Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 571
Filter
1.
EMBO Rep ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969946

ABSTRACT

Plasma membrane repair is a fundamental homeostatic process of eukaryotic cells. Here, we report a new function for the conserved cytoskeletal proteins known as septins in the repair of cells perforated by pore-forming toxins or mechanical disruption. Using a silencing RNA screen, we identified known repair factors (e.g. annexin A2, ANXA2) and novel factors such as septin 7 (SEPT7) that is essential for septin assembly. Upon plasma membrane injury, the septin cytoskeleton is extensively redistributed to form submembranous domains arranged as knob and loop structures containing F-actin, myosin IIA, S100A11, and ANXA2. Formation of these domains is Ca2+-dependent and correlates with plasma membrane repair efficiency. Super-resolution microscopy revealed that septins and F-actin form intertwined filaments associated with ANXA2. Depletion of SEPT7 prevented ANXA2 recruitment and formation of submembranous actomyosin domains. However, ANXA2 depletion had no effect on domain formation. Collectively, our data support a novel septin-based mechanism for resealing damaged cells, in which the septin cytoskeleton plays a key structural role in remodeling the plasma membrane by promoting the formation of SEPT/F-actin/myosin IIA/ANXA2/S100A11 repair domains.

2.
IUBMB Life ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970306

ABSTRACT

Aegerolysin proteins are involved in various interactions by recognising a molecular receptor in the target organism. The formation of pores in combination with larger, non-aegerolysin-like protein partners (such as membrane attack complex/perforin proteins [MACPFs]) is one of the possible responses in the presumed competitive exclusion of other organisms from the ecological niche. Bicomponent pairs are already observed at the gene level. Fungi growing under extreme conditions can be divided into ubiquitous and extremotolerant generalists which can compete with mesophilic species and rare, isolated extremophilic and extremotolerant specialists with narrow ecological amplitude that cannot compete. Under extreme conditions, there are fewer competitors, so fungal specialists generally produce less diverse and complicated profiles of specialised molecules. Since extremotolerant and extremophilic fungi have evolved in numerous branches of the fungal tree of life and aegerolysins are unevenly distributed across fungal genomes, we investigated whether aegerolysins, together with their partner proteins, contribute to the extreme survival ecology of generalists and specialists. We compiled a list of 109 thermo-, psihro-, acido-, alkali-, halo-, metallo- and polyextremo-tolerant/-philic fungal species. Several challenges were identified that affected the outcome: renaming fungal species, defining extremotolerant/extremophilic traits, identifying extremotolerant/extremophilic traits as metadata in databases and linking fungal isolates to fungal genomes. The yield of genomes coding aegerolysins or MACPFs appears to be lower in extremotolerant/extremophilic fungi compared to all fungal genomes. No candidates for pore-forming gene pairs were identified in the genomes of extremophilic fungi. Aegerolysin and MACPFs partner pairs were identified in only two of 69 species with sequenced genomes, namely in the ubiquitous metallotolerant generalists Aspergillus niger and A. foetidus. These results support the hypothesised role of these pore-forming proteins in competitive exclusion.

3.
Insects ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921103

ABSTRACT

Prolonged periods of host-lethal infection by entomopathogenic fungi pose challenges to the development of biological control agents. The obligate entomopathogen C. obscurus, however, rapidly kills aphid hosts, warranting investigation. This study investigated the interaction between C. obscurus and a bean aphid Megoura crassicauda during the incubation period of infection, using transcriptome analysis to map host gene expression profiles. Results indicate C. obscurus-inoculated aphid activation of the wound healing immune responses, alongside suppression of the key molecules involved in Toll signaling, melanization, and metabolism. Furthermore, neuromotor system-related genes were upregulated, paralleling the intoxication observed in a nematode pest treated with C. obscurus-derived CytCo protein. To deepen interaction insights, a His-tag pull-down assay coupled with mass spectrometry analysis was conducted using CytCo as a bait to screen for potential aphid protein interactors. The proteins were identified based on the assembled transcriptome, and eleven transmembrane proteins were predicted to bind to CytCo. Notably, a protein of putatively calcium-transporting ATPase stood out with the highest confidence. This suggests that CytCo plays a vital role in C. obscurus killing aphid hosts, implicating calcium imbalance. In conclusion, C. obscurus effectively inhibits aphid immunity and exhibits neurotoxic potential, expediting the infection process. This finding facilitates our understanding of the complex host-pathogen interactions and opens new avenues for exploring biological pest management strategies in agroforestry.

4.
Materials (Basel) ; 17(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38893878

ABSTRACT

A novel method is introduced in this study for producing ceramisite coarse aggregates that are both lightweight and possess high strength. The process involves utilizing fly ash as the primary material, along with coal ash floating beads (CAFBs) that have high softening temperature and a spherical hollow structure serving as the template for forming pores. This study examined the impact of varying particle size and quantity of floating beads on the composition and characteristics of ceramisite aggregates. Results showed that the high softening temperature of floating beads provided stability to the spherical cavity structure throughout the sintering process. Furthermore, the pore structure could be effectively tailored by manipulating the size and quantity of the floating beads in the manufacturing procedure. The obtained ceramisite aggregates feature a compact outer shell and a cellular inner core with uniformly distributed pores that are isolated from each other and mostly spherical in form. They achieve a low density ranging from 723 to 855 kg/m3, a high cylinder compressive strength between 8.7 and 13.5 MPa, and minimal water absorption rates of 3.00 to 4.09%. The performance metrics of these coarse aggregates significantly exceeded the parameters specified in GB/T 17431.1-2010 standards.

5.
ACS Nano ; 18(24): 15831-15844, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38844421

ABSTRACT

We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration. Here, we explore the structural determinants of macrolittin nanopore stability in POPC bilayers using atomistic molecular dynamics simulations and experiments on macrolittins and single-site variants. Simulations of macrolittin nanopores in POPC bilayers show that they are stabilized by an extensive, cooperative hydrogen bond network comprised of the many charged and polar side chains interacting with each other via bridges of water molecules and lipid headgroups. Lipid molecules with unusual conformations participate in the H-bond network and are an integral part of the nanopore structure. To explore the role of this H-bond network on membrane selectivity, we swapped three critical polar residues with the nonpolar residues found in melittin. All variants have potency, membrane selectivity, and cytotoxicity that were intermediate between a cytotoxic melittin variant called MelP5 and the macrolittins. Simulations showed that the variants had less organized H-bond networks of waters and lipids with unusual structures. The membrane-spanning, cooperative H-bond network is a critical determinant of macrolittin nanopore stability and membrane selectivity. The results described here will help guide the future design and optimization of peptide nanopore-based applications.


Subject(s)
Melitten , Molecular Dynamics Simulation , Nanopores , Phosphatidylcholines , Melitten/chemistry , Phosphatidylcholines/chemistry , Lipid Bilayers/chemistry , Hydrogen Bonding , Peptides/chemistry , Humans
6.
Sci Rep ; 14(1): 14172, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898081

ABSTRACT

Zygaenoidea is a superfamily of lepidopterans containing many venomous species, including the Limacodidae (nettle caterpillars) and Megalopygidae (asp caterpillars). Venom proteomes have been recently documented for several species from each of these families, but further data are required to understand the evolution of venom in Zygaenoidea. In this study, we examined the 'electric' caterpillar from North-Eastern Australia, a limacodid caterpillar densely covered in venomous spines. We used DNA barcoding to identify this caterpillar as the larva of the moth Comana monomorpha (Turner, 1904). We report the clinical symptoms of C. monomorpha envenomation, which include acute pain, and erythema and oedema lasting for more than a week. Combining transcriptomics of venom spines with proteomics of venom harvested from the spine tips revealed a venom markedly different in composition from previously examined limacodid venoms that are rich in peptides. In contrast, the venom of C. monomorpha is rich in aerolysin-like proteins similar to those found in venoms of asp caterpillars (Megalopygidae). Consistent with this composition, the venom potently permeabilises sensory neurons and human neuroblastoma cells. This study highlights the diversity of venom composition in Limacodidae.


Subject(s)
Phylogeny , Animals , Australia , Larva , Proteomics/methods , Arthropod Venoms/genetics , Arthropod Venoms/metabolism , Moths/genetics , Cell Membrane Permeability , Humans , Bites and Stings , Proteome
7.
Biochem Biophys Res Commun ; 716: 149954, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704887

ABSTRACT

Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.


Subject(s)
Cell Membrane , Cholesterol , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization , Vero Cells , Chlorocebus aethiops , Cholesterol/metabolism , Animals , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Cell Membrane/metabolism , Cell Membrane/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , Carrier Proteins/metabolism , COVID-19/virology , COVID-19/metabolism , Protein Binding
8.
mBio ; : e0074324, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809022

ABSTRACT

Pathogenic bacteria rely on secreted virulence factors to cause disease in susceptible hosts. However, in Gram-positive bacteria, the mechanisms underlying secreted protein activation and regulation post-membrane translocation remain largely unknown. Using proteomics, we identified several proteins that are dependent on the secreted chaperone PrsA2. We followed with phenotypic, biochemical, and biophysical assays and computational analyses to examine the regulation of a detected key secreted virulence factor, listeriolysin O (LLO), and its interaction with PrsA2 from the bacterial pathogen Listeria monocytogenes (Lm). Critical to Lm virulence is internalization by host cells and the subsequent action of the cholesterol-dependent pore-forming toxin, LLO, which enables bacterial escape from the host cell phagosome. Since Lm is a Gram-positive organism, the space between the cell membrane and wall is solvent exposed. Therefore, we hypothesized that the drop from neutral to acidic pH as the pathogen is internalized into a phagosome is critical to regulating the interaction of PrsA2 with LLO. Here, we demonstrate that PrsA2 directly interacts with LLO in a pH-dependent manner. We show that PrsA2 protects and sequesters LLO under neutral pH conditions where LLO can be observed to aggregate. In addition, we identify molecular features of PrsA2 that are required for interaction and ultimately the folding and activity of LLO. Moreover, protein-complex modeling suggests that PrsA2 interacts with LLO via its cholesterol-binding domain. These findings highlight a mechanism by which a Gram-positive secretion chaperone regulates the secretion, stability, and folding of a pore-forming toxin under conditions relevant to host cell infection. IMPORTANCE: Lm is a ubiquitous food-borne pathogen that can cause severe disease to vulnerable populations. During infection, Lm relies on a wide repertoire of secreted virulence factors including the LLO that enables the bacterium to invade the host and spread from cell to cell. After membrane translocation, secreted factors must become active in the challenging bacterial cell membrane-wall interface. However, the mechanisms required for secreted protein folding and function are largely unknown. Lm encodes a chaperone, PrsA2, that is critical for the activity of secreted factors. Here, we show that PrsA2 directly associates and protects the major Lm virulence factor, LLO, under conditions corresponding to the host cytosol, where LLO undergoes irreversible denaturation. Additionally, we identify molecular features of PrsA2 that enable its interaction with LLO. Together, our results suggest that Lm and perhaps other Gram-positive bacteria utilize secreted chaperones to regulate the activity of pore-forming toxins during infection.

9.
Biomed Pharmacother ; 175: 116723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723514

ABSTRACT

The growth of antibiotic resistance to antifungal drugs contributes to the search for new ways to enhance their effectiveness and reduce toxicity. The undeniable advantage of polyene macrolide antibiotic amphotericin B (AmB) which ensures low pathogen resistance is its mechanism of action related to the formation of transmembrane pores in target lipid membranes. Here, we investigated the effects of plant flavones, chrysin, wogonin, baicalein, apigenin, scutellarein, luteolin, morin and fisetin on the pore-forming activity of AmB in the sterol-enriched membranes by electrophysiological assays. Сhrysin, wogonin, baicalein, apigenin, scutellarein, and luteolin were shown to decrease the AmB pore-forming activity in the bilayers composed of palmitoyloleylphosphocholine independently of their sterol composition. Morin and fisetin led to the increase and decrease in the AmB pore-forming activity in the ergosterol- and cholesterol-containing bilayers respectively. Differential scanning microcalorimetry of the gel-to-liquid crystalline phase transition of membrane forming lipids, molecular dynamics simulations, and absorbance spectroscopy revealed the possibility of direct interactions between AmB and some flavones in the water and/or in the lipid bilayer. The influence of these interactions on the antibiotic partitioning between aqueous solution and membrane and/or its transition between different states in the bilayer was discussed.


Subject(s)
Amphotericin B , Flavones , Lipid Bilayers , Molecular Dynamics Simulation , Amphotericin B/pharmacology , Amphotericin B/chemistry , Flavones/pharmacology , Flavones/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Phase Transition
10.
Membranes (Basel) ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38786948

ABSTRACT

An insect neuroactive helix ring peptide called U11-MYRTX-Tb1a (abbreviated as U11) from the venom of the ant, Tetramorium bicarinatum. U11 is a 34-amino-acid peptide that is claimed to be one of the most paralytic peptides ever reported from ant venoms acting against blowflies and honeybees. The peptide features a compact triangular ring helix structure stabilized by a single disulfide bond, which is a unique three-dimensional scaffold among animal venoms. Pharmacological assays using Drosophila S2 cells have demonstrated that U11 is not cytotoxic but instead suggest that it may modulate potassium channels via the presence of a functional dyad. In our work described here, we have tested this hypothesis by investigating the action of synthetically made U11 on a wide array of voltage-gated K and Na channels since it is well known that these channels play a crucial role in the phenomenon of paralysis. Using the Xenopus laevis oocyte heterologous expression system and voltage clamp, our results have not shown any modulatory effect of 1 µM U11 on the activity of Kv1.1, Kv1.3, Kv1.4, Kv1.5, Shaker IR, Kv4.2, Kv7.1, Kv10.1, Kv11.1 and KQT1, nor on DmNav and BgNav. Instead, 10 µM U11 caused a quick and irreversible cytolytic effect, identical to the cytotoxic effect caused by Apis mellifera venom, which indicates that U11 can act as a pore-forming peptide. Interestingly, the paralytic dose (PD50) on blowflies and honeybees corresponds with the concentration at which U11 displays clear pore-forming activity. In conclusion, our results indicate that the insecticidal and paralytic effects caused by U11 may be explained by the putative pore formation of the peptide.

11.
Biochemistry (Mosc) ; 89(Suppl 1): S234-S248, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621753

ABSTRACT

This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.


Subject(s)
Nanopore Sequencing , Nanopores , Sequence Analysis, DNA/methods , Biopolymers , High-Throughput Nucleotide Sequencing/methods
12.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38668605

ABSTRACT

Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.


Subject(s)
Bacterial Toxins , Clostridium perfringens , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/toxicity , Clostridium perfringens/metabolism
13.
Toxins (Basel) ; 16(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38668607

ABSTRACT

Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.


Subject(s)
Bacterial Toxins , Bacterial Toxins/toxicity , Bacterial Toxins/metabolism , Humans , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/toxicity , Bacteria/metabolism , Evolution, Molecular
14.
Front Mol Biosci ; 11: 1334819, 2024.
Article in English | MEDLINE | ID: mdl-38606285

ABSTRACT

COVID-19, the infectious disease caused by the most recently discovered coronavirus SARS- CoV-2, has caused millions of sick people and thousands of deaths all over the world. The viral positive-sense single-stranded RNA encodes 31 proteins among which the spike (S) is undoubtedly the best known. Recently, protein E has been reputed as a potential pharmacological target as well. It is essential for the assembly and release of the virions in the cell. Literature describes protein E as a voltage-dependent channel with preference towards monovalent cations whose intracellular expression, though, alters Ca2+ homeostasis and promotes the activation of the proinflammatory cascades. Due to the extremely high sequence identity of SARS-CoV-2 protein E (E-2) with the previously characterized E-1 (i.e., protein E from SARS-CoV) many data obtained for E-1 were simply adapted to the other. Recent solid state NMR structure revealed that the transmembrane domain (TMD) of E-2 self-assembles into a homo-pentamer, albeit the oligomeric status has not been validated with the full-length protein. Prompted by the lack of a common agreement on the proper structural and functional features of E-2, we investigated the specific mechanism/s of pore-gating and the detailed molecular structure of the most cryptic protein of SARS-CoV-2 by means of MD simulations of the E-2 structure and by expressing, refolding and analyzing the electrophysiological activity of the transmembrane moiety of the protein E-2, in its full length. Our results show a clear agreement between experimental and predictive studies and foresee a mechanism of activity based on Ca2+ affinity.

15.
Adv Sci (Weinh) ; 11(17): e2306076, 2024 May.
Article in English | MEDLINE | ID: mdl-38445883

ABSTRACT

Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.


Subject(s)
Genetic Therapy , Melanoma , Oligochaeta , Animals , Mice , Cell Line, Tumor , Disease Models, Animal , Genetic Therapy/methods , Melanoma/therapy , Melanoma/genetics , Nanoparticles/chemistry , Oligochaeta/genetics , Toxins, Biological/genetics , Female , Humans
16.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542105

ABSTRACT

RTX toxins are important virulence factors produced by a wide range of Gram-negative bacteria. They are secreted as water-soluble proteins that are able to bind to the host cell membrane and insert hydrophobic segments into the lipid bilayer that ultimately contribute to the formation of transmembrane pores. Ion diffusion through these pores leads then to cytotoxic and cytolytic effects on the hosts. Several reports have evidenced that the binding of several RTX toxins to the target cell membrane may take place through a high-affinity interaction with integrins of the ß2 family that is highly expressed in immune cells of the myeloid lineage. However, at higher toxin doses, cytotoxicity by most RTX toxins has been observed also on ß2-deficient cells in which toxin binding to the cell membrane has been proposed to occur through interaction with glycans of glycosylated lipids or proteins present in the membrane. More recently, cumulative pieces of evidence show that membrane cholesterol is essential for the mechanism of action of several RTX toxins. Here, we summarize the most important aspects of the RTX toxin interaction with the target cell membrane, including the cholesterol dependence, the recent identification in the sequences of several RTX toxins of linear motifs coined as the Cholesterol Recognition/interaction Amino acid Consensus (CRAC), and the reverse or mirror CARC motif, which is involved in the toxin-cholesterol interaction.


Subject(s)
Bacterial Toxins , Bacterial Toxins/metabolism , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Exotoxins/metabolism , Cholesterol/metabolism
17.
Water Res ; 255: 121483, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38508039

ABSTRACT

Fly ash (FA) and eggshells (ES) are common solid wastes with significant potential for the recovery of phosphorus from water. This study focuses on synthesizing a low-cost and environmental-friendly phosphate adsorbent called eggshell-fly ash geopolymer composite (EFG) using eggshells instead of chemicals. The CaO obtained from the high-temperature pyrolysis of eggshells provides active sites for phosphate adsorption, and CO2 serves as a pore-forming agent. The phosphate adsorption performance of EFG varied with the eggshell-fly ash ratios and achieved a maximum of 49.92 mg P/g at an eggshell-fly ash ratio of 40 %. The adsorption process was well described by the pseudo-second-order model and the Langmuir model. EFG also exhibited a good regeneration performance through six-cycle experiments and achieved the highest phosphate desorption at pH 4.0. The results of the column experiment showed that EFG can be used as a filter media for phosphorus removal in a real-scale application with low cost. Soil burial test indicated saturated EFG has a good phosphate slow-release performance (maintained for up to 60 days). Overall, EFG has demonstrated to be a promising adsorbent for phosphorus recovery.

18.
AMB Express ; 14(1): 15, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300478

ABSTRACT

Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.

19.
Toxicon X ; 21: 100184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389571

ABSTRACT

Venoms comprise highly sophisticated bioactive molecules modulating ion channels, receptors, coagulation factors, and the cellular membranes. This array of targets and bioactivities requires advanced high-content bioassays to facilitate the development of novel envenomation treatments and biotechnological and pharmacological agents. In response to the existing gap in venom research, we developed a cutting-edge fluorescence-based high-throughput and high-content cellular assay. This assay enables the simultaneous identification of prevalent cellular activities induced by venoms such as membrane lysis, pore formation, and ion channel modulation. By integrating intracellular calcium with extracellular nucleic acid measurements, we have successfully distinguished these venom mechanisms within a single cellular assay. Our high-content bioassay was applied across three cell types exposed to venom components representing lytic, ion pore-forming or ion channel modulator toxins. Beyond unveiling distinct profiles for these action mechanisms, we found that the pore-forming latrotoxin α-Lt1a prefers human neuroblastoma to kidney cells and cardiomyocytes, while the lytic bee peptide melittin is not selective. Furthermore, evaluation of snake venoms showed that Elapid species induced rapid membrane lysis, while Viper species showed variable to no activity on neuroblastoma cells. These findings underscore the ability of our high-content bioassay to discriminate between clades and interspecific traits, aligning with clinical observations at venom level, beyond discriminating among ion pore-forming, membrane lysis and ion channel modulation. We hope our research will expedite the comprehension of venom biology and the diversity of toxins that elicit cytotoxic, cardiotoxic and neurotoxic effects, and assist in identifying venom components that hold the potential to benefit humankind.

20.
J Biol Chem ; 300(3): 105694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301890

ABSTRACT

Bacteriocins, which have narrow-spectrum activity and limited adverse effects, are promising alternatives to antibiotics. In this study, we identified klebicin E (KlebE), a small bacteriocin derived from Klebsiella pneumoniae. KlebE exhibited strong efficacy against multidrug-resistant K. pneumoniae isolates and conferred a significant growth advantage to the producing strain during intraspecies competition. A giant unilamellar vesicle leakage assay demonstrated the unique membrane permeabilization effect of KlebE, suggesting that it is a pore-forming toxin. In addition to a C-terminal toxic domain, KlebE also has a disordered N-terminal domain and a globular central domain. Pulldown assays and soft agar overlay experiments revealed the essential role of the outer membrane porin OmpC and the Ton system in KlebE recognition and cytotoxicity. Strong binding between KlebE and both OmpC and TonB was observed. The TonB-box, a crucial component of the toxin-TonB interaction, was identified as the 7-amino acid sequence (E3ETLTVV9) located in the N-terminal region. Further studies showed that a region near the bottom of the central domain of KlebE plays a primary role in recognizing OmpC, with eight residues surrounding this region identified as essential for KlebE toxicity. Finally, based on the discrepancies in OmpC sequences between the KlebE-resistant and sensitive strains, it was found that the 91st residue of OmpC, an aspartic acid residue, is a key determinant of KlebE toxicity. The identification and characterization of this toxin will facilitate the development of bacteriocin-based therapies targeting multidrug-resistant K. pneumoniae infections.


Subject(s)
Bacteriocins , Klebsiella pneumoniae , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/metabolism , Bacteriocins/pharmacology , Bacteriocins/toxicity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Porins/genetics , Porins/metabolism , Cell Membrane Permeability/drug effects , Cell Membrane Permeability/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Protein Domains , Drug Resistance, Multiple, Bacterial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...