have been used for many years as flame retardants. Due to their physicochemical and toxicological properties, they are considered to be persistent organic pollutants (POPs). BDE-209 is the main component of deca-BDE, the one PBDE commercial mixture currently approved for use in the European Union. The aim of this study was to analyse BDE-209 in surface soil samples from Warsaw and surrounding areas (Poland) as an indicator of environmental pollution with PBDEs, and to characterise the associated health risk. A total of 40 samples were analysed using gas chromatography with electron capture detection (GC-µECD). Concentrations of BDE-209 in soil ranged from 0.4 ng g-1 d.w. (limit of quantification) to 158 ng g-1 d.w. Overall, 52.5% of results were above the method's limit of quantification. The highest levels were found at several locations with heavy traffic and in the vicinity of a CHP plant in the city. The lowest concentrations were observed in most of the samples collected from low industrialized or green areas (<0.4 to 1.68 ng g-1 d.w.). Exposure to BDE-209 was estimated for one of the most sensitive populations, i.e., young children. The following exposure routes were selected: oral and dermal. No risk was found to young children's health.


Subject(s)
Halogenated Diphenyl Ethers , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Humans , Soil Pollutants/analysis , Soil/chemistry , Poland , Environmental Monitoring/methods , Environmental Exposure/analysis , Flame Retardants/analysis , Risk Assessment , Administration, Oral
12.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701378

ABSTRACT

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Subject(s)
Biomarkers , Flame Retardants , Halogenated Diphenyl Ethers , Occupational Exposure , Organophosphates , Flame Retardants/metabolism , Humans , Inhalation Exposure , Adult , Male , Skin/metabolism , United States , Female
13.
Bull Environ Contam Toxicol ; 112(5): 75, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733395

ABSTRACT

This study systematically investigated the pollution levels and migration trends of PBDEs in soils and plants around engineering plastics factory, and identified the ecological risks of PBDEs in the environment around typical pollution sources.The results showed that 13 kinds of PBDEs were widely detected in the surrounding areas, and the concentration level was higher than the general environmental pollution level. The total PBDE concentrations (∑13PBDEs) in soils ranged from 14.6 to 278.4 ng/g dry weight (dw), and in plants ranged from 11.5 to 176 ng/g dw. Both soil and plant samples showed that BDE-209 was the most important congener, the pollution level in soil and plant was similar, and the composition of PBDEs congener was similar. In the soil column (50 cm), the radial migration of PBDEs was mainly concentrated in the 0-30 cm section. Except for BDE-66, which was mainly located in the 20-30 cm soil layer, the concentration of PBDEs was the highest in the 0-10 cm region. Furthermore, the environmental risks of PBDEs in soil and plants were evaluated by hazard quotient method, and the HQ values were all < 1, which did not exhibit any ecological risk. The evaluation results also showed that the ecological risk of PBDEs in soil was higher than that of plants, especially penta-BDE, which should be paid more attention.


Subject(s)
Environmental Monitoring , Halogenated Diphenyl Ethers , Plastics , Soil Pollutants , Soil , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Risk Assessment , Soil/chemistry , Plastics/analysis , Plants , China
14.
J Hazard Mater ; 472: 134594, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38754233

ABSTRACT

Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.


Subject(s)
Biotransformation , Halogenated Diphenyl Ethers , Iron , Halogenated Diphenyl Ethers/metabolism , Halogenated Diphenyl Ethers/chemistry , Iron/chemistry , Iron/metabolism , Environmental Pollutants/metabolism , Environmental Pollutants/chemistry , Flame Retardants/metabolism , Adsorption , Plants/metabolism
15.
Environ Int ; 186: 108635, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38631261

ABSTRACT

To overcome ethical and technical challenges impeding the study of human dermal uptake of chemical additives present in microplastics (MPs), we employed 3D human skin equivalent (3D-HSE) models to provide first insights into the dermal bioavailability of polybrominated diphenyl ether (PBDEs) present in MPs; and evaluated different factors influencing human percutaneous absorption of PBDEs under real-life exposure scenario. PBDEs were bioavailable to varying degrees (up to 8 % of the exposure dose) and percutaneous permeation was evident, albeit at low levels (≤0.1 % of the exposure dose). While the polymer type influenced the release of PBDEs from the studied MPs to the skin, the polymer type was less important in driving the percutaneous absorption of PBDEs. The absorbed fraction of PBDEs was strongly correlated (r2 = 0.88) with their water solubility, while the dermal permeation coefficient Papp of PBDEs showed strong association with their molecular weight and logKOW. More sweaty skin resulted in higher bioavailability of PBDEs from dermal contact with MPs than dry skin. Overall, percutaneous absorption of PBDEs upon skin contact with MPs was evident, highlighting, for the first time, the potential significance of the dermal pathway as an important route of human exposure to toxic additive chemicals in MPs.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Microplastics , Polyethylene , Polypropylenes , Skin Absorption , Humans , Halogenated Diphenyl Ethers/pharmacokinetics , Skin/metabolism , Models, Biological
16.
J Chromatogr A ; 1722: 464870, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38604058

ABSTRACT

Birds are excellent bioindicators of environmental pollution, and blood provides information on contaminant exposure, although its analysis is challenging because of the low volumes that can be sampled. The objective of the present study was to optimize and validate a miniaturized and functional extraction and analytical method based on gas chromatography coupled to Orbitrap mass spectrometry (GCOrbitrap-MS) for the trace analysis of contaminants in avian blood. Studied compounds included 25 organochlorine pesticides (OCPs), 6 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs) and 15 polycyclic aromatic hydrocarbons (PAHs). Four extraction and clean-up conditions were optimized and compared in terms of efficiency, accuracy, and uncertainty assessment. Extraction with hexane:dichloromethane and miniaturized Florisil pipette clean-up was the most adequate considering precision and accuracy, time, and costs, and was thereafter used to analyse 20 blood samples of a pelagic seabird, namely the Bermuda petrel (Pterodroma cahow). This species, endemic to the Northwest Atlantic, is among the most endangered seabirds of the region that in the '60 faced a decrease in the breeding success likely linked to a consistent exposure to dichloro-diphenyl-trichloroethane (DDT). Indeed, p,p'-DDE, the main DDT metabolite, was detected in all samples and ranged bewteen 1.13 and 6.87 ng/g wet weight. Other ubiquitous compounds were PCBs (ranging from 0.13 to 6.76 ng/g ww), hexachlorobenzene, and mirex, while PAHs were sporadically detected at low concentrations, and PBDEs were not present. Overall, the extraction method herein proposed allowed analysing very small blood volumes (∼ 100 µL), thus respecting ethical principles prioritising the application of less-invasive sampling protocols, fundamental when studying threatened avian species.


Subject(s)
Birds , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated , Pesticides , Animals , Gas Chromatography-Mass Spectrometry/methods , Pesticides/blood , Hydrocarbons, Chlorinated/blood , Polychlorinated Biphenyls/blood , Halogenated Diphenyl Ethers/blood , Polycyclic Aromatic Hydrocarbons/blood , Polycyclic Aromatic Hydrocarbons/analysis , Endangered Species , Environmental Monitoring/methods , Environmental Pollutants/blood , Environmental Pollutants/analysis
17.
Environ Pollut ; 350: 124002, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636834

ABSTRACT

Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.


Subject(s)
Environmental Pollutants , Food Contamination , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , China , Animals , Humans , Food Contamination/analysis , Food Contamination/statistics & numerical data , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Polychlorinated Dibenzodioxins/analysis , Risk Assessment , Dietary Exposure/statistics & numerical data , Adult , Child , Environmental Monitoring , Eggs/analysis
18.
Mar Pollut Bull ; 202: 116040, 2024 May.
Article in English | MEDLINE | ID: mdl-38569301

ABSTRACT

This study investigated the concentrations of 39 polybrominated diphenyl ether (PBDE) congeners in sediments from three rivers in the western Niger Delta of Nigeria that have been affected by pollution from urbanization and industrial activities. The Σ39 PBDE concentrations in sediments from these rivers ranged from 0.29 to 95.5, 5.15 to 121, and 0.73 to 66.1 ng g-1 for the Afiesere (AR), Edor (ER), and Okpare Rivers (OR), respectively. The homologue distribution patterns indicated the prominence of tetra- and penta-BDE congeners in sediments from these rivers. The ecological risk assessment results showed that the penta-BDEs were the primary source of risk to sediment-dwelling organisms in these rivers. However, the human health risk assessment indicated negligible risks for exposure of both adults and children to PBDEs in these sediments. The source apportionment suggests that the PBDE contamination in these river sediments was derived from long-distance migration, debromination of highly brominated congeners, and commercial penta-BDEs. These results reflect the use of penta-BDE formulations in this region rather than octa- and deca-BDE formulations.


Subject(s)
Environmental Monitoring , Geologic Sediments , Halogenated Diphenyl Ethers , Rivers , Water Pollutants, Chemical , Halogenated Diphenyl Ethers/analysis , Nigeria , Rivers/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Risk Assessment , Humans
19.
Waste Manag ; 179: 192-204, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38484540

ABSTRACT

Research to prevent releases of brominated flame retardants listed as persistent organic pollutants by the Stockholm Convention (POP-BFRs) was conducted through an international cooperation project in Colombia. Six waste electrical and electronic equipment (WEEE) management facilities implemented: 1) sorting e-waste by product type and color (black, white, and other; henceforth called chromoproducts), 2) sampling test products and their plastic fraction (called sets, separated by polymer type), 3) monitoring mass, bromine and antimony contents by hand-held X-ray fluorescence (XRF) and POP-BFRs such as polybrominated diphenyl ethers (PBDEs) by gas chromatography and mass spectrometry (GC-MS), and 4) differentiated treatment according to categories that used the Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (RoHS) hazardousness threshold of 1000 mg ∑PBDEs/kg. This scheme led to the proposal of a methodology for WEEE management called the "chromoproduct approach". 994,230 products were managed and grouped into 222 chromoproducts, from which 77 were analyzed: 50 below RoHS hazardousness (BRH), 16 above RoHS hazardousness (ARH), and 11 unknown RoHS hazardousness (URH). XRF indicators using bromine and antimony contents could rule out pollution in BRH chromoproducts; however, categorization still required GC-MS. One ARH plastics sample had 3620 mg ∑PBDEs/kg, while no POP-BFRs were found in the BRH plastics sample. The implementation of the chromoproduct approach traced 153.6 tonnes of ARH plastics. BRH plastics composition was estimated and used in a pilot-scale closed-loop economic activity. The chromoproduct approach seems promising for avoiding POP-BFR releases and promoting the upcycling of recyclable e-waste plastics.


Subject(s)
Electronic Waste , Flame Retardants , Plastics/analysis , Electronic Waste/analysis , Colombia , Antimony/analysis , Bromine/analysis , Waste Products/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis
20.
Environ Res ; 251(Pt 2): 118605, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38458587

ABSTRACT

BACKGROUND: Polybrominated diphenyl ethers (PBDEs), a series of worldwide applied flame retardants, may influence fetal growth and interfere with thyroid function. The study intended to explore the relationship between in-utero exposure to PBDE mixture and newborn anthropometric indexes and to further examine the potential mediating role of thyroid function. METHODS: Demographics and laboratory measures of 924 mother-infant pairs were obtained from the database of the Sheyang Mini Birth Cohort Study. We applied gas chromatography-mass spectrometry (GC-MS) and electrochemiluminescence immunoassay to measure nine PBDE congeners and seven thyroid function parameters in umbilical cord serum samples, respectively. We fitted generalized linear models and Bayesian kernel machine regression (BKMR) to evaluate associations of lipid-adjusted cord serum PBDEs, as individuals and as a mixture, with newborn anthropometric and cord serum thyroid function parameters. We applied causal mediation analysis to test our hypothesis that thyroid function parameters act as a mediator between PBDEs and birth outcomes. RESULTS: The molarity of cord serum ∑9PBDE had a median value of 31.23 nmol/g lipid (IQR 19.14 nmol/g lipid, 54.77 nmol/g lipid). BDE-209 was the most dominant congener. Birth length was positively associated with both single exposure to BDE-28 and cumulative exposure to PBDEs. Correspondingly, ponderal index (PI) was negatively associated with BDE-28 and the total effects of PBDE mixture. Free triiodothyronine had a negative trend with BDE-209 and PBDE mixture. In the sex-stratified analysis, BDE-153 concentrations were positively correlated with PI among males (ß = 0.03; 95%CI: 0.01, 0.05; P = 0.01) but not among females. Cord serum thyrotropin mediated 14.92% of the estimated effect of BDE-153 on PI. CONCLUSIONS: In-utero mixture exposure to PBDEs was associated with birth outcomes and thyroid function. Thyroid function might act as a mediator in the process in which PBDEs impact the growth of the fetus.


Subject(s)
Environmental Pollutants , Fetal Blood , Halogenated Diphenyl Ethers , Humans , Halogenated Diphenyl Ethers/blood , Female , Fetal Blood/chemistry , Pregnancy , Adult , Infant, Newborn , Environmental Pollutants/blood , Male , Birth Cohort , Thyroid Gland/drug effects , Maternal Exposure/adverse effects , Cohort Studies , China
SELECTION OF CITATIONS
SEARCH DETAIL
...