Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.495
Filter
1.
Adv Sci (Weinh) ; : e2402385, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965931

ABSTRACT

Polymerization in the solid state is generally infeasible due to restrictions on mobility. However, in this work, the solid-state photopolymerization of crystalline dicyclopentadiene is demonstrated via photoinitiated ring-opening metathesis polymerization. The source of mobility in the solid state is attributed to the plastic crystal nature of dicyclopentadiene, which yields local short-range mobility due to orientational degrees of freedom. Polymerization in the solid state enables photopatterning, volumetric additive manufacturing of free-standing structures, and fabrication with embedded components. Solid-state photopolymerization of dicyclopentadiene offers a new paradigm for advanced and freeform fabrication of high-performance thermosets.

2.
Macromol Rapid Commun ; : e2400284, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38967216

ABSTRACT

Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.

3.
J Environ Sci (China) ; 146: 149-162, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969443

ABSTRACT

Industrial wastewater should be treated with caution due to its potential environmental risks. In this study, a polymerization-based cathode/Fe3+/peroxydisulfate (PDS) process was employed for the first time to treat a raw coking wastewater, which can achieve simultaneous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers. The results confirm that several dominant organic contaminants in coking wastewater such as phenol, cresols, quinoline and indole can be induced to polymerize by self-coupling or cross-coupling. The total chemical oxygen demand (COD) abatement from coking wastewater is 46.8% and the separable organic-polymer formed from organic contaminants accounts for 62.8% of the abated COD. Dissolved organic carbon (DOC) abatement of 41.9% is achieved with about 89% less PDS consumption than conventional degradation-based process. Operating conditions such as PDS concentration, Fe3+ concentration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals. ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl-, Br-, I-, NH4+, SCN- and CN-, suggesting that these inorganic ions may be involved in the polymerization. The specific consumption of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC. The values are much lower than those of the degradation-based processes in treating the same coking wastewater, and also are lower than those of most processes previously reported for coking wastewater treatment.


Subject(s)
Coke , Polymerization , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Sulfates/chemistry , Polymers/chemistry , Biological Oxygen Demand Analysis , Electrochemical Techniques/methods
4.
Angew Chem Int Ed Engl ; : e202410908, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954489

ABSTRACT

Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.

5.
Article in English | MEDLINE | ID: mdl-38954606

ABSTRACT

The design of adhesive and conductive soft hydrogels using biopolymers with tunable mechanical properties has received significant interest in the field of wearable sensors for detecting human motions. These hydrogels are primarily fabricated through the modification of biopolymers to introduce cross-linking sites, the conjugation of adhesive components, and the incorporation of conductive materials into the hydrogel network. The development of a multifunctional copolymer that integrates adhesive and conductive properties within a single polymer chain with suitable cross-linking sites eliminates the need for biopolymer modification and the addition of extra conductive and adhesive components. In this study, we synthesized a copolymer based on poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride-co-dopamine methacrylamide) (p(METAC-DMA)) using a controlled radical polymerization, allowing for the efficient conjugation of both adhesive and conductive units within a single polymer chain. Subsequently, our multifunctional hydrogel named Gel-MD was fabricated by mixing the p(METAC-DMA) copolymer with non-modified gelatin in which cross-linking took place in an oxidative environment. We confirmed the biocompatibility of the Gel-MD hydrogel through in vitro studies using NIH 3T3 cells as well as in vivo subcutaneous implantation in rats. Furthermore, the Gel-MD hydrogel was effective and sensitive in detecting various human motions, making it a promising wearable sensor for health monitoring and diagnosis.

6.
Article in English | MEDLINE | ID: mdl-38959422

ABSTRACT

In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.

7.
Int J Biol Macromol ; : 133505, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960225

ABSTRACT

Electromagnetic interference (EMI) shielding materials play a vital role in human society, especially in light of the rapid development of electronic communication equipment. Therefore, it is urgent to develop green, high-efficiency EMI shielding materials. Wood, as a renewable raw material, possesses significant structural advantages in studying EMI materials due to its unique 3D pore structure. Herein, we report magnetoelectric lignocellulosic matrix composites derived from the delignified wood for efficient EMI shielding. The composite was fabricated by in-situ polymerization of PEDOT conductive coating and magnetic Fe3O4 in delignified wood. The conductive 3D pore structure of Fe3O4/PEDOT@wood could effectively cause dielectric loss and multiple internal reflections. Combined with the magnetic loss of Fe3O4, the material exhibited excellent EMI shielding effectiveness (SE), which could be attributed to the synergistic effect of dielectric and magnetic losses. The Fe3O4/PEDOT@wood showed excellent conductivity (103 S/m), good magnetism (26.7 emu/g), the EMI SE up to 59.8 dB, and high SEA/SET ratios of~84.2 % to 95.7 % at 2 mm in X -band. Moreover, the material exhibited a high compressive strength and tensile strength of 100.8 MPa and 18.1 MPa, respectively. Therefore, this work provided a reference for the preparation of high-efficiency EMI shielding materials.

8.
Macromol Rapid Commun ; : e2400438, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980977

ABSTRACT

Liquid marbles (LMs) with a cubic shape are created by using various vinyl monomers as an inner liquid and polymer plates with mm size as a stabilizer. The relationship between the surface tension of the vinyl monomers and formability of the LMs is investigated. LMs can be fabricated using vinyl monomers with surface tensions of 42.7-40.3 mN m-1. The cubic polymer particles are successively synthesized via free-radical polymerizations by irradiation of the cubic LMs with UV light in a solvent-free manner. In addition, controlling the number of polymer plates per one LM, the shape of the plate or the coalescence of the LMs can lead to production of polymer particles with desired forms (e.g., Platonic and rectangular solids) that correspond to the shapes of the original LMs.

9.
J Theor Biol ; : 111900, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992461

ABSTRACT

The formation of amyloid beta (Aß) deposits (senile plaques) is one of the hallmarks of Alzheimer's disease (AD). This study investigates what processes are primarily responsible for their formation. A model is developed to simulate the diffusion of amyloid beta (Aß) monomers, the production of free Aß aggregates through nucleation and autocatalytic processes, and the deposition of these aggregates into senile plaques. The model suggests that efficient degradation of Aß monomers alone may suffice to prevent the growth of senile plaques, even without degrading Aß aggregates and existing plaques. This is because the degradation of Aß monomers interrupts the supply of reactants needed for plaque formation. The impact of Aß monomer diffusivity is demonstrated to be small, enabling the application of the lumped capacitance approximation and the derivation of approximate analytical solutions for limiting cases with both small and large rates of Aß aggregate deposition into plaques. It is found that the rate of plaque growth is governed by two competing processes. One is the deposition rate of free Aß aggregates into senile plaques. If this rate is small, the plaque grows slowly. However, if the rate of deposition of Aß aggregates into senile plaques is very large, the free Aß aggregates are removed from the intracellular fluid by deposition into the plaques, leaving insufficient free Aß aggregates to catalyze the production of new aggregates. This suggests that under certain conditions, Aß plaques may offer neuroprotection and impede their own growth. Additionally, it indicates that there exists an optimal rate of deposition of free Aß aggregates into the plaques, at which the plaques attain their maximum size.

10.
Proc Natl Acad Sci U S A ; 121(29): e2406337121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985759

ABSTRACT

Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.

11.
Dent Mater J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987204

ABSTRACT

Experimental light-curing pattern resins were fabricated to produce pattern resin materials with adequate dimensional stability. The light-curing pattern resins consisted of poly(n-butyl methacrylate) or poly(iso-butyl methacrylate) (PiBMA) polymers and methacrylate monomers. The physical properties, amount of residual ash after burning, Vickers hardness, flexural strength, and volumetric polymerization shrinkage of each material were determined. The data obtained for the prepared resins were compared with those of a commercially available pattern resin, Palavit G (PG). A lower amount of residual ash was observed for some of the prepared resins than for PG. The Vickers hardness and flexural strength values of all experimental resins were lower than those of PG. The volumetric polymerization shrinkage of all the experimental resins based on PiBMA was lower than that of PG. These results suggest that acrylic light-curing resin materials based on PiBMA may be useful for patterning and indexing during soldering.

12.
Angew Chem Int Ed Engl ; : e202410431, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987230

ABSTRACT

A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.

13.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996459

ABSTRACT

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Subject(s)
Xenopus Proteins , Xenopus laevis , Humans , Animals , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/chemistry , Protein Multimerization , Repressor Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/chemistry , BTB-POZ Domain/genetics , Crystallography, X-Ray , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding , Models, Molecular , Cell Nucleus/metabolism , Cell Nucleus/genetics , HEK293 Cells
14.
Mol Cell ; 84(13): 2511-2524.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996460

ABSTRACT

BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.


Subject(s)
Chromatin , Cryoelectron Microscopy , Humans , Chromatin/metabolism , Chromatin/genetics , Protein Multimerization , Binding Sites , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Polymerization , HEK293 Cells , Gene Expression Regulation
15.
Chem Asian J ; : e202400648, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38946109

ABSTRACT

Photoinduced 3D printing via photocontrolled reversible-deactivation radical polymerization (photoRDRP) techniques has emerged as a robust technique for creating polymeric materials. However, methods for precisely adjusting the mechanical properties of these materials remain limited. In this study, we present a facile approach for adjusting the mechanical properties of 3D-printed objects by adjusting the polymer dispersity within a Norrish type I photoinitiated reversible addition-fragmentation chain transfer (NTI-RAFT) polymerization-based 3D printing process. We investigated the effects of varying the concentrations and molar ratios of trithiocarbonate (BTPA) and xanthate (EXEP) on the mechanical properties of the printed materials. Our findings demonstrate that increased concentrations of RAFT agents or higher proportions of the more active BTPA lead to a decrease in Young's modulus and glass transition temperatures, along with an increase in elongation at break, which can be attributed to the enhanced homogeneity of the polymer network. Using a commercial LCD printer, the NTI-RAFT-based 3D printing system effectively produced materials with tailored mechanical properties, highlighting its potential for practical applications.

16.
Adv Sci (Weinh) ; : e2403288, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946670

ABSTRACT

Amphiphilic block copolymers are promising candidates for the fabrication of ultrafiltration membranes with an isoporous integral asymmetric structure. The membranes are typically fabricated by the combination of block copolymer self-assembly and the non-solvent-induced phase separation (SNIPS) process resulting in isoporous integral asymmetric membranes. Certainly, all these membranes lack thermal and chemical stability limiting the usage of such materials. Within this study, the fabrication of completely cross-linked isoporous integral asymmetric block copolymer membranes is demonstrated by UV cross-linking resulting in chemical and thermal stable ultrafiltration membranes. The UV cross-linking process of PVBCB-b-P4VP (poly(4-vinylbenzocyclobutene)-b-poly(4vinylpyridine)) block copolymer membranes in dependency of irradiation time, intensity, distance between membrane and UV source and the wavelength is investigated. Furthermore, it is shown that the penetration depths can be increased by soaking the membranes in wave-guiding solutions before UV cross-linking is carried out. Moreover, a completely new and easy cross-linking strategy is developed based on isorefractive solvents resulting in thermal and chemically stable membranes that are cross-linked through the whole membrane thickness. Finally, the new cross-linking strategy in isorefractive solutions is transferred to commercial PVDF and PAN-co-PVC polymer membranes paving the way for more stable and sustainable ultrafiltration membranes.

17.
Angew Chem Int Ed Engl ; : e202409781, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979659

ABSTRACT

Most metathesis polymers based on norbornene derivatives carry a vinyl end group. Here we show that these vinyl end groups readily undergo a degenerative exchange of the terminal methylene unit in the presence of sub-stoichiometric amounts of a propagating metathesis polymer carrying a Grubbs ruthenium complex. We show that this degenerative exchange can be exploited in synthesizing ROMP polymers in a catalytic living fashion. Chain transfer agents based on styrene, or monosubstituted conjugated 1,3 diene derivatives are used as initiating sites for the catalytic living polymerization. Suitable derivatives of these chain transfer agents not only allow the linear living growth of polymers but also the synthesis of block copolymers from macro-initiators or star polymers from multi-functional chain transfer agents. This reversible exchange mechanism offers a cheaper, greener, and more sustainable alternative for the synthesis of living ROMP polymers compared to the classical synthetic route.

18.
Chemistry ; : e202401727, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979891

ABSTRACT

The development of innovative synthetic strategies to create functional polycaprolactones is highly demanded for advanced material applications. In this contribution, we reported a facile synthetic strategy to prepare a class of CL-based monomers (R-TO) derived from epoxides. They readily polymerize via well-controlled ring-opening polymerization (ROP) to afford a series of polyesters P(R-TO) with high molecular weight (Mn up to 350 kDa). Sequential addition copolymerization of MTO and L-lactide (L-LA) allowed to access of a series of ABA triblock copolymers with composition-dependent mechanical properties. Notably, P(L-LA)100-b-P(MTO)500-b-P(L-LA)100 containing the amorphous P(MTO) segment as a soft midblock and crystalline P(L-LA) domain as hard end block behaved as an excellent thermoplastic elastomer (TPE) with high elongation at break (1438 ± 204%), tensile strength (23.5 ± 1.7 MPa), and outstanding elastic recovery (>88%).

19.
Angew Chem Int Ed Engl ; : e202406848, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972850

ABSTRACT

The synthesis of group IV metallocene precatalysts for the polymerization of propylene generally yields two different isomers: The racemic isomer that produces isotactic polypropylene (iPP) and the meso isomer that produces atactic polypropylene (aPP). Due to its poor physical properties, aPP has very limited applications. To avoid obtaining blends of both polymers and thus diminish the mechanical and thermal properties of iPP, the meso metallocene complexes need to be separated from the racemic ones tediously -rendering the metallocene-based polymerization of propylene industrially far less attractive than the Ziegler/Natta process. To overcome this issue, we established an isomerization protocol to convert meso metallocene complexes into their racemic counterparts. This protocol increased the yield of iPP by 400% while maintaining the polymer's excellent physical properties and was applicable to both hafnocene and zirconocene complexes, as well as different precatalyst activation methods. Through targeted variation of the ligand frameworks, methoxy groups at the indenyl moieties were found to be the structural motifs responsible for an isomerization to take place -this experimental evidence was confirmed by density functional theory calculations. Liquid injection field desorption ionization mass spectrometry, as well as 1H and 29Si nuclear magnetic resonance studies, allowed the proposal of an isomerization mechanism.

20.
Small ; : e2403099, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973084

ABSTRACT

Bottom-up patterning technology plays a significant role in both nature and synthetic materials, owing to its inherent advantages such as ease of implementation, spontaneity, and noncontact attributes, etc. However, constrained by the uncontrollability of molecular movement, energy interaction, and stress, obtained micropatterns tend to exhibit an inevitable arched outline, resulting in the limitation of applicability. Herein, inspired by auxin's action mode in apical dominance, a versatile strategy is proposed for fabricating precision self-organizing micropatterns with impressive height based on polymerization-induced acropetal migration. The copolymer containing fluorocarbon chains (low surface energy) and tertiary amine (coinitiator) is designed to self-assemble on the surface of the photo-curing system. The selective exposure under a photomask establishes a photocuring boundary and the radicals would be generated on the surface, which is pivotal in generating a vertical concentration difference of monomer. Subsequent heating treatment activates the material continuously transfers from the unexposed area to the exposed area and is accompanied by the obviously vertical upward mass transfer, resulting in the manufacture of a rectilinear profile micropattern. This strategy significantly broadens the applicability of self-organizing patterns, offering the potential to mitigate the complexity and time-consuming limitations associated with top-down methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...