Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.816
Filter
1.
J Biomater Sci Polym Ed ; : 1-15, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949409

ABSTRACT

The interest in wound dressings increased ten years ago. Wound care practitioners can now use interactive/bioactive dressings and tissue-engineered skin substitutes. Several bandages can heal burns, but none can treat all chronic wounds. This study formulates a composite material from 70% polyvinyl alcohol (PVA) and 30% polyethylene glycol (PEG) with 0.2, 0.4, and 0.6 wt% magnesium oxide nanoparticles. This study aims to create a biodegradable wound dressing. A Fourier Transform Infrared (FTIR) study shows that PVA, PEG, and MgO create hydrogen bonding interactions. Hydrophilic characteristics are shown by the polymeric blend's 56.289° contact angle. MgO also lowers the contact angle, making the film more hydrophilic. Hydrophilicity improves film biocompatibility, live cell adhesion, wound healing, and wound dressing degradability. Differential Scanning Calorimeter (DSC) findings suggest the PVA/PEG combination melted at 53.16 °C. However, adding different weight fractions of MgO nanoparticles increased the nanocomposite's melting temperature (Tm). These nanoparticles improve the film's thermal stability, increasing Tm. In addition, MgO nanoparticles in the polymer blend increased tensile strength and elastic modulus. This is due to the blend's strong adherence to the reinforcing phase and MgO nanoparticles' ceramic material which has a great mechanical strength. The combination of 70% PVA + 30% PEG exhibited good antibacterial spatially at 0.2% MgO, according to antibacterial test results.

2.
J Mech Behav Biomed Mater ; 157: 106642, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38963998

ABSTRACT

Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.

3.
Nanomedicine (Lond) ; : 1-15, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953843

ABSTRACT

Aim: This study focused on developing a topical gel incorporating lornoxicam-loaded poly(lactic-co-glycolic acid) and polyethylene glycol (PLGA-PEG) blend nanoparticles to mitigate gastrointestinal (GIT) side effects and enhance therapeutic efficacy. Materials & methods: Synthesized nanoparticles were subjected to in vitro characterization, ex vivo permeation studies, and acute oral toxicity analysis post-incorporation into the gel using a S/O/W double emulsion solvent. Results & conclusion: The nanoparticles displayed a smooth, spherical morphology (170-321 nm) with increased entrapment efficiency (96.2%). LOX exhibited a permeation rate of 70-94% from the nanoparticle-infused gel, demonstrating favorable biocompatibility at the cellular level. The formulated gel, enriched with nanoparticles, holds promising prospects for drug-delivery systems and promising improved therapeutic outcomes for LOX.


[Box: see text].

4.
World J Hepatol ; 16(6): 900-911, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38948438

ABSTRACT

Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.

5.
Methods Mol Biol ; 2829: 329-339, 2024.
Article in English | MEDLINE | ID: mdl-38951347

ABSTRACT

Mammalian cell lines are one of the best options when it comes to the production of complex proteins requiring specific glycosylation patterns. Plasmid DNA transfection and stable cell lines are frequently used for recombinant protein production, but they are expensive at large scale or can become time-consuming, respectively. The BacMam baculovirus (BV) is a safe and cost-effective platform to produce recombinant proteins in mammalian cells. The process of generating BacMam BVs is straightforward and similar to the generation of "insect" BVs, with different commercially available platforms. Although there are several protocols that describe recombinant protein expression with the BacMam BV in adherent cell lines, limited information is available on suspension cells. Therefore, it is of relevance to define the conditions to produce recombinant proteins in suspension cell cultures with BacMam BVs that facilitate bioprocess transfer to larger volumes. Here, we describe a method to generate a high titer BacMam BV stock and produce recombinant proteins in suspension HEK293 cells.


Subject(s)
Baculoviridae , Recombinant Proteins , Baculoviridae/genetics , Humans , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , HEK293 Cells , Animals , Transfection/methods , Genetic Vectors/genetics , Cell Culture Techniques/methods , Gene Expression , Glycosylation
6.
Colloids Surf B Biointerfaces ; 241: 114064, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954937

ABSTRACT

Bile duct injury presents a significant clinical challenge following hepatobiliary surgery, necessitating advancements in the repair of damaged bile ducts is a persistent issue in biliary surgery. 3D printed tubular scaffolds have emerged as a promising approach for the repair of ductal tissues, yet the development of scaffolds that balance exceptional mechanical properties with biocompatibility remains an ongoing challenge. This study introduces a novel, bio-fabricated bilayer bile duct scaffold using a 3D printing technique. The scaffold comprises an inner layer of polyethylene glycol diacrylate (PEGDA) to provide high mechanical strength, and an outer layer of biocompatible, methacryloylated recombinant collagen type III (rColMA) loaded with basic fibroblast growth factor (bFGF)-encapsulated liposomes (bFGF@Lip). This design enables the controlled release of bFGF, creating an optimal environment for the growth and differentiation of bone marrow mesenchymal stem cells (BMSCs) into cholangiocyte-like cells. These cells are instrumental in the regeneration of bile duct tissues, evidenced by the pronounced expression of cholangiocyte differentiation markers CK19 and CFTR. The PEGDA//rColMA/bFGF@Lip bilayer bile duct scaffold can well simulate the bile duct structure, and the outer rColMA/bFGF@Lip hydrogel can well promote the growth and differentiation of BMSCs into bile duct epithelial cells. In vivo experiments showed that the scaffold did not cause cholestasis in the body. This new in vitro pre-differentiated active 3D printed scaffold provides new ideas for the study of bile duct tissue replacement.

7.
Chembiochem ; : e202400316, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867605

ABSTRACT

With the increasing use of polyethylene glycol (PEG) based proteins and drug delivery systems, anti-PEG antibodies have commonly been detected among the population, causing the accelerated blood clearance and hypersensitivity reactions, poses potential risks to the clinical efficacy and safety of PEGylated drugs. Therefore, vigilant monitoring of anti-PEG antibodies is crucial for both research and clinical guidance regarding PEGylated drugs. The enzyme-linked immunosorbent assay (ELISA) is a common method for detecting anti-PEG antibodies. However, diverse coating methods, blocking solutions and washing solutions have been employed across different studies, and unsuitable use of Tween 20 as the surfactant even caused biased results. In this study, we established the optimal substrate coating conditions, and investigated the influence of various surfactants and blocking solutions on the detection accuracy. The findings revealed that incorporating 1% bovine serum albumin into the serum dilution in the absence of surfactants will result the credible outcomes of anti-PEG antibody detection.

8.
Exploration (Beijing) ; 4(1): 20230016, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38854494

ABSTRACT

Polyethylene glycol (PEG) is widely used as phase change materials (PCM) due to their versatile working temperature and high latent heat. However, the low molecular weight of PEG prevents from the formation of flexible microfibers, and the common leakage problem associated with solid-liquid PCM further hinders their applications in various fields. To address these challenges, polyethylene oxide (PEO) is incorporated as the supporting matrix for PEG, leading to a successful electrospinning of fibrous mats. Due to the similar chemical nature of both PEG and PEO, the blended composites show great compatibility and produce uniform electrospun fibers. The thermal properties of these fibers are characterized by DSC and TGA, and supercooling for the PEG(1050) component is effectively reduced by 75-85%. The morphology changes before and after leakage test are analyzed by SEM. Tensile and DMA tests show that the presence of PEG(1050) component contributes to plasticization effect, improving mechanical and thermomechanical strength. The ratio of PEO(600K):PEG(1050) at 7:3 affords the optimal performance with good chemical and form-stability, least shrinkage, and uniformity. These fibrous mats have potential applications in areas of food packaging, flexible wearable devices, or textiles to aid in thermal regulation.

9.
Neurotox Res ; 42(4): 30, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884699

ABSTRACT

Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.


Subject(s)
Hippocampus , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Polyethylene Glycols , Up-Regulation , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Male , Polyethylene Glycols/toxicity , Polyethylene Glycols/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology , Oxygen/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology
10.
J Pharm Bioallied Sci ; 16(Suppl 2): S1201-S1203, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882858

ABSTRACT

Three-dimensional polymeric networks called hydrogels have drawn a lot of interest in a variety of biomedical applications because of their distinctive qualities, like high water content and biocompatibility. Hydrogels can be strengthened mechanically and become more stable via cross-linking. In this study, we described the synthesis and characterization of a cross-linked hydrogel made of polyethylene glycol (PEG) capable of absorbing drug. The hydrogel was created by using a polymerization procedure to cross-link PEG chains. In order to allay this worry, we added particular functional groups to the hydrogel matrix that had a strong affinity for glutaraldehyde. These functional groups made it easier for excess glutaraldehyde to be absorbed and sequestered inside the hydrogel, lowering its cytotoxic potential. After incubation with the hydrogel, the residual glutaraldehyde concentration in solution was measured in order to assess the glutaraldehyde absorption potential.

12.
Adv Healthc Mater ; : e2400492, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924661

ABSTRACT

Blood-contacting medical devices routinely fail from the cascading effects of biofouling toward infection and thrombosis. Nitric oxide (NO) is an integral part of endothelial homeostasis, maintaining platelet quiescence and facilitating oxidative/nitrosative stress against pathogens. Recently, it is shown that the surface evolution of NO can mediate cell-surface interactions. However, this technique alone cannot prevent the biofouling inherent in device failure with dynamic blood-contacting applications. This work proposes an endothelium-mimicking surface design pairing controlled NO release with an inherently antifouling polyethylene glycol interface (NO+PEG). This simple, robust, and scalable platform develops surface-localized NO availability with surface hydration, leading to a significant reduction in protein adsorption as well as bacteria/platelet adhesion. Further in vivo thrombogenicity studies show a decrease in thrombus formation on NO+PEG interfaces, with preservation of circulating platelet and white blood cell counts, maintenance of activated clotting time, and reduced coagulation cascade activation. It is anticipated that this bio-inspired surface design will enable a facile alternative to existing surface technologies to address clinical manifestations of infection and thrombosis in dynamic blood-contacting environments.

13.
Gels ; 10(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38920910

ABSTRACT

Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin.

14.
ACS Nano ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932624

ABSTRACT

Pulmonary drug delivery is critical for the treatment of respiratory diseases. However, the human airway surface presents multiple barriers to efficient drug delivery. Here, we report a bottlebrush poly(ethylene glycol) (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by a molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1000) low molecular weight (∼1000 g/mol) polyethylene glycol (PEG) chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture-enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a carrier for pulmonary and mucosal drug delivery.

15.
Article in English | MEDLINE | ID: mdl-38828531

ABSTRACT

Nanoparticle-based drug delivery systems have emerged as promising platforms for enhancing therapeutic efficacy while minimizing off-target effects. Among various strategies employed to optimize these systems, polyethylene glycol (PEG) modification, known as PEGylation-the covalent attachment of PEG to nanoparticles, has gained considerable attention for its ability to impart stealth properties to nanoparticles while also extending circulation time and improving biocompatibility. PEGylation extends to different drug delivery systems, in specific, nanoparticles for targeting cancer cells, where the concentration of drug in the cancer cells is improved by virtue of PEGylation. The primary challenge linked to PEGylation lies in its confirmation. Numerous research findings provide comprehensive insights into selecting PEG for various PEGylation methods. In this review, we have endeavored to consolidate the outcomes concerning the choice of PEG and diverse PEGylation techniques.

16.
AMB Express ; 14(1): 63, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824272

ABSTRACT

Adequate bowel cleansing is crucial for endoscopic diagnosis and treatment, and the recovery of gut microbiota after intestinal cleansing is also important. A hypertonic syrup predominantly comprising L-arabinose and D-xylose (20% xylo-oligosaccharides) can be extracted from the hemicellulose of corn husks and cobs. L-Arabinose and xylo-oligosaccharides have been reported to relieve constipation and improve the gut microbial environment. This study evaluated the bowel cleansing effect of the aforementioned syrup and its influence on the organism and intestinal microbiota after cleansing in comparison with polyethylene glycol-4000 (PEG-4000) in mice. Bowel cleansing was performed using syrup or PEG-4000 in C57BL/6J mice, and the effect of intestinal preparation and its influence on serum electrolytes and gut microbiota after bowel cleansing were evaluated. The volume of intestinal residual feces in the syrup group was significantly lower than that in the PEG-4000 group. Additionally, syrup disturbed serum electrolytes more mildly than PEG-4000. Alpha diversity in the gut microbiota was significantly higher in the syrup group than in the PEG-4000 group on the first day after bowel cleansing. However, no difference in beta diversity was observed between the two groups. Syrup increased the abundance of Bifidobacteria and Christensenella and decreased the abundance of Akkermansia in comparison with PEG-4000 on the first day after bowel cleansing. Thus, this syrup has potential clinical use as a bowel cleansing agent given the above effects, its benefits and safety, and better taste and acceptability.

17.
Int J Pharm ; 659: 124193, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703934

ABSTRACT

Polyethylene glycol (PEG) is a popular biocompatible polymer and PEGylated nanoparticles passively accumulate in tumor tissues because of their enhanced permeability and retention effects. Recently, the anti-PEG immunity of PEGylated nanoparticles has become an issue that needs to be solved for their clinical applications. Dendrimers are highly branched and well-defined polymers with many terminal groups, which act as potent drug carriers. In this study, we examined the pharmacokinetics, biodistribution, anti-PEG immunity, and tumor accumulation of a fully PEGylated polyamidoamine (PAMAM) dendrimer after the first and second injections and compared them to those of a PEGylated liposome with the same lipid component as Doxil®. The PEGylated dendrimer showed greater blood circulation than that of the PEGylated liposome after the first and second injections in rats. In mice injected with the PEGylated dendrimer, much less anti-PEG immunoglobulin M (IgM) was generated than that in mice injected with the PEGylated liposome. The PEGylated dendrimer accumulated in the tumor after both the first and second injections. Our results indicated that the PEGylated dendrimer with a small size and high PEG density showed attenuated anti-PEG immunity and overcame the accelerated blood clearance phenomenon, which is useful for drug delivery systems for cancer treatment.


Subject(s)
Dendrimers , Liposomes , Polyethylene Glycols , Animals , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Dendrimers/pharmacokinetics , Dendrimers/chemistry , Tissue Distribution , Male , Mice , Doxorubicin/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Immunoglobulin M/blood , Rats , Rats, Sprague-Dawley , Mice, Inbred BALB C , Female , Cell Line, Tumor , Nanoparticles
18.
J Environ Sci Health B ; 59(7): 378-389, 2024.
Article in English | MEDLINE | ID: mdl-38779902

ABSTRACT

Given extensive variability in feed composition, the absence of a dedicated DNA extraction kit for poultry feed underscores the need for an optimized extraction technique for reliable downstream sequencing analyses. This study investigates the impact of five DNA extraction techniques: Qiagen QIAamp DNA Stool Mini Kit (Qiagen), modified Qiagen with Lysing Matrix B (MQ), modified Qiagen with celite purification (MQC), polyethylene glycol (PEG), and 1-Day Direct. Genomic DNA amplification and Illumina MiSeq sequencing were conducted. QIIME2-2021.4 facilitated data analysis, revealing significant diversity and compositional differences influenced by extraction methods. Qiagen exhibited lower evenness and richness compared to other methods. 1-Day Direct and PEG enhanced bacterial diversities by employing bead beating and lysozyme. Despite similar taxonomic resolution, the Qiagen kit provides a rapid, consistent method for assessing poultry feed microbiomes. Modified techniques (MQ and MQC) improve DNA purification, reducing bias in commercial poultry feed samples. PEG and 1-Day Direct methods were effective but may require standardization. Overall, this study underscores the importance of optimized extraction techniques in poultry feed analysis, with potential implications for future standardization of effective methods.


Subject(s)
Animal Feed , DNA, Bacterial , Microbiota , Poultry , Animal Feed/analysis , Animals , Poultry/microbiology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Chickens/microbiology
19.
J Fluoresc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38777984

ABSTRACT

Aggregation-induced emission (AIE) is a fascinating phenomenon where specific molecules exhibit enhanced fluorescence upon aggregation. This unique property has revolutionized the design and development of new fluorescent materials for different applications, from biosensors and organic light-emitting diodes (OLEDs) to biomedical imaging and diagnostics. Researchers are creating sensitive and selective sensing platforms, opening new avenues in material science and engineering by harnessing the potential of AIE. To expand the knowledge in this field, this study explored the aggregation-induced emission (AIE) properties of two polymers, namely polyethylene glycol (PEG) and polypropylene glycol (PPG) of low molecular weight (MW) using fluorescence spectroscopy and absorbance (UV). PEG-300 and PPG-725 were the most fluorescent polymers at UV of the ten investigated. Interestingly, AIE did not correlate linearly with molecular weight (MW), and monobutyl ether substitution in PEG with a similar MW substantially altered its AIE. Furthermore, fluorescence precisely quantified low polymer concentrations in water, and non-aqueous solvents suppressed AIE, suggesting potential for AIE manipulation. These findings enhance our understanding of AIE in polymers, fostering the development of novel materials for applications such as biosensors.

20.
Biomed Pharmacother ; 175: 116660, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701563

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.


Subject(s)
Immunotherapy , Nanoparticles , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Immunotherapy/methods , Mice , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , B7-H1 Antigen/antagonists & inhibitors , Nanoparticle Drug Delivery System/chemistry , Female , Polyethylene Glycols/chemistry , Immune Checkpoint Inhibitors/pharmacology , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...