Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Sci Total Environ ; 947: 174400, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960204

ABSTRACT

Ecosystem services are strongly responsive to changes in land use intensity, especially for the service of water purification, which is highly sensitive to water pollutant emission. Increased nitrogen (N) application to cropland has potential impacts on the supply and demand for water purification through changes in land use intensity. However, there has been a lack of research focusing on the impacts of cropland N application on population exposure to water purification deficit and their cross-regional delivery network. Taking the Dongting Lake (DTL) Basin as an example, this study explored the spatial pattern of N exposure in the DTL Basin from 1990 to 2015 by integrating water purification deficit and population density. Changes in potential N exposure in 2050 were simulated based on population projection data from the Shared Socioeconomic Pathways (SSP1-5). N delivery pathways in the DTL Basin were clarified by constructing the N delivery network. The results showed that N exposure increased significantly with increasing N application in DTL Basin. The DTL surrounding area and lower reaches of the Xiangjiang River Basin had high increases of N exposure (50.2 % and 71.6 %) and high increases in N exposure due to increases in N application per unit (N influence coefficients exceeding 0.5). The lower reaches of the Xiangjiang River Basin with the highest population density had the smallest decrease in N exposure (1.4 %-11.1 %) in the SSP1-5 scenarios. During 1990-2015, the increase of N export to the DTL surrounding area was higher in the lower reach sub-basins of DTL Basin. N application had a stronger impact on N delivery processes in the lower reaches of DTL Basin. Managers should distribute N applications to basins with high N retention and low N export to the DTL surrounding area. This study confirmed the strong response of water purification deficit and its population exposure to N application, and provided decision-making guidelines for water quality enhancement in DTL Basin from a spatial planning perspective.

2.
Article in English | MEDLINE | ID: mdl-38709408

ABSTRACT

Quantifying flood risks through a cascade of hydraulic-cum-hydrodynamic modelling is data-intensive and computationally demanding- a major constraint for economically struggling and data-scarce low and middle-income nations. Under such circumstances, geomorphic flood descriptors (GFDs), that encompass the hidden characteristics of flood propensity may assist in developing a nuanced understanding of flood risk management. In line with this, the present study proposes a novel framework for estimating flood hazard and population exposure by leveraging GFDs and Machine Learning (ML) models over severely flood-prone Ganga basin. The study incorporates SHapley Additive exPlanations (SHAP) values in flood hazard modeling to justify the degree of influence of each GFD on the simulated floodplain maps. A set of 15 relevant GFDs derived from high-resolution CartoDEM are forced to five state-of-the-art ML models; AdaBoost, Random Forest, GBDT, XGBoost, and CatBoost, for predicting flood extents and depths. To enumerate the performance of ML models, a set of twelve statistical metrics are considered. Our result indicates a superior performance of XGBoost (κ = 0.72 and KGE = 82%) over other ML models in flood extent and flood depth prediction, resulting in about 47% of the population exposure to high-flood risks. The SHAP summary plots reveal a pre-dominance of Height Above Nearest Drainage during flood depth prediction. The study contributes significantly in comprehending our understanding of catchment characteristics and its influence in the process of sustainable disaster risk reduction. The results obtained from the study provide valuable recommendations for efficient flood management and mitigation strategies, especially over global data-scarce flood-prone basins.

3.
Environ Sci Technol ; 58(8): 3665-3676, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38358856

ABSTRACT

Toxicological studies have indicated that exposure to chlorinated paraffins (CPs) may disrupt intracellular glucose and energy metabolism. However, limited information exists regarding the impact of human CP exposure on glucose homeostasis and its potential association with an increased risk of developing gestational diabetes mellitus (GDM). Here, we conducted a prospective study with a nested case-control design to evaluate the link between short- and medium-chain CP (SCCPs and MCCPs) exposures during pregnancy and the risk of GDM. Serum samples from 102 GDM-diagnosed pregnant women and 204 healthy controls were collected in Hangzhou, Eastern China. The median (interquartile range, IQR) concentration of SCCPs was 161 (127, 236) ng/mL in the GDM group compared to 127 (96.9, 176) ng/mL in the non-GDM group (p < 0.01). For MCCPs, the GDM group had a median concentration of 144 (117, 174) ng/mL, while the control group was 114 (78.1, 162) ng/mL (p < 0.01). Compared to the lowest quartile as the reference, the adjusted odds ratios (ORs) of GDM were 7.07 (95% CI: 2.87, 17.40) and 3.34 (95% CI: 1.48, 7.53) in the highest quartile of ∑SCCP and ∑MCCP levels, respectively, with MCCPs demonstrating an inverted U-shaped association with GDM. Weighted quantile sum regression evaluated the joint effects of all CPs on GDM and glucose homeostasis. Among all CP congeners, C13H23Cl5 and C10H16Cl6 were the crucial variables driving the positive association with the GDM risk. Our results demonstrated a significant positive association between CP concentration in maternal serum and GDM risk, and exposure to SCCPs and MCCPs may disturb maternal glucose homeostasis. These findings contribute to a better understanding of the health risks of CP exposure and the role of environmental contaminants in the pathogenesis of GDM.


Subject(s)
Diabetes, Gestational , Hydrocarbons, Chlorinated , Female , Pregnancy , Humans , Diabetes, Gestational/chemically induced , Diabetes, Gestational/epidemiology , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis , Case-Control Studies , Prospective Studies , Environmental Monitoring/methods , China/epidemiology , Glucose
4.
Environ Sci Technol ; 58(8): 3953-3965, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38359304

ABSTRACT

Elevated groundwater salinity is unsuitable for drinking and harmful to crop production. Thus, it is crucial to determine groundwater salinity distribution, especially where drinking and agricultural water requirements are largely supported by groundwater. This study used field observation (n = 20,994)-based machine learning models to determine the probabilistic distribution of elevated groundwater salinity (electrical conductivity as a proxy, >2000 µS/cm) at 1 km2 across parts of India for near groundwater-table conditions. The final predictions were made by using the best-performing random forest model. The validation performance also demonstrated the robustness of the model (with 77% accuracy). About 29% of the study area (including 25% of entire cropland areas) was estimated to have elevated salinity, dominantly in northwestern and peninsular India. Also, parts of the northwestern and southeastern coasts, adjoining the Arabian Sea and the Bay of Bengal, were assessed with elevated salinity. The climate was delineated as the dominant factor influencing groundwater salinity occurrence, followed by distance from the coast, geology (lithology), and depth of groundwater. Consequently, ∼330 million people, including ∼109 million coastal populations, were estimated to be potentially exposed to elevated groundwater salinity through groundwater-sourced drinking water, thus substantially limiting clean water access.


Subject(s)
Drinking Water , Groundwater , Water Pollutants, Chemical , Humans , Environmental Monitoring , Salinity , India , Water Pollutants, Chemical/analysis
5.
Environ Monit Assess ; 196(3): 249, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340249

ABSTRACT

Considering the spatial and temporal effects of atmospheric pollutants, using the geographically and temporally weighted regression and geo-intelligent random forest (GTWR-GeoiRF) model and Sentinel-5P satellite remote sensing data, combined with meteorological, emission inventory, site observation, population, elevation, and other data, the high-precision ozone concentration and its spatiotemporal distribution near the ground in China from March 2020 to February 2021 were estimated. On this basis, the pollution status, near-surface ozone concentration, and population exposure risk were analyzed. The findings demonstrate that the estimation outcomes of the GTWR-GeoiRF model have high precision, and the precision of the estimation results is higher compared with that of the non-hybrid model. The downscaling method enhances estimation results to some extent while addressing the issue of limited spatial resolution in some data. China's near-surface ozone concentration distribution in space shows obvious regional and seasonal characteristics. The eastern region has the highest ozone concentrations and the lowest in the northeastern region, and the wintertime low is higher than the summertime high. There are significant differences in ozone population exposure risks, with the highest exposure risks being found in China's eastern region, with population exposure risks mostly ranging from 0.8 to 5.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Ozone/analysis , Air Pollution/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , China
6.
Environ Sci Technol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261755

ABSTRACT

Air pollution poses a critical public health threat around many megacities but in an uneven manner. Conventional models are limited to depict the highly spatial- and time-varying patterns of ambient pollutant exposures at the community scale for megacities. Here, we developed a machine-learning approach that leverages the dynamic traffic profiles to continuously estimate community-level year-long air pollutant concentrations in Los Angeles, U.S. We found the introduction of real-world dynamic traffic data significantly improved the spatial fidelity of nitrogen dioxide (NO2), maximum daily 8-h average ozone (MDA8 O3), and fine particulate matter (PM2.5) simulations by 47%, 4%, and 15%, respectively. We successfully captured PM2.5 levels exceeding limits due to heavy traffic activities and providing an "out-of-limit map" tool to identify exposure disparities within highly polluted communities. In contrast, the model without real-world dynamic traffic data lacks the ability to capture the traffic-induced exposure disparities and significantly underestimate residents' exposure to PM2.5. The underestimations are more severe for disadvantaged communities such as black and low-income groups, showing the significance of incorporating real-time traffic data in exposure disparity assessment.

7.
Sci Total Environ ; 912: 169215, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38086478

ABSTRACT

In the context of global warming and rapid urbanization, pollen has become a significant public health concern for Chinese citizens. However, there is a paucity of epidemiological research on the impact of pollen on allergen-linked diseases, such as allergic rhinitis and asthma, in China. Using data from the Beijing Chaoyang Hospital between 2013 and 2019, which included allergic rhinitis and asthma incidence, meteorological records, and air pollution data, we employed a Generalized Additive Model (GAM) to examine the relationship between overall and type-specific pollen concentrations in relation to varying population exposures. We found that increased overall pollen concentrations significantly increased the risks of allergic rhinitis and asthma in diverse populations. Notably, the risk of allergic rhinitis was higher than that of asthma at equivalent pollen concentrations. Seasonal trends indicated that spring pollen peaks, primarily from trees, were associated with a lower risk of both allergic rhinitis and asthma than autumn peaks, predominantly from weeds. This study underscores the importance of identifying pollen species that pose heightened risks to different demographic groups across seasons, thereby providing targeted interventions for public health agencies.


Subject(s)
Asthma , Rhinitis, Allergic, Seasonal , Rhinitis, Allergic , Humans , Rhinitis, Allergic, Seasonal/epidemiology , Beijing , Pollen , Rhinitis, Allergic/epidemiology , Allergens , Asthma/epidemiology , China/epidemiology , Seasons
8.
J Radiat Res ; 65(1): 36-46, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37981331

ABSTRACT

For correct assessment of health risks after low-dose irradiation, calculation of radiation exposure estimates is crucial. To verify the calculated absorbed doses, instrumental methods of retrospective dosimetry are used. We compared calculated and instrumental-based estimates of external absorbed doses in the residents of Dolon, Mostik and Cheremushki villages, Kazakhstan, affected by the first nuclear weapon test performed at the Semipalatinsk Nuclear Test Site (SNTS) on August 29, 1949. The 'instrumental' doses were retrospectively estimated using the Luminescence Retrospective Dosimetry (LRD) and Electron Spin Resonance (ESR) methods. Correlation between the calculated individual cumulative external absorbed whole-body doses based on typical input data and ESR-based individual doses in the same people was strong (r = 0.782). It was even stronger between the calculated doses based on individual questionnaires' input data and the ESR-based doses (r = 0.940). Application of the LRD method is useful for validation of the calculated settlement-average cumulated external absorbed dose to air. Reconstruction of external exposure can be supplemented with the data from later measurements of soil contamination with long-lived radionuclides, such as, 137Cs. Our results show the reliability of the calculational method used for the retrospective assessment of individual external doses.


Subject(s)
Nuclear Warfare , Radiation Monitoring , Radioactive Fallout , Humans , Radiation Dosage , Cesium Radioisotopes/analysis , Retrospective Studies , Kazakhstan , Radiation Monitoring/methods , Radioactive Fallout/analysis , Reproducibility of Results
9.
Bull Volcanol ; 86(1): 3, 2024.
Article in English | MEDLINE | ID: mdl-38130663

ABSTRACT

Effective risk management requires accurate assessment of population exposure to volcanic hazards. Assessment of this exposure at the large-scale has often relied on circular footprints of various sizes around a volcano to simplify challenges associated with estimating the directionality and distribution of the intensity of volcanic hazards. However, to date, exposure values obtained from circular footprints have never been compared with modelled hazard footprints. Here, we compare hazard and population exposure estimates calculated from concentric radii of 10, 30 and 100 km with those calculated from the simulation of dome- and column-collapse pyroclastic density currents (PDCs), large clasts, and tephra fall across Volcanic Explosivity Index (VEI) 3, 4 and 5 scenarios for 40 volcanoes in Indonesia and the Philippines. We found that a 10 km radius-considered by previous studies to capture hazard footprints and populations exposed for VEI ≤ 3 eruptions-generally overestimates the extent for most simulated hazards, except for column collapse PDCs. A 30 km radius - considered representative of life-threatening VEI ≤ 4 hazards-overestimates the extent of PDCs and large clasts but underestimates the extent of tephra fall. A 100 km radius encapsulates most simulated life-threatening hazards, although there are exceptions for certain combinations of scenario, source parameters, and volcano. In general, we observed a positive correlation between radii- and model-derived population exposure estimates in southeast Asia for all hazards except dome collapse PDC, which is very dependent upon topography. This study shows, for the first time, how and why concentric radii under- or over-estimate hazard extent and population exposure, providing a benchmark for interpreting radii-derived hazard and exposure estimates. Supplementary information: The online version contains supplementary material available at 10.1007/s00445-023-01686-5.

10.
Sci Total Environ ; 913: 169502, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38145687

ABSTRACT

Land subsidence is a worldwide geo-environmental hazard. Clarifying the influencing factors of land subsidence hazards susceptibility (LSHS) and their spatial distribution are critical to the prevention and control of subsidence disasters. In this study, we selected natural and anthropogenic features or variables on LSHS and used the interpretable convolutional neural network (CNN) method to successfully construct a LSHS model in China. The model performed well, with AUC and F1-score testing set accuracies reaching 0.9939 and 0.9566, respectively. The interpretable method of SHapley Additive exPlanations (SHAP) was use to elucidate the individual contribution of input features to the predictions of CNN model. The importance ranking of model variables showed that population, gross domestic product (GDP) and groundwater storage (GWS) change are the three major factors that affect China's land subsidence. During year 2004-2016, an area of 237.6 thousand km2 was classified as high and very high LSHS, mainly concentrated in the North China Plain, central Shanxi, southern Shaanxi, Shanghai and the junction of Jiangsu and Zhejiang. There will be 333.82-343.12 thousand km2 of areas located in the high and very high LSHS in the mid-21st century (2030-2059) and 361.9-385.92 thousand km2 of areas in the late-21st century (2070-2099). Future population exposure to high and very high LSHS will be 252.12-270.19 million people (mid-21st century) and 196.14-274.50 million people (late-21st century), respectively, compared with the historical exposure of 210.99 million people. The proportion of future railway and road exposure will reach 14.63 %-14.89 % and 11.51 %-11.82 % in the mid-21st century, and 15.46 %-17.12 % and 12.35 %-13.11 % in the late-21st century, respectively. Our findings provide an important information for creating regional adaptation policies and strategies to mitigate damage induced by subsidence.

11.
Article in English | MEDLINE | ID: mdl-38063557

ABSTRACT

Low-cost optical sensors are used in many countries to monitor fine particulate (PM2.5) air pollution, especially in cities and towns with large spatial and temporal variation due to woodsmoke pollution. Previous peer-reviewed research derived calibration equations for PurpleAir (PA) sensors by co-locating PA units at a government regulatory air pollution monitoring site in Armidale, NSW, Australia, a town where woodsmoke is the main source of PM2.5 pollution. The calibrations enabled the PA sensors to provide accurate estimates of PM2.5 that were almost identical to those from the NSW Government reference equipment and allowed the high levels of wintertime PM2.5 pollution and the substantial spatial and temporal variation from wood heaters to be quantified, as well as the estimated costs of premature mortality exceeding $10,000 per wood heater per year. This follow-up study evaluates eight PA sensors co-located at the same government site to check their accuracy over the following four years, using either the original calibrations, the default woodsmoke equation on the PA website for uncalibrated sensors, or the ALT-34 conversion equation (see text). Minimal calibration drift was observed, with year-round correlations, r = 0.98 ± 0.01, and root mean square error (RMSE) = 2.0 µg/m3 for daily average PA PM2.5 vs. reference equipment. The utitilty of the PA sensors without prior calibration at locations affected by woodsmoke was also demonstrated by the year-round correlations of 0.94 and low RMSE between PA (woodsmoke and ALT-34 conversions) and reference PM2.5 at the NSW Government monitoring sites in Orange and Gunnedah. To ensure the reliability of the PA data, basic quality checks are recommended, including the agreement of the two laser sensors in each PA unit and removing any transient spikes affecting only one sensor. In Armidale, from 2019 to 2022, the continuing high spatial variation in the PM2.5 levels observed during the colder months was many times higher than any discrepancies between the PA and reference measurements. Particularly unhealthy PM2.5 levels were noted in southern and eastern central Armidale. The measurements inside two older weatherboard houses in Armidale showed that high outdoor pollution resulted in high pollution inside the houses within 1-2 h. Daily average PM2.5 concentrations available on the PA website allow air pollution at different sites across regions (and countries) to be compared. Such comparisons revealed major elevations in PA PM2.5 at Gunnedah, Orange, Monash (Australian Capital Territory), and Christchurch (New Zealand) during the wood heating season. The data for Gunnedah and Muswellbrook suggest a slight underestimation of PM2.5 at other times of the year when there are proportionately more dust and other larger particles. A network of appropriately calibrated PA sensors can provide valuable information on the spatial and temporal variation in the air pollution that can be used to identify pollution hotspots, improve estimates of population exposure and health costs, and inform public policy.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Follow-Up Studies , Reproducibility of Results , Environmental Monitoring/methods , Australia , Air Pollution/analysis , Dust
12.
J Environ Manage ; 347: 119253, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37806268

ABSTRACT

Extensive studies have demonstrated the restricting effect of past and present drought conditions on vegetation growth over the past three decades. However, the underlying mechanism of the impact of prior drought on vegetation growth - along with the magnitude of its impact over the rest of the 21st century - remains uncertain. Herein, we examined the evolution and characteristics of global vegetation growth and drought for both baseline (1982-2014) and future (2015-2100) periods under four representative pathways using the gross primary productivity (GPP) and the Standardized Precipitation Evapotranspiration Index from the CMIP6. Further, we investigated the time-lagged effects of drought on vegetation growth and the intensity of population and economy exposure to drought by identifying drought-threatened areas under four emission scenarios. The results show that, at the end of the 21st century, the global terrestrial GPP will experience an increasing trend under four scenarios, especially in SSP5-8.5, with a growth rate of 0.032 kg C m-2/decade, which is 10 times higher than that in SSP1-2.6. From the SSP1-2.6 to the SSP5-8.5 scenario, the SPEI change rates are -0.03, -0.01, -0.017, and -0.018/decade, respectively, indicating that the intensity of global drought events will rise with increases in CO2 emissions. 28.3%, 24.7%, 30.4%, and 35% of global land exhibit downward mean time-lagged months in four scenarios, especially in the middle-high latitudes of the northern hemisphere (>45°N), indicating an advanced response of vegetation to drought. Nearly 8, 9.1, 12.9, and 11.5 billion people - valued at 94,138 (SSP1-2.6), 976,020 (SSP2-4.5), 526,595 (SSP3-7.0), and 204,728 (SSP5-8.5) billion US$, respectively - will be threatened by continuous drought. Globally, the population and economy exposure to moderate and extreme drought zones is larger, and the economic risk from extreme droughts is 8 times greater under the high emissions scenario than the low emissions scenario.


Subject(s)
Droughts , Ecosystem , Humans , Climate Change
13.
Geohealth ; 7(10): e2023GH000887, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37885913

ABSTRACT

The increasing prevalence of warmer trends and climate extremes exacerbate the population's exposure to urban settlements. This work investigated population exposure changes to mean and extreme climate events in different Agro-Ecological Zones (AEZs) of Pakistan and associated mechanisms (1979-2020). Spatiotemporal trends in mean and extreme temperatures revealed significant warming mainly over northern, northeastern, and southern AEZs. In contrast, mean-to-extreme precipitation changes showed non-uniform patterns with a significant increase in the northeast AEZs. Population exposure to mean (extreme) temperature and precipitation events increased two-fold during 2000-2020. The AEZs in urban settlements (i.e., Indus Delta, Northern Irrigated Plain, and Barani/Rainfall) show a maximum exposure to extreme temperatures of about 70-100 × 106 (person-days) in the reference period (1979-1999), which increases to 140-200 × 106 person-days in the recent period (2000-2020). In addition, the highest exposure to extreme precipitation days also increases to 40-200 × 106 person-days during 2000-2020 than 1979-1999 (20-100 × 106) person-days. Relative changes in exposure are large (60%-90%) for the AEZs across northeast Pakistan, justifying the spatial population patterns over these zones. Overall, the observed changes in exposure are primarily attributed to the climate effect (50%) over most AEZs except Northern Irrigated Plain for R10 and R20 events, where the interaction effect takes the lead. The population exposure rapidly increased over major AEZs of Pakistan, which could be more vulnerable to extreme events due to rapid urbanization and population growth in the near future.

14.
Sci Total Environ ; 897: 165357, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37419355

ABSTRACT

The Hindu-Kush-Himalaya is abode to numerous severely flood-prone mountainous stretches that distress vulnerable communities and cause massive destruction to physical entities such as hydropower projects. Adopting commercial flood models for replicating the dynamics of flood wave propagation over such regions is a major constraint due to the financial economics threaded to flood management. For the first instance, the present study attempts to investigate whether advanced open-source models are skillful in quantifying flood hazards and population exposure over mountainous terrains. While doing so, the performance of 1D-2D coupled HEC-RAS v6.3 (the most recent version developed by the U.S. Army Corps of Engineers) is reconnoitred for the first time in flood management literature. The most flood-prone region in Bhutan, the Chamkhar Chhu River Basin, housing large groups of communities and airports near its floodplains, is considered. HEC-RAS v6.3 setups are corroborated by comparing them with 2010 flood imagery derived from MODIS through performance metrics. The results indicate a sizable portion of the central part of the basin experiences very-high flood hazards with depth and velocities exceeding 3 m, and 1.6 m/s, respectively, during 50, 100, and 200-year return periods of floods. To affirm HEC-RAS, the flood hazards are compared with TUFLOW at 1D and 1D-2D coupled levels. The hydrological similarity within the channel is reflected at river cross-sections (NSE and KGE > 0.98), while overland inundation and hazard statistics differ, however, very less significant (<10 %). Later, flood hazards extracted from HEC-RAS are fused with the World-Pop population to estimate the degree of population exposure. The study ascertains that HEC-RAS v6.3 is an efficacious option for flood risk mapping over geographically arduous regions and can be preferred in resource-constrained environments ensuring a minimal degree of anomaly.

15.
Environ Int ; 178: 108049, 2023 08.
Article in English | MEDLINE | ID: mdl-37379721

ABSTRACT

The increasing exposure to extreme heatwaves in urban areas from both climate change and the urban heat island (UHI) effect poses multiple threats and challenges to human society. Despite a growing number of studies focusing on extreme exposure, research advances are still limited in some aspects such as oversimplification of human exposure to heatwaves and neglect of perceived temperature as well as actual body comfort, resulting in unreliable and unrealistic estimates of future results. In addition, little research has performed comprehensive and fine-resolution global analyses in future scenarios. In this study, we present the first global fine-resolution projection of future changing urban population exposure to heatwaves by 2100 under four shared socioeconomic pathways (SSPs) considering urban expansion at global, regional, and national scales. Overall, global urban population exposure to heatwaves is rising under the four SSPs. Temperate and tropical zones predictably have the greatest exposure among all climate zones. Coastal cities are projected to have the greatest exposure, followed closely by cities at low altitudes. Middle-income countries have the lowest exposure and the lowest inequality of exposure among countries. Individual climate effects contributed the most (approximately 46.4%) to future changes in exposure, followed by the interactive effect between climate and urbanization (approximately 18.5%). Our results indicate that more attention needs to be paid to policy improvements and sustainable development planning of global coastal cities and some low-altitude cities, especially in low- and high-income countries. Meanwhile, this study also highlights the impact of continued future urban expansion on population exposure to heatwaves.


Subject(s)
Hot Temperature , Urbanization , Humans , Cities , Urban Population , Climate Change
16.
Sci Total Environ ; 888: 164142, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37182769

ABSTRACT

Global warming leads to more frequent and intense heatwaves, putting urban populations at greater risk. Previous related studies considered only surface air temperature or one or two Shared Socioeconomic Pathways (SSPs) and were limited to specific regions. Moreover, no research focused on heatwave exposure in highly-populated global megacities facing severe threats. This study is the first to project future population exposure to heatwaves in 83 global megacities by 2100 using fine-resolution data, suitable indices reflecting human comfort in heatwaves by incorporating temperature and humidity, and a future population exposure projection and analysis framework. The results show that (1) the global frequency of extreme heatwave events and average change rate in each megacity sequentially increase from SSP1-2.6 to SSP5-8.5, and the change rate is generally larger in megacities in the Southern Hemisphere; (2) the increases in heatwave exposure are greatest under SSP370, and the change rates are generally larger for megacities in Southern Asia; (3) there is a high degree of inequality (Gini of 0.6 to 0.63) in future heatwave exposure globally, with the highest inequality under SSP5-8.5 and the lowest under SSP3-7.0; (4) the average exposure, increase rate, and change are highest in low-income megacities and lowest in high-income megacities. The distribution of exposure is the most balanced in middle-income megacities and the least balanced in high-income megacities; and (5) population growth contributes more to the change in exposure than total warming in high-income megacities under SSP1-2.6, and total urban warming contributes much more than population growth in all other cases. Every effort should be made to avoid the SSP3-7.0 scenario and pursue sustainable and rational urban economic development. Mumbai, Manila, Kolkata, and Jakarta warrant particular attention due to their rapid exposure growth. Additionally, policymakers and urban planners must focus on improving sustainable development planning for megacities in southern Asia and low-income megacities.


Subject(s)
Global Warming , Hot Temperature , Humans , Cities , Philippines , Urban Population
17.
Sci Total Environ ; 889: 164274, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37209749

ABSTRACT

The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.


Subject(s)
Climate Change , Hot Temperature , Humans , Models, Theoretical , Floods , Tibet
18.
Environ Res ; 231(Pt 2): 116176, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37209980

ABSTRACT

Combining the comprehensive effects of temperature and humidity, this study applies a heat stress index to project future population exposure to high temperature and related health-risks over China under different climate change scenarios. Results show that the number of high temperature days, population exposure and their related health-risks will increase significantly in the future compared to the reference period (1985-2014), which is mainly caused by the change of >T99p (the wet bulb globe temperature >99th percentile derived from the reference period). The population effect is absolutely dominant in influencing the decrease in exposure to T90-95p (the wet bulb globe temperature is in the range of (90th, 95th]) and T95-99p (the wet bulb globe temperature is in the range of (95th, 99th]), and the climate effect is the most prominent contributor to the upsurge in exposure to > T99p in most areas. An additional 0.1 billion person-days increase in population exposure to T90-95p, T95-99p and >T99p in a given year is associated with the number of deaths by 1002 (95% CI: 570-1434), 2926 (95% CI: 1783-4069) and 2635 (95% CI: 1345-3925), respectively. Compared with the reference period, total exposure to high temperature under the SSP2-4.5 (SSP5-8.5) scenario will increase to 1.92 (2.01) times in the near-term (2021-2050) and 2.16 (2.35) times in the long-term (2071-2100), which will increase the number of people at heat risk by 1.2266 (95% CI: 0.6341-1.8192) [1.3575 (95% CI: 0.6926-2.0223)] and 1.5885 (95% CI: 0.7869-2.3902) [1.8901 (95% CI:0.9230-2.8572)] million, respectively. Significant geographic variations exist in the changes of exposure and related health-risks. The change is greatest in the southwest and south, whereas it is relatively small in the northeast and north. The findings provide several theoretical references for climate change adaptation.


Subject(s)
Climate Change , Hot Temperature , Humans , Temperature , China/epidemiology , Forecasting , Probability
19.
Article in English | MEDLINE | ID: mdl-37107880

ABSTRACT

A sequence of dust intrusions occurred from the Sahara Desert to the central Mediterranean in the second half of June 2021. This event was simulated by means of the Weather Research and Forecasting coupled with chemistry (WRF-Chem) regional chemical transport model (CTM). The population exposure to the dust surface PM2.5 was evaluated with the open-source quantum geographical information system (QGIS) by combining the output of the CTM with the resident population map of Italy. WRF-Chem analyses were compared with spaceborne aerosol observations derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and, for the PM2.5 surface dust concentration, with the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. Considering the full-period (17-24 June) and area-averaged statistics, the WRF-Chem simulations showed a general underestimation for both the aerosol optical depth (AOD) and the PM2.5 surface dust concentration. The comparison of exposure classes calculated for Italy and its macro-regions showed that the dust sequence exposure varies with the location and entity of the resident population amount. The lowest exposure class (up to 5 µg m-3) had the highest percentage (38%) of the population of Italy and most of the population of north Italy, whereas more than a half of the population of central, south and insular Italy had been exposed to dust PM2.5 in the range of 15-25 µg m-3. The coupling of the WRF-Chem model with QGIS is a promising tool for the management of risks posed by extreme pollution and/or severe meteorological events. Specifically, the present methodology can also be applied for operational dust forecasting purposes, to deliver safety alarm messages to areas with the most exposed population.


Subject(s)
Air Pollutants , Air Pollution , Dust/analysis , Geographic Information Systems , Air Pollutants/analysis , Retrospective Studies , Environmental Monitoring/methods , Air Pollution/analysis , Aerosols/analysis , Particulate Matter/analysis
20.
Environ Sci Technol ; 57(17): 6955-6964, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37079489

ABSTRACT

High-resolution simulations are essential to resolve fine-scale air pollution patterns due to localized emissions, nonlinear chemical feedbacks, and complex meteorology. However, high-resolution global simulations of air quality remain rare, especially of the Global South. Here, we exploit recent developments to the GEOS-Chem model in its high-performance implementation to conduct 1-year simulations in 2015 at cubed-sphere C360 (∼25 km) and C48 (∼200 km) resolutions. We investigate the resolution dependence of population exposure and sectoral contributions to surface fine particulate matter (PM2.5) and nitrogen dioxide (NO2), focusing on understudied regions. Our results indicate pronounced spatial heterogeneity at high resolution (C360) with large global population-weighted normalized root-mean-square difference (PW-NRMSD) across resolutions for primary (62-126%) and secondary (26-35%) PM2.5 species. Developing regions are more sensitive to spatial resolution resulting from sparse pollution hotspots, with PW-NRMSD for PM2.5 in the Global South (33%), 1.3 times higher than globally. The PW-NRMSD for PM2.5 for discrete southern cities (49%) is substantially higher than for more clustered northern cities (28%). We find that the relative order of sectoral contributions to population exposure depends on simulation resolution, with implications for location-specific air pollution control strategies.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Cities , Computer Simulation , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...