Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.221
Filter
1.
J Biomater Sci Polym Ed ; : 1-15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949409

ABSTRACT

The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (Tm). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.

2.
Appl Environ Microbiol ; : e0093324, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953372

ABSTRACT

Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE: SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.

3.
Nanomedicine (Lond) ; : 1-15, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953843

ABSTRACT

Aim: This study focused on developing a topical gel incorporating lornoxicam-loaded poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) blend nanoparticles to mitigate gastrointestinal (GIT) side effects and enhance therapeutic efficacy. Materials & methods: Synthesized nanoparticles were subjected to in vitro characterization, ex vivo permeation studies, and acute oral toxicity analysis post-incorporation into the gel using a S/O/W double emulsion solvent. Results & conclusion: The nanoparticles displayed a smooth, spherical morphology (170-321 nm) with increased entrapment efficiency (96.2%). LOX exhibited a permeation rate of 70-94% from the nanoparticle-infused gel, demonstrating favorable biocompatibility at the cellular level. The formulated gel, enriched with nanoparticles, holds promising prospects for drug-delivery systems and promising improved therapeutic outcomes for LOX.


[Box: see text].

4.
Colloids Surf B Biointerfaces ; 241: 114064, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954937

ABSTRACT

Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.

5.
Environ Pollut ; : 124484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960120

ABSTRACT

Sundarban, a Ramsar site of India, has been encountering an ecological threat due to the presence of microplastic (MP) wastes generated from different anthropogenic sources. Clibanarius longitarsus, an intertidal hermit crab of Sundarban Biosphere Reserve, resides within the abandoned shell of a gastropod mollusc, Telescopium telescopium. We characterized and estimated the MP in the gills and gut of hermit crab, as well as in the water present in its occupied gastropod shell. The average microplastic abundance in sea water, sand and sediment were 0.175 ± 0.145 MP L-1, 42 ± 15.03 MP kg-1 and 67.63 ± 24.13 MP kg-1 respectively. The average microplastic load in hermit crab was 1.94 ± 0.59 MP crab-1, with 33.89 % and 66.11 % in gills and gut respectively. Gastropod shell water exhibited accumulation of 1.69 ± 1.43 MP L-1. Transparent and fibrous microplastics were documented as the dominant polymers of water, sand and sediment. Shell water exhibited the prevalence of green microplastics followed by transparent ones. Microscopic examination revealed microplastics with 100-300 µm size categories were dominant across all abiotic compartments. ATR-FTIR and Raman spectroscopy confirmed polyethylene and polypropylene as the prevalent polymers among the five identified polymers of biotic and abiotic components. The target group index indicated green and black as the preferable microplastics of crab. The ecological risk analysis indicated a considerable level of environmental pollution risk in Sundarban and its inhabiting organisms. This important information base may facilitate in developing a strategy of mitigation to limit the MP induced ecological risk at Sundarban Biosphere Reserve.

6.
Nanotoxicology ; : 1-19, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958196

ABSTRACT

Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.

7.
Sci Rep ; 14(1): 14980, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951137

ABSTRACT

Polyethylene glycols (PEGs) are used in industrial, medical, health care, and personal care applications. The cycling and disposal of synthetic polymers like PEGs pose significant environmental concerns. Detecting and monitoring PEGs in the real world calls for immediate attention. This study unveils the efficacy of time-of-flight secondary ion mass spectrometry (ToF-SIMS) as a reliable approach for precise analysis and identification of reference PEGs and PEGs used in cosmetic products. By comparing SIMS spectra, we show remarkable sensitivity in pinpointing distinctive ion peaks inherent to various PEG compounds. Moreover, the employment of principal component analysis effectively discriminates compositions among different samples. Notably, the application of SIMS two-dimensional image analysis visually portrays the spatial distribution of various PEGs as reference materials. The same is observed in authentic cosmetic products. The application of ToF-SIMS underscores its potential in distinguishing PEGs within intricate environmental context. ToF-SIMS provides an effective solution to studying emerging environmental challenges, offering straightforward sample preparation and superior detection of synthetic organics in mass spectral analysis. These features show that SIMS can serve as a promising alternative for evaluation and assessment of PEGs in terms of the source, emission, and transport of anthropogenic organics.


Subject(s)
Cosmetics , Polyethylene Glycols , Spectrometry, Mass, Secondary Ion , Cosmetics/analysis , Cosmetics/chemistry , Spectrometry, Mass, Secondary Ion/methods , Polyethylene Glycols/chemistry , Polyethylene Glycols/analysis , Principal Component Analysis
8.
EFSA J ; 22(7): e8878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966136

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

9.
J Environ Manage ; 365: 121704, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968892

ABSTRACT

The occurrence of microplastics (MPs) in wastewater has been studied in the last years. The high efficiency of their removal from wastewater is linked to their transfer to the sludge. In this work, the effect of high-density polyethylene (HDPE) on aerobic digestion was evaluated and these MPs were monitored, characterizing them by three different techniques. Two parallel batch digesters were monitored. AD-Control (meaning Aerobic Digester) operated as a reference, with no external HDPE particles, whereas these polymeric fragments were introduced to the second aerobic digester (AD-HDPE) using ring pulls as microplastic support. FTIR, Raman spectroscopies and fluorescence analysis of these microparticles showed some relevant results that should be highlighted. Higher fluorescence appeared after 7 days in the digester. It coincided with an increase of active volatile suspended solids (AVSS) in the AD-HDPE, which means that an increase of the microbial activity took place. Despite the presence of HDPE particles in the sludge, the digester performance was not compromised. Besides, the HDPE particles did not affect the microbial diversity (Shannon index) of the bacterial community at the end of the experiment compared to the bacterial community of the aerobic digester control tank. Based on the analysis of the relative abundances of microbial taxa, it was concluded that HDPE had selective effects on sludge microbial community, increasing the relative abundance of Bacteroridota phylum.

10.
Sci Total Environ ; : 174484, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969134

ABSTRACT

Micro- and nano-plastics (MPs/NPs) have emerged as a global pollutant, yet their impact on the root environment of plants remains scarcely explored. Given the widespread pollution of phthalate esters (PAEs) in the environment due to the application of plastic products, the co-occurrence of MPs/NPs and PAEs could potentially threaten the growth medium of plants. This study examined the combined effects of polystyrene (PS) MPs/NPs and PAEs, specifically dibutyl phthalate and di-(2-ethylhexyl) phthalate, on the chemical properties and microbial communities in a wheat growth medium. It was observed that the co-pollution with MPs/NPs and PAEs significantly increased the levels of oxalic acid, formic acid, and total organic carbon (TOC), enhanced microbial activity, and promoted the indigenous input and humification of dissolved organic matter, while slightly reduced the pH of the medium solution. Although changes in chemical indices were primarily attributed to the addition of PAEs, no interaction between PS MPs/NPs and PAEs was detected. High-throughput sequencing revealed no significant change in microbial diversity within the media containing both PS MPs/NPs and PAEs, compared to the media with PS MPs/NPs alone. However, alterations in energy and carbohydrate metabolism were noted. Proteobacteria dominated the bacterial communities in the medium solution across all treatment groups, followed by Bacteroidetes and Verrucomicrobia. The composition and structure of these microbial communities varied with the particle size of the PS, in both single and combined treatments. Moreover, variations in TOC, oxalic acid, and formic acid significantly influenced the bacterial community composition in the medium, suggesting they could modulate the abundance of dominant bacteria to counteract the stress from exogenous pollutants. This research provides new insights regarding the combined effects of different sizes of PS particles and another abiotic stressor in the wheat root environment, providing a critical foundation for understanding plant adaptation in complex environmental conditions.

11.
Heliyon ; 10(11): e32545, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961955

ABSTRACT

The production and consumption of vegetables, such as tomatoes, have been growing in recent years, due to the combination of several factors, such as market demand, investment in research, education and awareness about health benefits, as well as government incentives and improvements in cultivation technology. The combination of these factors results in an increasing demand for products that offer health benefits, such as tomatoes rich in antioxidants, which help combat free radicals in cells. To maintain most of the nutritional and sensory properties characteristic of the fresh product, it is important to identify the parameters that will help in maintenance. Thus, the study aims to characterize the influence of different packages and storage times with the variables of tomato. The experiment examined the storage of two tomato derivatives (atomized tomato and chips) using various packaging types and storage durations. It utilized a factorial design (2 × 4) with an extra control treatment, comprising 3 replications. Packaging options included low-density polyethylene plastic bags and laminated plastic bags with aluminum foil, while storage durations ranged from 10 to 40 days. Parameters related to color (°Hue and chroma), flavor (pH, titratable acidity, soluble solids, and maturation index), and bioactive compounds (lycopene and ß-carotene) of two tomato derivatives (atomized tomato and chips) were analyzed. After the analyzes, it was observed that the transparent package was the one that allowed the best conservation among the studied variables of the atomized tomato derivative, the same happened for the laminated packaging for the derivative chips. Regarding storage time, 20 days showed the best results regarding the conservation of flavor and bioactive compounds.

12.
J Mech Behav Biomed Mater ; 157: 106642, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38963998

ABSTRACT

Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.

13.
J Arthroplasty ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964487

ABSTRACT

INTRODUCTION: There is a paucity of data beyond 15 years on the survivorship of total hip arthroplasty since the introduction of highly cross-linked polyethylene (HXLPE) liners. Our aim was to evaluate implant survivorship, liner wear rates, and clinical outcomes after primary THA using HXLPE liners implanted between 1999 and 2002. METHODS: Between 1999 and 2002, 690 primary THAs utilizing 28-mm femoral heads and HXLPE liners of a single design were identified using our institutional total joint registry. Femoral heads were made of metal in 96% of cases and ceramic in 4%. The mean age was 56 years, 48% were women, and the mean BMI was 30. Survivorship analyses were performed for the outcomes of implant revision, reoperation, and complications for the entire cohort. Linear HXLPE liner wear rates were determined on 197 hips with radiographs with more than 18.5 years of follow-up. RESULTS: At 20 years, survivorship free of revision was 94%, free of reoperation was 92%, and free of any complication was 81%. There were no documented wear-related revisions. The linear wear rate at a mean of 20.3 years postoperatively was 0.02 mm/year. There was no statistically significant difference in measured wear observed between the first available postoperative radiographs and those taken at the final follow-up. The use of elevated liners, patient BMI, age, preoperative diagnosis, acetabular component inclination, and anteversion angles were not associated with increased wear rates. Mean Harris Hip Scores improved from 52 preoperatively to 90 at greater than 18.5 years. CONCLUSIONS: Primary THAs using a single first generation HXLPE liner demonstrated excellent survivorship and clinical outcomes at long-term follow-up with no wear-related revisions. Wear rates of HXLPE liners at 20 years are exceedingly low and are not significantly impacted by acetabular component position or patient-dependent variables such as BMI. LEVEL OF EVIDENCE: IV.

14.
Chemosphere ; 362: 142769, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969227

ABSTRACT

Recycling and reuse of agricultural plastics is an urgent worldwide issue. In this work, it is shown that low-density polyethylene (PE) typically used in mulch films can be converted into high-capacity P and N adsorbents through a two-step method that uses hydrothermal pretreatment (180 °C, 24 h) followed by pyrolysis at 500 °C with Ca(OH)2 additive. CaPE@HC500 materials prepared with the proposed two-step method were found to have high adsorption capacities for phosphate (263.6 mg/g) and nitrogen (200.7 mg/g) over wide ranges of pH (3-11). Dynamic adsorption of phosphate by CaPE@HC500 material in a packed-bed had a half-time breakthrough of 210 min indicating the feasibility of continuous systems. Material stability, cost, environmental-friendliness, and recyclability of the CaPE@HC500 material were determined to be superior to literature-proposed Ca-containing adsorbents. The two-step method for converting waste agricultural plastic mulch films into adsorbents is robust and highly-applicable to industrial settings.

15.
Sci Total Environ ; 946: 174490, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969109

ABSTRACT

Mulching films, widely used in agriculture, are a large source of microplastics (MPs) to soil. However, there is little knowledge on the long-term effects of agricultural MPs on soil invertebrates. We investigated the effects of MPs from conventional non-biodegradable, fossil-based, low-density polyethylene (PE) and biodegradable fossil-based poly(butylene adipate-coterephthalate) (starch-PBAT blend) mulching films on two generations of the mealworm Tenebrio molitor. No effects of MPs (0.005 %-5 %, w/w dry food) on mealworm development and survival were observed until the end of the experiments (12 weeks for the first generation, nine weeks for the second generation), but effects on their moulting and growth were observed. These were most evident for PE MPs (5 %, w/w), where a decrease in larval growth and moulting was noted in the first generation. On the contrary, PBAT MPs (5 %, w/w) significantly induced the growth of mealworms in the second generation. In addition, there was a non-significant trend towards increased growth at all other PBAT MP exposure concentrations. Increased growth is most likely due to the biodegradation of starch PBAT MPs by mealworms. Overall, these data suggest that PE and PBAT MPs do not induce significant effects on mealworms at environmentally relevant concentrations, but rather only at very high exposure concentrations (5 %).

16.
J Hazard Mater ; 476: 135061, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972205

ABSTRACT

This study investigated the relationship between microplastic (MP) presence and pollutant removal in granular sludge sequencing batch reactors (GSBRs). Two types of MPs, polyethylene (PE) and polyethylene terephthalate (PET), were introduced in varying concentrations to assess their effects on microbial community dynamics and rates of nitrogen, phosphorus, and organic compound removal. The study revealed type-dependent variations in the deposition of MPs within the biomass, with PET-MPs exhibiting a stronger affinity for accumulation in biomass. A 50 mg/L dose of PET-MP decreased COD removal efficiency by approximately 4 % while increasing P-PO4 removal efficiency by around 7 % compared to the control reactor. The rate of nitrogen compounds removal decreased with higher PET-MP dosages but increased with higher PE-MP dosages. An analysis of microbial activity and gene abundance highlighted the influence of MPs on the expression of the nosZ and ppk1 genes, which code enzymes responsible for nitrogen and phosphorus transformations. The study also explored shifts in microbial community structure, revealing alterations with changes in MP dose and type. This research contributes valuable insights into the complex interactions between MP, microbial communities, and pollutant removal processes in GSBR systems, with implications for the sustainable management of wastewater treatment in the presence of MP.

17.
Methods Mol Biol ; 2829: 329-339, 2024.
Article in English | MEDLINE | ID: mdl-38951347

ABSTRACT

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Subject(s)
Baculoviridae , Recombinant Proteins , Baculoviridae/genetics , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , HEK293 Cells , Animals , Transfection/methods , Genetic Vectors/genetics , Cell Culture Techniques/methods , Gene Expression , Glycosylation
18.
World J Hepatol ; 16(6): 900-911, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948438

ABSTRACT

Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.

19.
Technol Health Care ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38943412

ABSTRACT

BACKGROUND: Uncemented acetabular components are widely used in modern total hip arthroplasty (THA). Modularity has numerous advantages including the ability to use supplementary screw fixation for the shell, and allow to switch from ceramic to polyethylene (PE) bearings and vice versa, and the use of lipped and face-changing liners. OBJECTIVE: Despite these advantages, a problem with modular PE liners is dissociation. This is a rare complication in modern implants. The rate of liner dissociation is reported to be very low between 0.17% and 0.8%. Typical symptoms are sudden onset of groin pain in a previously well-functioning hip joint, followed by grinding or clicking sensations during hip joint motions indicating, that the femoral head is articulating with the metal acetabular shell rather than with the PE liner. Any newly observed noise or squeaking from a THA should undergo radiographic investigation to exclude liner dissociation. CASE PRESENTATION: We present the case of an 88-yearold male patient who developed PE liner dissociation in a cementless THA with a Pinnacle acetabular component six years after the index operation. We recommended revision of the left hip, which was performed two days later. In the interim, the patient was advised to use a pair of crutches. During revision surgery, it was observed that the metal head made contact with the cementless cup shell without damaging it from a macroscopic standpoint. Consequently, a simple exchange of the PE liner was conducted, and a 36 mm metal head was implanted due to scratches on the original head. CONCLUSION: Early diagnosis facilitates a straightforward exchange of the liner along with the head, potentially preserving the osseous integrated cup shell and stem integrity. Routine radiologic follow-up allows to distinguish between PE liner dissociation and severe PE wear.

20.
Ecotoxicol Environ Saf ; 281: 116635, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944007

ABSTRACT

Since we rely entirely on plastics or their products in our daily lives, plastics are the invention of the hour. Polyester plastics, such as Polyethylene Terephthalate (PET), are among the most often used types of plastics. PET plastics have a high ratio of aromatic components, which makes them very resistant to microbial attack and highly persistent. As a result, massive amounts of plastic trash accumulate in the environment, where they eventually transform into microplastic (<5 mm). Rather than macroplastics, microplastics are starting to pose a serious hazard to the environment. It is imperative that these polymer microplastics be broken down. Through the use of enrichment culture, the PET microplastic-degrading bacterium was isolated from solid waste management yards. Bacterial strain was identified as Gordonia sp. CN2K by 16 S rDNA sequence analysis and biochemical characterization. It is able to use polyethylene terephthalate as its only energy and carbon source. In 45 days, 40.43 % of the PET microplastic was degraded. By using mass spectral analysis and HPLC to characterize the metabolites produced during PET breakdown, the degradation of PET is verified. The metabolites identified in the spent medium included dimer compound, bis (2-hydroxyethyl) terephthalate (BHET), mono (2-hydroxyethyl) terephthalate (MHET), and terephthalate. Furthermore, the PET sheet exposed to the culture showed considerable surface alterations in the scanning electron microscope images. This illustrates how new the current work is.

SELECTION OF CITATIONS
SEARCH DETAIL
...